Growth and Likelihood

Larry Samuelson, Jakub Steiner

VSET, May 2023

Stochastic Growth

stochastic growth: multiplication of random variables

in economics

• wealth is a product of random returns

in statistics

likelihood of sample is a product of likelihoods of random data points

growth-rate maximization in both cases

Consistency Principles

Optimal policy seeks consistency with outcomes it generates.

in economics

• meritocracy: consistency between wealth and merit shares

- in predictive coding
 - consistency between prediction and sensory information

Literature

economics

- redistribution enhances growth
 - neoclassical explanation: concave returns
 - we: redistribution is a hedge against productivity shocks
- meritocracy: should wealth be a function of
 - initial conditions, output, luck?

information theory

Kelly's betting

machine learning

- variational methods: Bayes rule as an optimization
- we: a growth-based proof

On the Notation

probabilities p(x) and likelihoods $p(y \mid x)$ induce

 $p(x,y) = p(x)p(y \mid x)$ $p(y) = \sum_{x} p(x,y)$ $p(x \mid y) = \frac{p(x,y)}{p(y)}$

On the Notation

probabilities q(x) and generalized likelihoods $q(y \mid x) \ge 0$ induce

$$q(x, y) = q(x)q(y \mid x)$$
$$q(y) = \sum_{x} q(x, y)$$
$$q(x \mid y) = \frac{q(x, y)}{q(y)}$$

On the Notation

probabilities $\mathbf{q}(x)$ and generalized likelihoods $q(y \mid x) \ge 0$ induce

$$q(x, y) = \mathbf{q}(x)q(y \mid x)$$
$$q(y) = \sum_{x} q(x, y)$$
$$\mathbf{q}(x \mid y) = \frac{q(x, y)}{q(y)}$$

properly normalized distributions in **bold**

individuals $i \in I$, discrete time

stationary allocation $\mathbf{q}(i)$

• each *i* receives share q(i) of the aggr. wealth each morning

gross return $r(i, \omega_t) \ge 0$

- iid shocks $\omega_t \sim \mathbf{p}_0(\omega)$
- each t, wealth of each individual i is multiplied by $r(i, \omega_t) \ge 0$

planner controls allocation to maximize long-run growth rate

$$\max_{\mathbf{q}(i)\in\mathcal{Q}}\mathsf{E}_{\mathbf{p}_{0}}\ln\left(\sum_{i}\mathbf{q}(i)r(i,\omega)\right)$$

set Q: constraints on inequality

individuals $i \in I$, discrete time

stationary allocation $\mathbf{q}(i)$

• each *i* receives share q(i) of the aggr. wealth each morning

gross return $q(\omega_t \mid i) \ge 0$

- iid shocks $\omega_t \sim \mathbf{p}_0(\omega)$
- each t, wealth of each individual i is multiplied by $q(\omega_t \mid i) \ge 0$

planner controls allocation to maximize long-run growth rate

$$\max_{\mathbf{q}(i)\in\mathcal{Q}}\mathsf{E}_{\mathbf{p}_{0}}\ln\left(\sum_{i}\mathbf{q}(i)q(\omega\mid i)\right)$$

```
set Q: constraints on inequality
```

individuals $i \in I$, discrete time

stationary allocation $\mathbf{q}(i)$

each i receives share q(i) of the aggr. wealth each morning

gross return $q(\omega_t \mid i) \ge 0$

- iid shocks $\omega_t \sim \mathbf{p}_0(\omega)$
- each t, wealth of each individual i is multiplied by $q(\omega_t \mid i) \ge 0$

planner controls allocation to maximize long-run growth rate

$$\max_{\mathsf{q}(i)\in\mathcal{Q}}\mathsf{E}_{\mathsf{p}_0}\ln\Big(\sum_i q(i,\omega)\Big)$$

