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Abstract

We examine a stochastic growth process that can alternatively be in-

terpreted as a model of economic growth, financial portfolio management,

statistical inference, or biological population growth. For the economic

interpretation, we find that the growth-maximizing policy satisfies a mer-

itocracy principle: it minimizes the discrepancy between the resource

shares allocated to the agents and the agents’ “merits.” For the statistical

interpretation, the setting is equivalent to a model of predictive coding,

in which a misspecified system maximizes the fit of data. A consistency

principle analogous to the meritocracy principle requires the optimal fit

to minimize a degree of Bayes inconsistency.

1 Introduction

This paper examines optimal redistribution policies within an abstract model

of stochastic economic growth. We introduce a concept of merit that outlines

the various economic agents’ contributions to the growth process. Our primary

finding is that the growth-maximizing policy satisfies a meritocracy principle,

minimizing the discrepancy between the allocation of aggregate wealth and the

economic agents’ merits.

Rare events, referred to as large deviations in probability theory, play an

important role in stochastic growth. We visualize large deviations by introduc-

ing paths of money : stochastic descriptions of the circulation of wealth in the
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Colin Stewart and various seminar and workshop audiences. This work was supported by
ERC grant 770652. We have used artificial intelligence GPT-4 for language editing.
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economy. Certain fractions of wealth follow atypical paths that reach individuals

mostly in those periods in which these individuals happen to enjoy high returns.

The mass of initial dollars following such a lucky path diminishes exponentially

with the considered time horizon, but such lucky dollars enjoy an extraordinary

long-run return. Asymptotically, all wealth is generated by a specific path of

money whose wealth accumulation swamps that of all other paths.

We represent growth maximization as a joint optimization over policies

and money paths. We show that the growth-maximizing policy minimizes the

Kullback-Leibler divergence between the policy and the path of money circula-

tion it generates. Our meritocracy principle is then an applied corollary of this

general consistency result.

Discussions of meritocracy typically focus on how an individual’s initial

condition, productivity, and luck should influence their wealth.1 A meritoc-

racy principle that induces maximal economic growth separates out all luck—

nonpersistent stochastic elements of outcomes—since these do not predict future

productivity. Perhaps surprisingly, however, the growth-maximizing meritoc-

racy principle does not eliminate wealth transfers from assessments of merits.

The principle rewards individuals based on a combination of transfers they enjoy

and their productivity. The growth-maximizing redistribution policy is a fixed

point that is generous to those who are both productive and receive generous

treatment from this policy. We do not claim that our notion of merit justifies

inequality or provides a prescription for redistribution, but only that it helps

identify which policies enhance growth.

The fixed-point aspect of the principle implies that the growth-maximizing

distribution of wealth is particularly sensitive to productivity shifts. An increase

in an individual’s productivity initiates a positive feedback loop: higher merit

leads to a more favorable allocation of wealth, which in turn further boosts

the individual’s merit. In the context of financial portfolio management, we

find that this feedback loop causes the growth-maximizing portfolio to exhibit

a strong sensitivity to exogenous changes in asset returns.

Stochastic growth processes, involving the multiplication of random vari-

ables, arise in a number of seemingly disparate contexts. In economics, accu-

mulated wealth is the product of random returns. Analogously, in statistics, the

1The current economic debate on meritocracy is primarily empirical and experimental.
Almås et al. (2020), Cappelen et al. (2023) and Andre (2022) explore how third-party re-
distribution choices are influenced by productivity, luck, and initial conditions. Alesina and
Angeletos (2005) propose a theoretical model where fairness attitudes are endogenous, result-
ing in multiple equilibria.

2



likelihood of a sample is the product of the likelihoods of a collection of random

observations. In both cases, interest centers on the policy—a wealth allocation

rule or a collection of estimated parameters—that maximizes the growth rate.

We demonstrate that the problem of finding a redistribution policy that

maximizes economic growth is equivalent to a problem of predictive coding,

studied at the intersection of statistics, cognitive science and machine learning.

An economy that is optimized for maximal growth must ensure the highest pos-

sible degree of alignment between the distribution of wealth and the merit of

its recipients. Similarly, a cognitive system designed for optimal data fitting

must maximize the consistency between its prior belief and the expected pos-

terior belief; the meritocracy principle translates in the cognitive domain to a

constrained form of Bayes’ consistency.

Section 3 presents the basic characterization of growth-maximizing policies

in terms of merit in the context of economic growth. Section 4 introduces paths

of money and provides the proof of our central merit-principle result. We then

derive an additional merit-based characterization and examine an iterative pro-

cedure leading to optimality. Section 5 establishes connections to predictive

coding. Section 6 discusses sufficient conditions and shows that rational inat-

tention arises as a special case of our setting.

2 Related Literature

Rising inequality has directed renewed interest to the extensive literature on

the relationship between inequality and growth. Theoretical models, reviewed in

Aghion et al. (1995), identify avenues by which inequality can both enhance and

inhibit growth. The empirical evidence is inconclusive, with studies like Barro

(2000), Berg et al. (2018), and Saez and Zucman (2020) presenting conflicting

results. Stiglitz (1969)’s neoclassical argument suggests that redistribution from

the rich to the poor fosters growth by alleviating diminishing returns and credit

constraints. Constraints on investment opportunities play a role in our model,

while returns are stochastic and linear.

