# Growth and Likelihood 

Larry Samuelson, Jakub Steiner

VSET, May 2023

## Stochastic Growth

stochastic growth: multiplication of random variables
in economics

- wealth is a product of random returns
in statistics
- likelihood of sample is a product of likelihoods of random data points
growth-rate maximization in both cases


## Consistency Principles

Optimal policy seeks consistency with outcomes it generates.
in economics

- meritocracy: consistency between wealth and merit shares
in predictive coding
- consistency between prediction and sensory information


## Literature

economics

- redistribution enhances growth
- neoclassical explanation: concave returns
- we: redistribution is a hedge against productivity shocks
- meritocracy: should wealth be a function of
- initial conditions, output, luck?
information theory
- Kelly's betting
machine learning
- variational methods: Bayes rule as an optimization
- we: a growth-based proof
(1) Economic Growth
(3) Predictive Coding


## On the Notation

probabilities $p(x)$ and likelihoods $p(y \mid x)$ induce

$$
\begin{aligned}
p(x, y) & =p(x) p(y \mid x) \\
p(y) & =\sum_{x} p(x, y) \\
p(x \mid y) & =\frac{p(x, y)}{p(y)}
\end{aligned}
$$

## On the Notation

probabilities $q(x)$ and generalized likelihoods $q(y \mid x) \geq 0$ induce

$$
\begin{aligned}
q(x, y) & =q(x) q(y \mid x) \\
q(y) & =\sum_{x} q(x, y) \\
q(x \mid y) & =\frac{q(x, y)}{q(y)}
\end{aligned}
$$

## On the Notation

probabilities $\mathbf{q}(x)$ and generalized likelihoods $q(y \mid x) \geq 0$ induce

$$
\begin{aligned}
q(x, y) & =\mathbf{q}(x) q(y \mid x) \\
q(y) & =\sum_{x} q(x, y) \\
\mathbf{q}(x \mid y) & =\frac{q(x, y)}{q(y)}
\end{aligned}
$$

properly normalized distributions in bold

## Model

individuals $i \in I$, discrete time
stationary allocation $\mathbf{q}(i)$

- each $i$ receives share $\mathbf{q}(i)$ of the aggr. wealth each morning
gross return $r\left(i, \omega_{t}\right) \geq 0$
- iid shocks $\omega_{t} \sim \mathbf{p}_{0}(\omega)$
- each $t$, wealth of each individual $i$ is multiplied by $r\left(i, \omega_{t}\right) \geq 0$
planner controls allocation to maximize long-run growth rate

$$
\max _{\mathbf{q}(i) \in \mathcal{Q}} \mathrm{E}_{\mathbf{p}_{0}} \ln \left(\sum_{i} \mathbf{q}(i) r(i, \omega)\right)
$$

set $\mathcal{Q}$ : constraints on inequality

## Model

individuals $i \in I$, discrete time
stationary allocation $\mathbf{q}(i)$

- each $i$ receives share $\mathbf{q}(i)$ of the aggr. wealth each morning
gross return $q\left(\omega_{t} \mid i\right) \geq 0$
- iid shocks $\omega_{t} \sim \mathbf{p}_{0}(\omega)$
- each $t$, wealth of each individual $i$ is multiplied by $q\left(\omega_{t} \mid i\right) \geq 0$
planner controls allocation to maximize long-run growth rate

$$
\max _{\mathbf{q}(i) \in \mathcal{Q}} \mathrm{E}_{\mathbf{p}_{0}} \ln \left(\sum_{i} \mathbf{q}(i) q(\omega \mid i)\right)
$$

set $\mathcal{Q}$ : constraints on inequality

## Model

individuals $i \in I$, discrete time
stationary allocation $\mathbf{q}(i)$

- each $i$ receives share $\mathbf{q}(i)$ of the aggr. wealth each morning
gross return $q\left(\omega_{t} \mid i\right) \geq 0$
- iid shocks $\omega_{t} \sim \mathbf{p}_{0}(\omega)$
- each $t$, wealth of each individual $i$ is multiplied by $q\left(\omega_{t} \mid i\right) \geq 0$
planner controls allocation to maximize long-run growth rate

$$
\max _{\mathbf{q}(i) \in \mathcal{Q}} \mathrm{E}_{\mathbf{p}_{0}} \ln \left(\sum_{i} q(i, \omega)\right)
$$