set Q: constraints on inequality

individuals $i \in I$, discrete time

stationary allocation $\mathbf{q}(i)$

• each *i* receives share q(i) of the aggr. wealth each morning

gross return $q(\omega_t \mid i) \ge 0$

- iid shocks $\omega_t \sim \mathbf{p}_0(\omega)$
- each t, wealth of each individual i is multiplied by $q(\omega_t \mid i) \ge 0$

planner controls allocation to maximize long-run growth rate

 $\max_{\mathbf{q}(i)\in\mathcal{Q}}\mathsf{E}_{\mathbf{p}_{0}}\ln q(\omega)$

set Q: constraints on inequality

 $\omega \sim \mathbf{p}_0 \in \Delta(I)$

returns $q(\omega \mid i) = \mathbb{1}_{\omega=i}$

unconstrained allocation: $\mathbf{q}(i) \in \mathcal{Q} = \Delta(I)$

optimal allocation: $\mathbf{q}^*(i) = \mathbf{p}_0(i)$

equivalent to Kelly's betting

Merit Distribution

share of aggr. wealth produced by individual i in a period with shock ω

$$\frac{\mathbf{q}(i)q(\omega \mid i)}{\sum_{j} \mathbf{q}(j)q(\omega \mid j)} := \mathbf{q}(i \mid \omega)$$

definition

merit distribution: share of aggr. wealth produced by i in a random period

 $\mathbf{m}_{\mathbf{q}}(i) = \mathsf{E}_{\mathbf{p}_{0}(\omega)} \, \mathbf{q}(i \mid \omega)$

Naive Merit Principle

Proposition

Growth-maximizing allocation \mathbf{q}^* minimizes KL-divergence from the induced merit:

$$\mathbf{q}^*(i) \in \mathop{\mathrm{arg\,min}}_{\mathbf{q}(i) \in \mathcal{Q}} \operatorname{KL}\left(\mathbf{m}_{\mathbf{q}^*}(i) \parallel \mathbf{q}(i)\right).$$

recall: KL-divergence is a pseudo-distance between two distributions

no uncertainty

individual $i = 1, \ldots, 5$ has a return i

an inequality constraint $H(\mathbf{q}(i)) \geq 1$

growth-optimal allocation

no uncertainty

individual $i = 1, \ldots, 5$ has a return i

an inequality constraint $H(\mathbf{q}(i)) \geq 1$

induced merit

no uncertainty

individual $i = 1, \ldots, 5$ has a return i

an inequality constraint $H(\mathbf{q}(i)) \ge 1$

naive meritocracy returns the growth-optimal allocation

Naiveté

planner doesn't minimize the wedge between allocation and merit

• the principle ignores endogeneity of merit

Peter Andre: Shallow Meritocracy

• people don't incorporate indirect effects into their merit judgements

Extension of KL-divergence

$$\mathsf{KL}(\mathbf{p} \parallel \mathbf{q}) := \sum_{x} \mathbf{p}(x) \ln \frac{\mathbf{p}(x)}{\mathbf{q}(x)}$$

a map $\Delta(X) imes \Delta(X) o \mathbb{R}_+$

the distribution "most consistent" with q is the normalization of q

$$\frac{q(x)}{\sum_{x'} q(x')} \in \argmin_{\mathbf{p}} \mathsf{KL}(\mathbf{p} \parallel q)$$

Extension of KL-divergence

$$\mathsf{KL}(\mathbf{p} \parallel \mathbf{q}) := \sum_{x} \mathbf{p}(x) \ln \frac{\mathbf{p}(x)}{\mathbf{q}(x)}$$

a map $\Delta(X) imes \mathbb{R}^X_+ o \mathbb{R}$

the distribution "most consistent" with q is the normalization of q

$$\frac{q(x)}{\sum_{x'}q(x')} \in \argmin_{\mathbf{p}} \mathsf{KL}(\mathbf{p} \parallel q)$$

Joint Optimization

Theorem

Allocation $q^*(i)$ maximizes the growth rate if and only if solves

$$\begin{array}{ll} \min_{\mathbf{p}(i,\omega),\mathbf{q}(i)} & \mathsf{KL}\left(\mathbf{p}(i,\omega) \parallel q(i,\omega)\right) \\ \text{s.t.} & \mathbf{p}(\omega) = \mathbf{p}_0(\omega) \\ & \mathbf{q}(i) \in \mathcal{Q}, \end{array}$$

together with some $\mathbf{p}^*(i, \omega)$.