The information-theoretic literature, originating in Kelly (1956), considers

the growth rate of financial portfolios. If one reinterprets the individuals in our

growth problem as financial assets, wealth redistribution becomes analogous to

financial hedging. The naive meritocracy principle generalizes Kelly’s propor-

tional betting strategy to accommodate general and endogenous returns and
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constraints on portfolio.

Our characterization of the growth-maximizing policy in terms of Kullback-

Leibler divergence between two sets of distributions follows the approach of

information geometry (Csiszar and Tusnady, 1984). Within the same approach,

the so-called Blahut-Arimoto algoritm (Cover and Thomas, 2006, p. 334) char-

acterizes the efficiency frontier of noisy communication in information theory

and, analogously, the optimal stochastic choice function in rational inattention

problems.

Our merit distribution concept is mathematically equivalent to a Bayesian

update. Corollary 3 connects the merit distribution to variational Bayesian

methods, as seen in Jordan et al. (1999). The predictive coding literature, such

as Dayan et al. (1995) and Friston (2005), merges variational Bayesian updat-

ing with misspecified statistical learning, originating in Berk (1966) and White

(1982). In Section 5, we show that maximizing economic growth is equivalent

to the problem of predictive coding.

Recent work of Aridor et al. (2020, 2023) adapts the model of predictive

coding—also known as variational autoencoder in the machine-learning literature—

to capture single-person information processing. Instead, our work emphasizes

the connection between the variational autoencoder and population-wide eco-

nomic growth or financial hedging.

This paper builds upon our prior work in Robson et al. (2023) by introducing

general constraints on economic policies, proving the myopic meritocracy princi-

ple, and characterizing growth-maximizing policies through a joint optimization

involving money paths, as detailed in Proposition 3. Robson et al. (2023) showed

that if there are no constraints on the allocation of wealth, then maximizing the

growth rate of wealth is equivalent to selecting the optimal learning policy in a

rational inattention model. Revisiting this result from our current perspective,

we show that redistribution serves as an alternative to active learning about

individuals’ returns.

3 Stochastic Growth

3.1 Generalized Joint Distributions

We begin by introducing notation for a system of non-negative functions that

we use throughout our analysis. Consider arbitrary finite sets I and Ω. The

primitives of the system are a probability distribution on I, denoted by q(i),
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and a non-negative function I × Ω → R+, denoted by q(ω | i). Despite the

suggestive notation, q(ω | i) is not a conditional distribution over Ω, as it need

not be normalized.

We adopt notation analogous to that of standard probability distributions

and define a system of non-negative functions as follows:

q(i, ω) := q(i)q(ω | i)

q(ω) :=
∑
i

q(i, ω)

q(i | ω) :=
q(i, ω)

q(ω)
.

We employ the same symbol q to denote any of the functions within this system,

relying on the arguments of the function to differentiate between elements of

the system. For example, q(ω | i) refers to the map I × Ω → R+ as specified

above, while q(ω) indicates the map Ω→ R+, and so on. We refer to the system

of functions generated by q(i) and q(ω | i) as a generalized joint distribution.

When a function is a properly normalized probability distribution, we denote

it in boldface. If these functions are all probability distributions, then we have

the familiar case of a joint distribution (q(i, ω)) with accompanying marginal

(q(i) and q(ω)) and conditional (q(ω | i) and q(i | ω)) distributions.

3.2 The Growth Model

We consider a population comprised of a finite set I of individuals i. There is

a finite set Ω of states ω. The population begins period 1 with a quantity of a

perfectly divisible good that for concreteness we refer to as wealth. See Section

3.3 for alternative interpretations.

At the beginning of each period t = 1, 2, . . ., nature independently draws

a state according to an interior distribution p0 ∈ ∆(Ω). A time invariant

allocation q ∈ ∆(I) assigns share q(i) of the current aggregate wealth to each

individual i ∈ I at the beginning of every period period t. Subsequently, each

individual i generates a gross return per unit of her wealth which depends on

the current state ωt and the individual i. We denote the time invariant return

function by q(ωt | i); this notation will facilitate the statistical reinterpretation

of the growth process.

If an individual i were in autarky, her long-run growth rate of wealth would

5



be given by

Ep0 ln q(ω | i),

where the expectation is taken with respect to ω. The long-run growth rate of

the aggregate wealth for a population can be expressed as

Ep0 ln
(∑

i

q(i)q(ω | i)
)

= Ep0 ln
(∑

i

q(i, ω)
)

= Ep0 ln q(ω). (1)

The allocation q(i), along with the return function q(ω | i), generates a

generalized joint distribution q. The “marginal distribution” q(ω) =
∑
i q(i, ω)

represents the aggregate return in each state ω. By normalizing the aggregate

wealth at the beginning of a period with state realization ω to one, the wealth

of individual i at the end of the period is given by q(i, ω) = q(i)q(ω | i). We

refer to the generalized distribution q(i, ω) as a policy.

We let A ⊆ ∆(I) be the set of feasible allocations and let R ⊆ RI×Ω
+ be the

set of feasible returns. We then imagine a planner who chooses the allocation

q(i) and the return q(ω | i) from a set Q̂ ⊆ A×R of feasible pairs of allocations

and returns to maximize the growth rate (1).

Since the growth rate depends on allocation and returns only through the

policy q(i, ω), we also define the set of feasible policies

Q =
{
q(i, ω) : q(i, ω) = q(i)q(ω | i) for some

(
q(i), q(ω | i)

)
∈ Q̂

}
.