set $\mathcal{Q}$ : constraints on inequality

## Model

individuals $i \in I$, discrete time
stationary allocation $\mathbf{q}(i)$

- each $i$ receives share $\mathbf{q}(i)$ of the aggr. wealth each morning
gross return $q\left(\omega_{t} \mid i\right) \geq 0$
- iid shocks $\omega_{t} \sim \mathbf{p}_{0}(\omega)$
- each $t$, wealth of each individual $i$ is multiplied by $q\left(\omega_{t} \mid i\right) \geq 0$
planner controls allocation to maximize long-run growth rate

$$
\max _{\mathbf{q}(i) \in \mathcal{Q}} E_{\mathbf{p}_{0}} \ln q(\omega)
$$

set $\mathcal{Q}$ : constraints on inequality

## Example

$\omega \sim p_{0} \in \Delta(I)$
returns $q(\omega \mid i)=\mathbb{1}_{\omega=i}$
unconstrained allocation: $\mathbf{q}(i) \in \mathcal{Q}=\Delta(I)$
optimal allocation: $\mathbf{q}^{*}(i)=\mathbf{p}_{0}(i)$
equivalent to Kelly's betting

## Merit Distribution

share of aggr. wealth produced by individual $i$ in a period with shock $\omega$

$$
\frac{\mathbf{q}(i) q(\omega \mid i)}{\sum_{j} \mathbf{q}(j) q(\omega \mid j)}:=\mathbf{q}(i \mid \omega)
$$

## definition

merit distribution: share of aggr. wealth produced by $i$ in a random period

$$
\mathbf{m}_{\mathbf{q}}(i)=\mathrm{E}_{\mathbf{p}_{0}(\omega)} \mathbf{q}(i \mid \omega)
$$

## Naive Merit Principle

## Proposition

Growth-maximizing allocation $\mathbf{q}^{*}$ minimizes KL-divergence from the induced merit:

$$
\mathbf{q}^{*}(i) \in \underset{\mathbf{q}(i) \in \mathcal{Q}}{\arg \min } \mathrm{KL}\left(\mathbf{m}_{\mathbf{q}^{*}}(i) \| \mathbf{q}(i)\right)
$$

recall: KL-divergence is a pseudo-distance between two distributions

## Example

no uncertainty
individual $i=1, \ldots, 5$ has a return $i$
an inequality constraint $H(\mathbf{q}(i)) \geq 1$
growth-optimal allocation


## Example

no uncertainty
individual $i=1, \ldots, 5$ has a return $i$
an inequality constraint $H(\mathbf{q}(i)) \geq 1$
induced merit


## Example

no uncertainty
individual $i=1, \ldots, 5$ has a return $i$
an inequality constraint $\mathrm{H}(\mathbf{q}(i)) \geq 1$
naive meritocracy returns the growth-optimal allocation

planner doesn't minimize the wedge between allocation and merit

- the principle ignores endogeneity of merit

Peter Andre: Shallow Meritocracy

- people don't incorporate indirect effects into their merit judgements
(1) Economic Growth
(2) Proof
(3) Predictive Coding


## Extension of KL-divergence

$$
\mathrm{KL}(\mathbf{p} \| \mathbf{q}):=\sum_{x} \mathbf{p}(x) \ln \frac{\mathbf{p}(x)}{\mathbf{q}(x)}
$$

a map $\Delta(X) \times \Delta(X) \rightarrow \mathbb{R}_{+}$
the distribution "most consistent" with $q$ is the normalization of $q$

$$
\frac{q(x)}{\sum_{x^{\prime}} q\left(x^{\prime}\right)} \in \underset{\mathbf{p}}{\arg \min } \mathrm{KL}(\mathbf{p} \| q)
$$

## Extension of KL-divergence

$$
\mathrm{KL}(\mathbf{p} \| q):=\sum_{x} \mathbf{p}(x) \ln \frac{\mathbf{p}(x)}{q(x)}
$$

a map $\Delta(X) \times \mathbb{R}_{+}^{X} \rightarrow \mathbb{R}$
the distribution "most consistent" with $q$ is the normalization of $q$

$$
\frac{q(x)}{\sum_{x^{\prime}} q\left(x^{\prime}\right)} \in \underset{\mathbf{p}}{\arg \min } \mathrm{KL}(\mathbf{p} \| q)
$$

## Joint Optimization

## Theorem

Allocation $\mathbf{q}^{*}(i)$ maximizes the growth rate if and only if solves

$$
\begin{array}{cl}
\min _{\mathbf{p}(i, \omega), \mathbf{q}(i)} & \mathrm{KL}(\mathbf{p}(i, \omega) \| q(i, \omega)) \\
\text { s.t. } & \mathbf{p}(\omega)=\mathbf{p}_{0}(\omega) \\
& \mathbf{q}(i) \in \mathcal{Q},
\end{array}
$$

together with some $\mathbf{p}^{*}(i, \omega)$.