Additionally, $\mathbf{p}^*(i)$ is the merit distribution induced by $\mathbf{q}^*(i)$.

interpretation of $\mathbf{p}(i, \omega)$?

Growth Rate as a Consistency Optimization

Donsker and Varadhan's variational formula

Lemma For any $q: X \to \mathbb{R}_{++}$, $\ln \sum_{x} q(x) = -\min_{\mathbf{p}} \mathsf{KL}(\mathbf{p} \parallel q).$

- what are these distributions p?
- Why p consistent with q?

Proof

set up a growth process

$$y_t = \left(\sum_{x} q(x)\right)^t$$

the expression of interest is its growth rate

$$\ln \sum_{x} q(x) = \frac{1}{t} \ln y_t$$

sum over sequences

$$y_t = \sum_{(x_1,\ldots,x_t)} \prod_{t'} q(x_{t'})$$

the summands depend only the empirical distribution ${\bf p}$ of the sequence

Proof

of sequences with an empirical distribution **p** is $\approx \exp[H(\mathbf{p})t]$

$$y_t = \sum_{\mathbf{p}} \prod_{x} q(x)^{\mathbf{p}(x)t} \exp[\mathbf{H}(\mathbf{p})t]$$

process y_t is a sum of exponential growths

$$y_t = \sum_{\mathbf{p}} \exp\left[-\operatorname{\mathsf{KL}}(\mathbf{p} \parallel q)t
ight]$$

the exponential function with the highest exponent dominates

$$y_t \approx \exp\left[-\min_{\mathbf{p}} \mathsf{KL}(\mathbf{p} \parallel q)t\right]$$

Q&A

what are these distributions p?

- each p corresponds to an empirical distribution of a sequence
- the original process is a sum of growths across all p
- the fastest growth dominates

- why p consistent with q grows fast?
 - concentrate on x with high q(x)
 - but, be random to keep # of sequences high
 - the optimal compromise p* matches q

Back to Economic Growth

recall the growth rate expression

 $\sum_{\omega} \mathbf{p}_0(\omega) \ln\left(\sum_i q(i,\omega)\right)$

apply the lemma for each ω

Dynasties of Dollars

a dynasty originates in \$1 at t = 1

it moves from one individual to another

it multiplies by the return of its current owner

define path $\mathbf{p}(i,\omega)$ as

• the empirical frequency of a dynasty being in hands of i and state ω

all paths s.t: $\mathbf{p}(\omega) = \mathbf{p}_0(\omega)$ coexist

wealth of dynasties with path $\mathbf{p}(i, \omega)$ grows at rate,

 $-\operatorname{\mathsf{KL}}\left(\mathbf{p}(i,\omega)\parallel q(i,\omega)\right)$

Allocation Optimization

growth-maximizing allocation solves

$$\begin{array}{ll} \min_{\mathbf{q}(i)} & \mathsf{KL}\left(\mathbf{p}^{*}(i,\omega) \parallel q(i,\omega)\right) \\ \text{s.t.} & \mathbf{q}(i) \in \mathcal{Q}. \end{array}$$

Allocation Optimization

growth-maximizing allocation solves

$$\min_{\mathbf{q}(i)} \left\{ \mathsf{KL}\left(\mathbf{p}^{*}(i) \parallel \mathbf{q}(i)\right) + \sum_{i} \mathbf{p}^{*}(i) \, \mathsf{KL}\left(\mathbf{p}^{*}(\omega \mid i) \parallel q(\omega \mid i)\right) \right\}$$
s.t.
$$\mathbf{q}(i) \in \mathcal{Q}.$$