We assume that Q is compact and contains at least one policy resulting in

a finite growth rate from equation (1); that is, at least one policy for which

q(ω) > 0 for all ω. The existence of an optimizer is then ensured.2 We denote

the growth-maximizing policy by q∗(i, ω) ∈ Q.

Our interest in the growth-maximizing policy is motivated by the next result,

which states that this policy induces at least as high a growth rate as any other

policy, even those that relax the stationarity restriction implicit in q∗(i, ω), along

almost all sequences of states. Let a feasible history-dependent policy associate

a policy q(i, ω) ∈ Q with every history (ω1, . . . , ωt−1), for every period t.

Proposition 1 (Cover and Thomas (2006)). Consider a feasible history-dependent

2Suppose that for every policy q(i, ω), there exists some ω such that q(ω) = 0. In this case,
every policy results in a growth rate of −∞. However, if there is a policy yielding a finite
growth rate g, then the subset of Q that produces growth rates of at least g is compact. The
objective function in equation (1) is continuous on this set, which ensures the existence of a
maximizer.
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policy and let random variable St denote the aggregate wealth accumulated under

this policy in the first t periods. Let S∗t denote the aggregate wealth accumulated

by the growth-maximizing policy q∗(i, ω). Then,

lim sup
t→∞

(
lnSt
t
− lnS∗t

t

)
≤ 0,

with probability 1.

The proof, in Appendix A.1, adapts the proof of Theorem 16.3.1 from Cover

and Thomas (2006) to our setting.

3.3 Applications

3.3.1 Economic Growth

Our leading application interprets the model in terms of economic growth. Since

a society that grows faster than other societies will eventually dominate, we en-

vision a growth-maximizing planner who implements unmodelled tax, redistri-

bution, industrial and other policies to achieve a stationary wealth distribution

q(i) and gross returns q(ω | i). Naturally, the planner is constrained in both

aspects. Equity constraints may restrict feasible allocations q(i) and techno-

logical constraints on physical and human capital formation will restrict the

return function q(ω | i). The feasibility of allocations and returns is typically

interconnected. The choice of the stationary wealth distribution may affect in-

centives and thus the feasibility of return functions, yielding a constraint set Q̂
that is not a product set. Unlike much of the economic research that derives the

set Q̂ from microfoundations, we consider Q̂ as a primitive and develop results

applicable to all such sets.3

3.3.2 Financial Portfolios

A special interpretation of our model arises when the set R is a singleton, so

that the returns q(ω | i) are fixed. We can then interpret I as a set of financial

assets, with asset i securing return q(ω | i) in state ω. The planner is an

investor who allocates shares q(i) of her wealth to assets i at the beginning

of each period, with the goal of maximizing the growth rate of the value of

3A straightforward reinterpretation allows us to incorporate consumption in our model of
economic growth. Assume that individual i consumes a share c(i, ω) ∈ [0, 1] of her allocation
in state ω and generates gross return r(i, ω) on her residual wealth. We can then apply our
analysis with return function q(ω | i) = (1− c(i, ω))r(i, ω).
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her portfolio. Equivalently, the investor is an expected-utility maximizer with

logarithmic utility over the end-of-period wealth. Kelly (1956) introduced this

problem, assuming no restrictions on the feasible portfolios, i.e., A = ∆(I).

When A ( ∆(I), we incorporate constraints on portfolios that may arise for,

say, regulatory reasons.

The following example illustrates our framework in a well-known setting that

admits a simple solution known as proportional betting.

Example 1 (Proportional Betting). In each period, an investor allocates her

wealth across assets indexed by i ∈ I. Each asset is a bet on an exclusive event.

The bet on the realized event has gross return r, while all other bets pay zero.

To formalize this, let Ω = I, let the state ω represent the realized event, let

ω ∼ p0 ∈ ∆(I), and define returns as q(ω | i) = r1ω=i.

It is easy to demonstrate that in this special case the growth-maximizing al-

location q∗(i) = p0(i) distributes wealth proportionally to each bet’s probability

of success. This hedging strategy avoids concentrating all aggregate wealth on

an asset with the highest expected payoff, as such a policy would eventually

result in the loss of all wealth and a growth rate of −∞. 4

3.3.3 Statistical Learning

Our model also applies to a statistician who aspires to infer a data-generating

distribution. In a first step, let us rephrase the well-known asymptotic learning

characterization of White (1982) and Berk (1966) as growth optimization.

The likelihood of a sample (ωτ )tτ=1 drawn from distribution p0(ω), when

evaluated under the hypothesis that the data are drawn from distribution q(ω),

is approximately∏
ω

q(ω)p
0(ω)t = exp

[
t
∑
ω

p0(ω) lnq(ω)
]
,

with the approximation almost surely becoming arbitrarily sharp as t grows.

The growth rate
∑
ω p

0(ω) lnq(ω) on the right side equals, up to a sign and

constant term, the Kullback-Leibler divergence between the true and hypothe-

sised distribution. The estimator thus converges to the hypothesis minimizing

this divergence, as shown for Bayesian and Maximum-likelihood estimators by

Berk (1966) and White (1982), respectively.