Additionally, $\mathbf{p}^{*}(i)$ is the merit distribution induced by $\mathbf{q}^{*}(i)$.
interpretation of $\mathbf{p}(i, \omega)$ ?

## Lemma

For any $q: X \rightarrow \mathbb{R}_{++}$,

$$
\ln \sum_{x} q(x)=-\min _{\mathbf{p}} \mathrm{KL}(\mathbf{p} \| q)
$$

(1) what are these distributions p ?
(2) why p consistent with $q$ ?

## Proof

set up a growth process

$$
y_{t}=\left(\sum_{x} q(x)\right)^{t}
$$

the expression of interest is its growth rate

$$
\ln \sum_{x} q(x)=\frac{1}{t} \ln y_{t}
$$

sum over sequences

$$
y_{t}=\sum_{\left(x_{1}, \ldots, x_{t}\right)} \prod_{t^{\prime}} q\left(x_{t^{\prime}}\right)
$$

the summands depend only the empirical distribution $p$ of the sequence
\# of sequences with an empirical distribution $\mathbf{p}$ is $\approx \exp [\mathrm{H}(\mathbf{p}) t]$

$$
y_{t}=\sum_{\mathbf{p}} \prod_{x} q(x)^{\mathbf{p}(x) t} \exp [\mathrm{H}(\mathbf{p}) t]
$$

process $y_{t}$ is a sum of exponential growths

$$
y_{t}=\sum_{\mathbf{p}} \exp [-\mathrm{KL}(\mathbf{p} \| q) t]
$$

the exponential function with the highest exponent dominates

$$
y_{t} \approx \exp \left[-\min _{\mathbf{p}} \mathrm{KL}(\mathbf{p} \| q) t\right]
$$

(1) what are these distributions p ?

- each p corresponds to an empirical distribution of a sequence
- the original process is a sum of growths across all p
- the fastest growth dominates
(2) why $p$ consistent with $q$ grows fast?
- concentrate on $x$ with high $q(x)$
- but, be random to keep \# of sequences high
- the optimal compromise $p^{*}$ matches $q$


## Back to Economic Growth

recall the growth rate expression

$$
\sum_{\omega} \mathbf{p}_{0}(\omega) \ln \left(\sum_{i} q(i, \omega)\right)
$$

apply the lemma for each $\omega$

## Dynasties of Dollars

a dynasty originates in $\$ 1$ at $t=1$
it moves from one individual to another
it multiplies by the return of its current owner
define path $\mathbf{p}(i, \omega)$ as

- the empirical frequency of a dynasty being in hands of $i$ and state $\omega$
all paths s.t: $\mathbf{p}(\omega)=\mathbf{p}_{0}(\omega)$ coexist
wealth of dynasties with path $\mathbf{p}(i, \omega)$ grows at rate,

$$
-\mathrm{KL}(\mathbf{p}(i, \omega) \| q(i, \omega))
$$

## Allocation Optimization

growth-maximizing allocation solves

$$
\begin{array}{ll}
\min _{\mathbf{q}(i)} & \mathrm{KL}\left(\mathbf{p}^{*}(i, \omega) \| q(i, \omega)\right) \\
\text { s.t. } & \mathbf{q}(i) \in \mathcal{Q}
\end{array}
$$

## Allocation Optimization

growth-maximizing allocation solves

$$
\min _{\mathbf{q}(i)}\left\{\mathrm{KL}\left(\mathbf{p}^{*}(i) \| \mathbf{q}(i)\right)+\sum_{i} \mathbf{p}^{*}(i) \mathrm{KL}\left(\mathbf{p}^{*}(\omega \mid i) \| q(\omega \mid i)\right)\right\}
$$

$$
\text { s.t. } \quad \mathbf{q}(i) \in \mathcal{Q}
$$

## Learning the Growth-Maximizing Allocation

start with an arbitrary interior allocation $\mathbf{q}(i)$
compute induced merit $\mathbf{m}_{\mathbf{q}}(i)$
update to the "most fair" allocation $\mathbf{q}^{\prime}(i) \in \mathcal{Q}$ given merit $\mathbf{m}_{\mathbf{q}}(i)$
iterate
this converges to the optimal policy (for convex $\mathcal{Q}$ )

