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Stochastic Growth

stochastic growth: multiplication of random variables

in economics

wealth is a product of random returns

in statistics

likelihood of sample is a product of likelihoods of random data points

growth-rate maximization in both cases



Consistency Principles

Optimal policy seeks consistency with outcomes it generates.

in economics

meritocracy: consistency between wealth and merit shares

in predictive coding

consistency between prediction and sensory information



Literature

economics

redistribution enhances growth

neoclassical explanation: concave returns

we: redistribution is a hedge against productivity shocks

meritocracy: should wealth be a function of

initial conditions, output, luck?

information theory

Kelly’s betting

machine learning

variational methods: Bayes rule as an optimization

we: a growth-based proof
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On the Notation

probabilities p(x) and likelihoods p(y | x) induce

p(x , y) = p(x)p(y | x)

p(y) =
∑
x

p(x , y)

p(x | y) =
p(x , y)

p(y)



On the Notation

probabilities q(x) and generalized likelihoods q(y | x) ≥ 0 induce

q(x , y) = q(x)q(y | x)

q(y) =
∑
x

q(x , y)

q(x | y) =
q(x , y)

q(y)



On the Notation

probabilities q(x) and generalized likelihoods q(y | x) ≥ 0 induce

q(x , y) = q(x)q(y | x)

q(y) =
∑
x

q(x , y)

q(x | y) =
q(x , y)

q(y)

properly normalized distributions in bold



Model

individuals i ∈ I , discrete time

stationary allocation q(i)

each i receives share q(i) of the aggr. wealth each morning

gross return r(i , ωt) ≥ 0

iid shocks ωt ∼ p0(ω)

each t, wealth of each individual i is multiplied by r(i , ωt) ≥ 0

planner controls allocation to maximize long-run growth rate

max
q(i)∈Q

Ep0 ln
(∑

i

q(i)r(i , ω)
)

set Q: constraints on inequality
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Model

individuals i ∈ I , discrete time

stationary allocation q(i)

each i receives share q(i) of the aggr. wealth each morning

gross return q(ωt | i) ≥ 0

iid shocks ωt ∼ p0(ω)

each t, wealth of each individual i is multiplied by q(ωt | i) ≥ 0

planner controls allocation to maximize long-run growth rate

max
q(i)∈Q

Ep0 ln q(ω)

set Q: constraints on inequality



Example

ω ∼ p0 ∈ ∆(I )

returns q(ω | i) = 1ω=i

unconstrained allocation: q(i) ∈ Q = ∆(I )

optimal allocation: q∗(i) = p0(i)

equivalent to Kelly’s betting



Merit Distribution

share of aggr. wealth produced by individual i in a period with shock ω

q(i)q(ω | i)∑
j q(j)q(ω | j)

:= q(i | ω)

definition

merit distribution: share of aggr. wealth produced by i in a random period

mq(i) = Ep0(ω) q(i | ω)



Naive Merit Principle

Proposition

Growth-maximizing allocation q∗ minimizes KL-divergence from the
induced merit:

q∗(i) ∈ arg min
q(i)∈Q

KL
(
mq∗(i) ‖ q(i)

)
.

recall: KL-divergence is a pseudo-distance between two distributions



Example

no uncertainty

individual i = 1, . . . , 5 has a return i

an inequality constraint H(q(i)) ≥ 1

growth-optimal allocation
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Example

no uncertainty

individual i = 1, . . . , 5 has a return i

an inequality constraint H(q(i)) ≥ 1

naive meritocracy returns the growth-optimal allocation
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Naiveté

planner doesn’t minimize the wedge between allocation and merit

the principle ignores endogeneity of merit

Peter Andre: Shallow Meritocracy

people don’t incorporate indirect effects into their merit judgements
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Extension of KL-divergence

KL(p ‖ q) :=
∑
x

p(x) ln
p(x)

q(x)

a map ∆(X )×∆(X )→ R+

the distribution “most consistent” with q is the normalization of q

q(x)∑
x′ q(x ′)

∈ arg min
p

KL(p ‖ q)



Extension of KL-divergence

KL(p ‖ q) :=
∑
x

p(x) ln
p(x)

q(x)

a map ∆(X )× RX
+ → R

the distribution “most consistent” with q is the normalization of q

q(x)∑
x′ q(x ′)

∈ arg min
p

KL(p ‖ q)



Joint Optimization

Theorem

Allocation q∗(i) maximizes the growth rate if and only if solves

min
p(i,ω),q(i)

KL
(
p(i , ω) ‖ q(i , ω)

)
s.t. p(ω) = p0(ω)

q(i) ∈ Q,

together with some p∗(i , ω).

Additionally, p∗(i) is the merit distribution induced by q∗(i).

interpretation of p(i , ω)?



Growth Rate as a Consistency Optimization
Donsker and Varadhan’s variational formula

Lemma

For any q : X → R++,

ln
∑
x

q(x) = −min
p

KL(p ‖ q).