Building on the connection between growth and statistical learning, we now

draw a formal equivalence between our model and predictive coding, an influ-
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ential framework from the fields of machine learning and cognitive science.4

In the predictive coding problem, an artificial or biological system samples

a signal ω from a distribution p0(ω) ∈ ∆(Ω). The system aims to form a belief

about a latent random variable i correlated with the signal, referred to as the

cause, with support in I. The system considers a compact set Q ⊆ ∆(I × Ω)

of joint distributions q(i, ω) where each q(i, ω) corresponds to a hypothesis

q(ω) =
∑
i q(i, ω) over the signal distribution. The system selects one such

joint distribution, q∗(i, ω), that best fits the signal distribution. Specifically,

the system is assumed to select a joint distribution that maximizes the growth

rate of the likelihood of the signal sample as the sample expands:

q∗(i, ω) ∈ arg max
q(i,ω)∈Q

∑
ω

p0(ω) ln
∑
i

q(i, ω); (2)

note that this objective coincides with (1).5 Upon observing a realization of the

signal ω, the system seeks to forms a conditional belief q∗(i | ω) from q∗(i, ω).

The predictive coding problem is often motivated as either a model of how

the human brain processes information or as a template for the design of an

artificial information-processing system. The set Q represents the system’s ini-

tial knowledge and its constraints in information processing. Section 5 uses our

growth-theoretic techniques to characterize the best fit q∗(i, ω) and the Bayesian

beliefs q∗(i | ω).

3.3.4 Biological Growth

Stochastic growth also occurs in an evolutionary context. Let each i ∈ I repre-

sent a phenotype and each ω ∈ Ω an environmental shock. Each phenotype is

a physical or behavioral characteristic, and the return q(ω | i) identifies the net

number of descendants of phenotype i in environment ω. As in the literature on

so-called bet-hedging strategies in biology (Kussell and Leibler, 2005), a geno-

type can be modeled as a mixed strategy q(i) over phenotypes i, capturing the

fact that a given genotype can manifest itself as different characteristics in dif-

ferent individuals. Evolution selects a genotype q(i) with the highest population

growth rate for a given distribution p0(ω) of the environmental shocks.

4Another term used is predictive processing and, in the context of machine learning, vari-
ational autoencoder. Early contributions to predictive coding can be found in Dayan et al.
(1995) and Friston (2005), while a comprehensive literature review is available in Clark (2013).
See Aridor et al. (2020, 2023) for recent economic applications.

5Note that problem (2) is equivalent to the minimization of the Kullback-Leibler divergence
between the true and hypothesised signal distribution.
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3.4 The Naive Meritocracy Principle

We define the merit distribution induced by policy q(i, ω) to be

mq(i) = Ep0 q(i | ω), (3)

where the expectation is with respect to ω. To interpret the merit distribution,

note that

q(i | ω) =
q(i, ω)

q(ω)
=

q(i)q(ω | i)∑
j q(j)q(ω | j)

. (4)

Taking the expectation over ω gives individual i’s merit mq(i), which is thus

the probability that a dollar randomly drawn from the total wealth at the end

of a period has been generated by individual i.

As implied by its name, the merit distribution aims to quantify the relative

significance of each individual’s contributions to the long-term growth rate.

The following corollary of Lemma 2 below illustrates how an individual’s merit

is indicative of their importance for growth. Suppose that returns of individual

j increase by a multiplicative factor exp(εj) in each state ω while returns of

other individuals are unmodified. Let r∗(εj) denote the optimized growth rate

of aggregate wealth.

Corollary 1. The derivative of the optimized growth rate is proportional to

individual j’s merit:
dr∗

dεj
(0) = mq∗(j).

See Appendix A.2 for the proof.

Our concept of merit combines the allocation the individuals enjoy with

the individuals’ productivities—an individual can attain high merit by being

highly productive, but also simply by enjoying a relatively high allocation. In

an extreme example, an allocation q(1) = 1 ensures individual 1 (and only 1)

has maximal merit, even though other individuals may be more productive.

Let the allocation q∗(i) and returns q∗(ω | i) jointly maximize the aggregate

growth rate (1). Let A∗ = {q(i) : (q(i), q∗(ω | i)) ∈ Q̂} be the set of allocations

to which the planner can deviate without altering the optimized returns.

The following result establishes a necessary condition for the growth-maximizing

policy. If a policy maximizes the aggregate growth rate, it must also minimize

the disparity measured by the Kullback-Leibler (KL) divergence between the

merit and allocation distributions.6 Section 4.4 proves:

6Recall that KL-divergence is often interpreted as a measure of dissimilarity between two
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Proposition 2 (Naive Meritocracy Principle). If the allocation q∗(i) and return

function q∗(ω | i) jointly maximize the aggregate growth rate (1), then q∗(i)

minimizes the KL-divergence from the induced merit distribution:

q∗(i) ∈ arg min
q(i)∈A∗

KL
(
mq∗(i) ‖ q(i)

)
. (5)

The growth-maximizing policy thus coincides with an outcome of a naive

meritocracy. It is a meritocracy because the allocation q∗(i) comes as close

as feasibility allows to the merit distribution mq∗(i), meaning it adheres as

closely as possible to the credo “to each according to his merit.” It is a naive

meritocracy because the planner fixes the growth-maximizing policy, calculates

the induced merit distribution, and then asks whether she can get closer to this

merit distribution by altering the allocation while holding fixed the returns and

merit distribution. The planner does not in general minimize the KL-divergence

between the allocation and the merit distribution across all feasible policies.

One could reduce this distance by recognizing that altering the policy will alter

the induced merit distribution, but such further “fairness improvement” would

reduce growth.