- Csiszár \& Tusnády '84
(1) Economic Growth
(2) Proof
(3) Predictive Coding


## Learning: Growth Perspective

sample $\left(x_{1}, \ldots, x_{t}\right)$ from $\mathbf{p}(x)$
likelihood of sample under a hypothesis $\mathbf{q}(x)$ grows at rate

$$
-\mathrm{KL}(\mathbf{p} \| \mathbf{q})-H(\mathbf{p})
$$

$\Rightarrow$ a statistician converges to hypothesis $\mathbf{q}^{*} \in \arg \min _{\mathbf{q}} \operatorname{KL}(\mathbf{p} \| \mathbf{q})$

## Predictive Coding

a system

- samples a signal $\omega$ from $p_{0}(\omega)$
- seeks to form belief about a cause $i$ of the signal $\omega$
- knows likelihoods $\mathbf{q}(\omega \mid i)$
- entertains a set $\mathcal{Q}$ of priors $\mathbf{q}(i)$
chooses the best fit

$$
\mathbf{q}^{*}(i) \in \underset{\mathbf{q}(i) \in \mathcal{Q}}{\arg \min } \mathrm{KL}\left(\mathbf{p}_{0}(\omega) \| \mathbf{q}(\omega)\right)
$$

this can be justified by

- White's or Berk's asymptotic results on learning, or
- minimization of surprise
finally, forms belief $\mathbf{q}^{*}(i \mid \omega)$ by Bayes law


## Generative and Recognition Models

generative model $\mathbf{q}(i, \omega)$ : system's internal model of the world
recognition model $\mathbf{p}(i, \omega)$ : system's interpretation of the signal

- arbitrary belief $\mathbf{p}(i \mid \omega)$ upon observing $\omega$
- signals $\omega$ are sampled from $\mathbf{p}_{0}(\omega)$, thus $\mathbf{p}(\omega) \equiv \mathbf{p}_{0}(\omega)$
- $\mathbf{p}(i, \omega)=\mathbf{p}_{0}(\omega) \mathbf{p}(i \mid \omega)$
generative and recognition models may differ
- but a good pair is as consistent as possible


## Variational Characterization

## Corollary

The best fit solves

$$
\begin{aligned}
\min _{\mathbf{p}(i, \omega), \mathbf{q}(i)} & \mathrm{KL}(\mathbf{p}(i, \omega) \| \mathbf{q}(i, \omega)) \\
\text { s.t. } & \mathbf{p}(\omega)=\mathbf{p}_{0}(\omega) \\
& \mathbf{q}(i) \in \mathcal{Q} .
\end{aligned}
$$

proven by a variational argument in machine learning
we provide a growth-based proof

## The Connection

optimization of growth rates of multiplicative random processes

- aggregate wealth is a product of random returns

$$
\prod_{t}\left(\sum_{i} \mathbf{q}(i) q\left(\omega_{t} \mid i\right)\right)
$$

- likelihood of a sample is a product of likelihoods of data points

$$
\prod_{t}\left(\sum_{i} \mathbf{q}(i) \mathbf{q}\left(\omega_{t} \mid i\right)\right)
$$

## economic growth

- allocation and returns $q$
- path p


## predictive coding

- generative model q
- recognition model p
misspecification $\Rightarrow$ empirical mean of posteriors over causes $\neq$ prior

$$
\mathrm{E}_{\mathbf{p}_{0}(\omega)} \mathbf{p}^{*}(i \mid \omega) \neq \mathbf{q}^{*}(i)
$$

## Proposition

Optimal generative distribution $\mathbf{q}^{*}(i)$ maximizes consistency with the recognition distribution $\mathbf{p}^{*}(i)=\mathrm{E}_{\mathbf{p}_{0}(\omega)} \mathbf{p}^{*}(i \mid \omega)$ :

$$
\mathbf{q}^{*}(i) \in \underset{\mathbf{q}(i) \in \mathcal{Q}}{\arg \min } K L\left(\mathbf{p}^{*}(i) \| \mathbf{q}(i)\right)
$$

## Summary

we established equivalence between

- economic growth and
- predictive coding
unified consistency principles that apply to both
$\Rightarrow$ a fairness principle in the economic context
growth-based approach as an alternative to the variational approach