Learning the Growth-Maximizing Allocation

start with an arbitrary interior allocation q(i)

compute induced merit $\mathbf{m}_{\mathbf{q}}(i)$

update to the "most fair" allocation $\mathbf{q}'(i) \in \mathcal{Q}$ given merit $\mathbf{m}_{\mathbf{q}}(i)$

iterate

this converges to the optimal policy (for convex Q)

• Csiszár & Tusnády '84

Learning: Growth Perspective Berk'66, White'82

sample (x_1, \ldots, x_t) from $\mathbf{p}(x)$

likelihood of sample under a hypothesis ${\bf q}(x)$ grows at rate $-\,{\sf KL}({\bf p}\parallel {\bf q}){-}\,{\sf H}({\bf p})$

 \Rightarrow a statistician converges to hypothesis $\textbf{q}^* \in \text{arg min}_{\textbf{q}} \: \text{KL}(\textbf{p} \parallel \textbf{q})$

Predictive Coding

a system

- samples a signal ω from $\mathbf{p}_0(\omega)$
- seeks to form belief about a cause i of the signal ω
- knows likelihoods $\mathbf{q}(\omega \mid i)$
- entertains a set Q of priors q(i)

chooses the best fit

```
\mathbf{q}^*(i) \in \operatorname*{arg\,min}_{\mathbf{q}(i) \in \mathcal{Q}} \mathsf{KL}\left(\mathbf{p}_0(\omega) \parallel \mathbf{q}(\omega)\right)
```

this can be justified by

- White's or Berk's asymptotic results on learning, or
- minimization of surprise

finally, forms belief $\mathbf{q}^*(i \mid \omega)$ by Bayes law

Generative and Recognition Models

generative model $\mathbf{q}(i,\omega)$: system's internal model of the world

recognition model $\mathbf{p}(i, \omega)$: system's interpretation of the signal

- arbitrary belief $\mathbf{p}(i \mid \omega)$ upon observing ω
- signals ω are sampled from $\mathbf{p}_0(\omega)$, thus $\mathbf{p}(\omega) \equiv \mathbf{p}_0(\omega)$
- $\mathbf{p}(i,\omega) = \mathbf{p}_0(\omega)\mathbf{p}(i \mid \omega)$

generative and recognition models may differ

• but a good pair is as consistent as possible

Variational Characterization

proven by a variational argument in machine learning

we provide a growth-based proof

The Connection

optimization of growth rates of multiplicative random processes

• aggregate wealth is a product of random returns

$$\prod_{t} \left(\sum_{i} \mathbf{q}(i) q(\omega_t \mid i) \right)$$

• likelihood of a sample is a product of likelihoods of data points

$$\prod_t \left(\sum_i \mathbf{q}(i) \mathbf{q}(\omega_t \mid i) \right)$$

predictive coding generative model q recognition model p

Approximate Bayes-Consistency analogue of the naive merit principle

misspecification \Rightarrow empirical mean of posteriors over causes \neq prior

 $\mathsf{E}_{\mathbf{p}_{0}(\omega)}\,\mathbf{p}^{*}(i\mid\omega)\neq\mathbf{q}^{*}(i)$

Proposition

Optimal generative distribution $\mathbf{q}^*(i)$ maximizes consistency with the recognition distribution $\mathbf{p}^*(i) = \mathbf{E}_{\mathbf{p}_0(\omega)} \mathbf{p}^*(i \mid \omega)$:

 $\mathbf{q}^*(i) \in \underset{\mathbf{q}(i) \in \mathcal{Q}}{\arg\min} \operatorname{KL}\left(\mathbf{p}^*(i) \parallel \mathbf{q}(i)\right).$

Summary

we established equivalence between

- economic growth and
- predictive coding

unified consistency principles that apply to both

 \Rightarrow a fairness principle in the economic context

growth-based approach as an alternative to the variational approach