Andre (2022) introduces the notion of a shallow meritocracy—one in which

people judge the merit of others’ behavior, without making allowances for the

fact that different circumstances may induce different behavior. Andre reports

experimental evidence consistent with such “shallow” judgments. Similarly, our

merit distribution ranks individuals accordingly to their expected contribution

to aggregate wealth, without distinguishing whether a high contribution reflects

an individual who is highly productive or an individual endowed with a copious

amount of wealth.

Example 2 (Portfolio Rebalancing). In the context of financial portfolio man-

agement, portfolio q(i | ω) represents the share of an investor’s wealth al-

located to each asset i at the end of a period, after the returns in state ω

have been realized. The distribution mq(i) = Ep0
q(i | ω) then corresponds to

the end-of-period portfolio, averaged across state realizations. The naive meri-

tocracy principle asserts that the growth-maximizing portfolio q∗(i), to which

distributions. Given two probability distributions p and q, the KL-divergence is defined as

KL
(
p(x) ‖ q(x)

)
:=
∑
x∈X

p(x) ln
p(x)

q(x)
.

We adopt the standard convention that 0 ln 0 = 0.
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the investor rebalances at the beginning of each period, minimizes the wedge

KL
(
mq∗(i) ‖ q(i)

)
among all feasible portfolios. In a special case, when the

investor is free to choose any portfolio q(i) from A = ∆(I), this principle simpli-

fies to the observation made in Cover and Thomas (2006), Section 16.2, which

states that no predictable rebalancing occurs at the optimum: q∗(i) = mq∗(i).

4

The following numerical example illustrates the interaction between redis-

tribution, access to investment opportunities, and economic growth.

Example 3 (Inequality and Growth). Suppose there are four states, labeled ω1,

ω2, ω3, and ω4, with prior probabilities 0.25, 0.275, 0.225 and 0.25. There are

five individuals, labeled 1, 2, 3, 4 and 5. The set R of feasible return functions

is a singleton, with the returns q(ω | i) fixed throughout, given by

State

ω1 ω2 ω3 ω4

1 4 1 1 1

2 0 3 1 1

Individual 3 0 1 3 1

4 0 1 1 3

5 1.2 1.2 1.2 1.2

Individual 1 has an autarkic growth rate of .25 ln 4 = 0.35 and individual 5 has

an autarkic growth rate of ln 1.2 = 0.18. For each of the other three individuals,

there is a state with a zero return, ensuring their autarkic growth rates of −∞.

In the absence of redistribution, individual 1’s share of the economy’s wealth

will converge to one.

Now let the planner choose an allocation q(i) without any restrictions, A =

∆({1, 2, 3, 4, 5}). The growth-maximizing allocation is (approximately)

q∗(1) = 0.63

q∗(2) = 0.19

q∗(3) = 0.063

q∗(4) = 0.13

q∗(5) = 0.

Computation of the merit distribution according to its definition (3) reveals
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that mq∗(i) = q∗(i) for all individuals i in this case. This stems from the naive

meritocracy principle, which, given the planner’s unconstrained choice of allo-

cation, necessitates an allocation that perfectly matches the merit distribution.

The growth rate of aggregate wealth is 0.4, which exceeds the autarkic

growth rates of all individuals. The growth-maximizing allocation is akin to

an investment portfolio that is optimally hedged against risk. Individual 1 en-

joys the highest share, reflecting the fact that she does very well in one state,

and faces bankruptcy in none. Individuals 2, 3 and 4 receive positive shares of

wealth, even though they are surely headed for ruin under autarky, because each

fares relatively well in one of the states and the allocation successfully hedges

against the individuals’ risks. Their shares are ranked according to the relative

likelihoods of the states in which they exhibit their high return. The exclusion

of an individual, in this case of the individual 5, is not a coincidence. Relying on

an analogy with the rational inattention problem, we show in Section 6.2 that

when the allocation is unrestricted and the returns are fixed, then the set of

individuals who receive positive wealth shares is no larger than the state space.

We now introduce constraints on the allocation. Let a “poverty-level” con-

straint entitle each individual to at least 0.1 of aggregate wealth, and also an

“equity” constraint impose an upper bound on the Gini coefficient.7 The opti-

mal allocation and the corresponding merit distribution are then

q∗(1) = .53 mq∗(1) = .55

q∗(2) = .14 mq∗(2) = .15

q∗(3) = .102 mq∗(3) = .10

q∗(4) = .12 mq∗(4) = .11

q∗(5) = .10 mq∗(5) = .08,

with growth rate 0.38. Individual 1 receives a yet smaller share, in an effort to

reduce the Gini coefficient (though individual 1’s wealth still grows faster than

in autarky). The allocation to individual 5 binds against the poverty constraint.

The allocation of individual 3 rises slightly above the poverty constraint, with

7The Gini coefficient for the wealth shares of a population of n agents is defined as the
relative mean difference in shares,

1

2n2q

n∑
i=1

n∑
j=1

|q(i)− q(j)|,

where q is the mean wealth share in the population (equal to 1/5 in our population of size
n = 5).
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the slack helping to reduce the Gini coefficient.

The merit distribution no longer equals the allocation, but the naive mer-

itocracy principle (5) continues to hold. The allocation q∗(i) minimizes the

wedge KL(mq∗ ‖ q) among all feasible allocations q.