1 what are these distributions p?

2 why p consistent with q?



Proof

set up a growth process

yt =

(∑
x

q(x)

)t

the expression of interest is its growth rate

ln
∑
x

q(x) =
1

t
ln yt

sum over sequences

yt =
∑

(x1,...,xt)

∏
t′

q(xt′)

the summands depend only the empirical distribution p of the sequence



Proof

# of sequences with an empirical distribution p is ≈ exp[H(p)t]

yt =
∑
p

∏
x

q(x)p(x)t exp[H(p)t]

process yt is a sum of exponential growths

yt =
∑
p

exp [−KL(p ‖ q)t]

the exponential function with the highest exponent dominates

yt ≈ exp

[
−min

p
KL(p ‖ q)t

]



Q&A

1 what are these distributions p?

each p corresponds to an empirical distribution of a sequence

the original process is a sum of growths across all p

the fastest growth dominates

2 why p consistent with q grows fast?

concentrate on x with high q(x)

but, be random to keep # of sequences high

the optimal compromise p∗ matches q



Back to Economic Growth

recall the growth rate expression

∑
ω

p0(ω) ln

(∑
i

q(i , ω)

)

apply the lemma for each ω



Dynasties of Dollars

a dynasty originates in $1 at t = 1

it moves from one individual to another

it multiplies by the return of its current owner

define path p(i , ω) as

the empirical frequency of a dynasty being in hands of i and state ω

all paths s.t: p(ω) = p0(ω) coexist

wealth of dynasties with path p(i , ω) grows at rate,

−KL
(
p(i , ω) ‖ q(i , ω)

)



Allocation Optimization

growth-maximizing allocation solves

min
q(i)

KL
(
p∗(i , ω) ‖ q(i , ω)

)
s.t. q(i) ∈ Q.



Allocation Optimization

growth-maximizing allocation solves

min
q(i)

{
KL
(
p∗(i) ‖ q(i)

)
+
∑
i

p∗(i) KL
(
p∗(ω | i) ‖ q(ω | i)

)}

s.t. q(i) ∈ Q.



Learning the Growth-Maximizing Allocation

start with an arbitrary interior allocation q(i)

compute induced merit mq(i)

update to the “most fair” allocation q′(i) ∈ Q given merit mq(i)

iterate

this converges to the optimal policy (for convex Q)

Csiszár & Tusnády ’84
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Learning: Growth Perspective
Berk’66, White’82

sample (x1, . . . , xt) from p(x)

likelihood of sample under a hypothesis q(x) grows at rate

−KL(p ‖ q)−H(p)

⇒ a statistician converges to hypothesis q∗ ∈ arg minq KL(p ‖ q)



Predictive Coding

a system

samples a signal ω from p0(ω)

seeks to form belief about a cause i of the signal ω

knows likelihoods q(ω | i)
entertains a set Q of priors q(i)

chooses the best fit

q∗(i) ∈ arg min
q(i)∈Q

KL
(
p0(ω) ‖ q(ω)

)
this can be justified by

White’s or Berk’s asymptotic results on learning, or

minimization of surprise

finally, forms belief q∗(i | ω) by Bayes law



Generative and Recognition Models

generative model q(i , ω): system’s internal model of the world

recognition model p(i , ω): system’s interpretation of the signal

arbitrary belief p(i | ω) upon observing ω

signals ω are sampled from p0(ω), thus p(ω) ≡ p0(ω)

p(i , ω) = p0(ω)p(i | ω)

generative and recognition models may differ

but a good pair is as consistent as possible



Variational Characterization

Corollary

The best fit solves

min
p(i,ω),q(i)

KL
(
p(i , ω) ‖ q(i , ω)

)
s.t. p(ω) = p0(ω)

q(i) ∈ Q.

proven by a variational argument in machine learning

we provide a growth-based proof



The Connection

optimization of growth rates of multiplicative random processes

aggregate wealth is a product of random returns

∏
t

(∑
i

q(i)q(ωt | i)

)

likelihood of a sample is a product of likelihoods of data points

∏
t

(∑
i

q(i)q(ωt | i)

)

economic growth

allocation and returns q

path p

predictive coding

generative model q

recognition model p



Approximate Bayes-Consistency
analogue of the naive merit principle

misspecification ⇒ empirical mean of posteriors over causes 6= prior

Ep0(ω) p
∗(i | ω) 6= q∗(i)

Proposition

Optimal generative distribution q∗(i) maximizes consistency with the
recognition distribution p∗(i) = Ep0(ω) p

∗(i | ω):

q∗(i) ∈ arg min
q(i)∈Q

KL
(
p∗(i) ‖ q(i)

)
.



Summary

we established equivalence between

economic growth and

predictive coding

unified consistency principles that apply to both

⇒ a fairness principle in the economic context

growth-based approach as an alternative to the variational approach
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