Redistribution in this setting serves to direct resources to valuable invest-

ment opportunities. One might expect redistribution to favor individuals with

high autarkic growth rates, but we have seen that this link is far from pre-

cise. Growth-maximizing redistribution directs resources to individuals who

have relatively high returns in states that are (i) relatively likely and (ii) in

which aggregate output is relatively low. The merit distribution induced by the

growth-optimal policy summarizes both these aspects. 4

4 Paths of Money

4.1 The Growth-Maximizing Policy

We prove the naive meritocracy principle, as well as derive further results, based

on the auxiliary characterization of the growth-maximizing policy in the next

proposition. The proposition makes use of an extension of the KL-divergence

that applies the standard formula (see footnote 6) to pairs (p, q), where p is

a distribution and q a generalized distribution; that is, KL : ∆(X) × RX+ →
R ∪ {∞}. We continue to interpret KL(p ‖ q) as a degree of discrepancy

between p and q (although it may now take on negative values). Indeed, letting

q(x) = q(x)/
∑
y∈X q(y) stand for the normalization of q(x), we have

q ∈ arg min
p∈∆(X)

KL(p ‖ q).

The distribution closest to a generalized distribution is thus its normalization,

extending the fact that the KL-divergence of two distributions is minimized

when these are equal.

Proposition 3. A policy q∗(i, ω) maximizes the growth rate (1) if and only if
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it solves

min
p(i,ω),q(i,ω)

KL
(
p(i, ω) ‖ q(i, ω)

)
s.t. p(ω) = p0(ω)

q(i, ω) ∈ Q

p(i, ω) ∈ ∆(I × Ω),

together with some minimizer p∗(i, ω). Additionally, p∗(i, ω) equals the merit

distribution on the margin:

mq∗(i) = p∗(i) =
∑
ω

p∗(i, ω).

The proposition describes the growth-maximizing policy and its resulting

merit distribution as the “closest pair” of two (generalized) distributions belong-

ing to separate sets. Sections 4.2–4.4 offer a proof, intuition, and interpretation

of the control p(i, ω).

4.2 Dominant Frequency

We start with a technical result. The next lemma is closely related to the

Donsker-Varadhan Lemma (Dupuis and Ellis, 1997, Proposition 1.4.2).8 Our

formulation of the lemma and the proof are designed to clarify how the consis-

tency optimization, such as that in Proposition 3, relates to growth.

Lemma 1 (Dominant Frequency). Let X be a finite set. The following holds

for any q : X → R++:

ln
∑
x∈X

q(x) = − min
p∈∆(X)

KL(p ‖ q). (6)

We sketch the argument here and relegate the formal proof to Appendix A.3.

Proof sketch. The first step is to bring growth into the picture by noting

that ln
∑
x q(x) is the growth rate of the multiplicative process that takes value

(
∑
x q(x))

t
=: yt for t = 1, 2, . . . . Next, one can write an equivalent expression

8The Donsker-Varadhan Lemma states that Ef expu(x) = maxp {Ep u(x)−KL(p ‖ f)}.
Substitution q(x) = f(x) expu(x) and application of this equality implies equation (6).
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for yt by considering all possible t-length sequences of elements from X. For each

t-sequence in the set Xt, we calculate the product
∏t
τ=1 q(xτ ) of the consecutive

terms, and then sum across sequences giving.

ln
∑
x∈X

q(x) =
1

t
ln

∑
(x1,...,xt)

t∏
τ=1

q(xτ ).

In effect, the growth process yt is the sum of constituent multiplicative processes,

each of which corresponds to a particular sequence of values drawn from X.

We group the t-sequences into equivalence classes, where sequences in an

equivalence class display the same frequencies p(x) ∈ ∆(X) for all x ∈ X. For

each equivalence class p, we can associate a growth rate, that we can attribute

to two sources. Firstly, every sequence within an equivalence class has its own

growth rate, which depends solely on the frequency p and hence is constant

across members of the equivalence class. Secondly, as t increases, so does the

number of sequences in the equivalence class p.

Over time, even minor differences in growth rates compound into overwhelm-

ing differences in accumulated values. Consequently, in the long run, the equiv-

alence class with the highest growth rate determines the growth rate of yt, while

the contributions of all other equivalence classes fall into insignificance.

Which equivalence class will emerge as dominant? A distribution p, that is

concentrated on values of x for which q(x) is large, generates sequences with

a high growth rate. However, distributions p that are “random,” meaning

they are dispersed throughout X rather than concentrated, benefit from having

numerous sequences whose frequencies match p. The dominating equivalence

class p balances these two desiderata. We demonstrate through straightforward

algebra that each equivalence class achieves a growth rate equal to −KL(p ‖
q). The growth rate, ln y, is then determined by the equivalence class whose

frequencies minimize this divergence, as stated in (6). That is, the dominating

frequency p maximizes a measure of consistency with q.

4.3 Growth Rate Characterization

We now return to economic growth and recall from (1) that a policy q(i, ω)

induces growth rate
∑
ω p

0(ω) ln
∑
i q(i, ω). By applying Lemma 1 to each state

ω individually, we obtain the following characterization of the growth rate.
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Lemma 2. A policy q(i, ω) induces growth rate

− min
p(i,ω)

KL
(
p(i, ω) ‖ q(i, ω)

)
−H

(
p0(ω)

)
(7)

s.t. p(ω) = p0(ω).

See Appendix A.4 for the proof. The term −H
(
p0(ω)

)
is independent of

the control variable and thus does not affect the optimizer. It represents the

negative impact of prior state stochasticity on growth.

The proof involves decomposing the growth of aggregate wealth into a sum of

exponential processes. Each constituent process corresponds to a distinct value

of the control variable p(i, ω). Among these constituent processes, the fastest-

growing one outpaces all others, resulting in the optimization expressed in (7).

To gain intuition, imagine each dollar drawn from the initial stock of perfectly

divisible aggregate wealth as founding a separate dynasty of subsequent wealth,

identifying the wealth in each subsequent period descended from the original

dollar. In each period, each such dynasty finds itself in the hands of an individual

randomly drawn from distribution q(i) and in a random state of the economy

drawn from p0(ω), and its wealth multiplies by the return q(ω | i). Over the

course of time, a distribution p(i, ω) describes the frequency of individuals and

states occupied by this dynasty. We refer to p(i, ω) as the path of the dynasty.

Every such path satisfies the consistency condition p(ω) = p0(ω) for all ω ∈ Ω

in the long run. For every such consistent path and a sufficiently long finite time

horizon, a positive measure of dynasties exists whose frequencies of visiting (i, ω)

approximate that path p(i, ω).

For each path p(i, ω) and any given time horizon, we define the wealth of the

path by summing up the wealth of all dollar dynasties whose realized frequencies

of visiting (i, ω) match p(i, ω). The growth rate of wealth varies across different

paths. We use Lemma 1 to show that for a path p(i, ω) under policy q(i, ω),

the growth rate is given by

−KL
(
p(i, ω) ‖ q(i, ω)

)
,

which indicates that the wealth of a path consistent with policy q(i, ω) grows

relatively quickly. The growth rate of a path can be broken down into two chan-

nels. First, paths that deviate from the allocation q(i) by visiting individuals

i with distinct frequencies p(i | ω) 6= q(i) in states ω involve atypical draws,
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causing the measure of dollar dynasties following such paths to decrease over

time; the more significant the deviation from the allocation, the faster the de-

crease. Secondly, the wealth of a dollar dynasty grows rapidly if it frequently

visits pairs (i, ω) with high returns q(ω | i).
As the wealth of each path grows exponentially, the wealth of the fastest-

growing path ultimately surpasses that of all other paths, determining the over-

all growth rate of the economy. Since growth defined in (1) is evaluated alongside

a single sequence of states, the wealth of the economy equals the wealth of the

winning path divided by the number of state sequences with frequencies p0.

This normalization is captured by the term −H(p0) in (7).

4.4 Growth-Maximizing Path and Policy

The growth-maximizing path solving (7) has a close connection to the merit

distribution defined in (3). We expand the definition of the latter as follows:

Given a policy q(i, ω), we define a merit joint distribution as

mq(i, ω) = p0(ω)q(i | ω), (8)

which represents the probability that a dollar, randomly sampled from the aggre-

gate wealth at the end of a period, is held by individual i in state ω. The merit

distribution from (3) is then the marginal distribution mq(i) =
∑
ωmq(i, ω).

Given a policy q(i, ω), let the best response p∗q(i, ω) be the path that solves

the optimization problem (7).

Lemma 3. For any policy q(i, ω), the best response p∗q(i, ω) equals the merit

distribution mq(i, ω).

Specifically, reminiscent of Kelly’s proportional betting, the growth-maximizing

path visits individuals in proportion to their merits.

The proof, provided in Appendix A.5, is based on the observation that the

conditional distribution most consistent with q(i | ω) is given by p∗q(i | ω) =

q(i | ω).

Proof of Proposition 3. Adding optimization over policies, the result immedi-

ately follows from Lemma 2 and Lemma 3.

We are now prepared to prove the naive meritocracy principle from Propo-

sition 2. In short, it follows from the fact that the growth-maximizing policy

must maximize consistency with the growth-maximizing path of money.
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Proof of Proposition 2. By Proposition 3, the growth-maximizing policy satis-

fies

q∗(i, ω) ∈ arg min
q(i,ω)∈Q

KL
(
pq∗(i, ω) ‖ q(i, ω)

)
= arg min
q(i,ω)∈Q

KL
(
mq∗(i, ω) ‖ q(i, ω)

)
.

Applying the chain rule to decompose the KL-divergence of (generalized) joint

distributions, we can rewrite this last objective as follows:9

KL
(
mq∗(i) ‖ q(i)

)
+
∑
i

mq∗(i) KL
(
mq∗(ω | i) ‖ q(ω | i)

)
. (9)

By setting the returns q(ω | i) to q∗(ω | i) and restricting optimization of the last

inline expression to control of allocations q(i) ∈ A∗, we obtain the statement in

(5).

It is tempting to think that to maximize growth, a meritocracy concept

should allocate wealth according to individual productivities, while disregard-

ing initial allocations. The proof of Proposition 2 provides an intuition for the

“naivete” of the meritocracy principle that, instead, rewards individuals propor-

tionally to a combination of their productivities and allocated wealth. This is a

consequence of the growth-maximizing policy maximizing the growth rate of the

“winning” path of money. This winning money path visits individuals based on

a combination of their (i) productivities and (ii) allocated wealth shares. The

latter is essential for the growth rate of the path, as the number of dollar dynas-

ties deviating significantly from the allocation diminishes rapidly. The growth

rate of the winning path is best enhanced by a fixed-point policy that rewards

individuals based on a blend of their productivities and allocated wealth.

The fixed-point aspect of the naive meritocracy principle has notable im-

plications for comparative statics, making merit and the growth-maximizing

allocation seemingly oversensitive to variations in individuals’ productivities. A

boost in productivity of a specific individual directly enhances that individual’s

merit. Additionally, though, a positive feedback-loop arises via the adaptation

of the allocation.

To illustrate, consider a scenario where individual j experiences an increase

9In Appendix A.4, Lemma 4 verifies that this chain rule remains valid for the extended
definition of KL-divergence.
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in their exogenous return in state ω̃. Initially, let us examine the elasticity of the

state-contingent merit mq(j | ω̃) given by equation (4), keeping the allocation

q(i) constant. Straightforward calculation gives elasticity

∂mq(j | ω̃)/mq(j | ω̃)

∂q(ω̃ | j)/q(ω̃ | j)
= 1−mq(j | ω̃).

Now suppose, instead, that the planner adjusts the allocation q∗(i) to maximize

the growth rate. The elasticity then becomes

dmq(j | ω̃)/mq(j | ω̃)

dq(ω̃ | j)/q(ω̃ | j)
= 1−mq(j | ω̃) + ξjj −

∑
i

mq(i | ω̃)ξij ,

where ξij = dq∗(i)/q∗(i)
dq(ω̃|j)/q(ω̃|j) is the elasticity of growth-maximizing allocation for

individual i with respect to j’s return in state ω̃. Consequently, the plan-

ner favors j and treats the remaining individuals less favorably, which further

boosts j’s merit and allocation beyond the direct impact. In the realm of fi-

nancial portfolio management, the indirect effects contribute to sensitivity of

the growth-maximizing portfolio to exogenous variations in the distribution of

returns.

4.5 A Second Meritocracy Principle

The merit principle presented in Proposition 2 held returns fixed and established

a necessary condition satisfied by the growth-maximizing allocation. Here we

derive a similar consistency-based necessary condition satisfied by the growth-

maximizing returns. We find that the growth-maximizing policy distributes

returns for each individual across states in a manner that aligns as closely as

possible with the individual’s contributions to economic growth in those states.

The result again follows quickly from Proposition 3.

Fix an individual j. Given a policy q(i, ω), we define j’s contribution to

growth in each state ω as mq(ω | j) = mq(j, ω)/mq(j), where mq(i, ω) is the

merit joint distribution from (8). In simpler terms, mq(ω | j) represents the

probability that the current state is ω given that a dollar sampled from the

aggregate wealth at the end of a period was produced by individual j (under

the policy q). Normalizing an individual’s total contribution to growth to one,

we interpret mq(ω | j) as the distribution of individual j’s contribution to

economic growth across states.
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Let

Rq∗,j =
{
q(ω | j) :

(
q∗(i),

(
q∗(ω | k)

)
k 6=j , q(ω | j)

)
∈ Q̂

}
represent the set of return functions for individual j to which the planner can

deviate from the optimal policy without altering the allocation and returns of

others.

Proposition 4. If policy q∗(i, ω) maximizes the growth rate and an individual

j has positive merit, mq∗(j) > 0, then j’s return function q∗(ω | j) minimizes

the KL-divergence from the induced conditional merit distribution mq∗(ω | j):

q∗(ω | j) ∈ arg min
q(ω|j)∈Rq∗,j

KL
(
mq∗(ω | j) ‖ q(ω | j)

)
. (10)

Similar to the first naive meritocracy principle, this result treats mq∗(ω | j)
as given; the optimization in (10) does not account for the influence of variations

in j’s returns on j’s merit.

Proof of Proposition 4. Recall from the proof of Proposition 2 that the growth-

maximizing policy minimizes (9). When fixing the allocation to q∗(i) and re-

turns to q∗(ω | k) for individuals k 6= j, the remaining optimization over q(ω | j)
leads to the result.

Example 4 (Optimal Returns). Consider a single individual i = 1 and two

states ω ∈ {1, 2}. Interest then centers on how individual 1 distributes her

returns q(ω | 1) ≥ 0 across the two states to maximize the growth rate. Assume

a feasibility constraint q(1 | 1) + q(2 | 1) = 1.

The growth maximization problem for this autarkic individual is given by:

max
q(ω|1)

∑
ω

p0(ω) ln q(ω | 1),

subject to the feasibility constraint. This is equivalent to:

min
q(ω|1)

KL
(
p0(ω) ‖ q(ω | 1)

)
,

subject to the same constraint, since the two objectives differ only in sign and a

term independent of the control. This minimization is equivalent to the second

meritocracy principle in (10) because, when there is only one individual, mq∗(ω |
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1) = p0(ω).10 If the states are equally likely, then the individual equalizes her

state-contingent returns.

We now let individual 1 be joined by an individual 2, which alters the

marginal contributions of individual 1 to growth across states. This alteration

is reflected in the change of mq∗(ω | 1) and q∗(ω | 1) between the two scenarios.

We continue with the case of two equiprobable states. We fix the allocation

to be the egalitarian one, with q(1) = 1
2 = q(2), and fix individual 2’s returns

to be q(1 | 2) = 1
4 and q(2 | 2) = 3

4 . Due to the symmetry of the setting, the

growth-maximizing return for individual 1 complements that of individual 2:

q∗(ω | 1) = 1− q(ω | 2).

The meritocracy principle (10) continues to be satisfied: To compute mq∗(ω |
1), we note that the growth-maximizing policy for this setting is a properly

normalized joint probability distribution with marginal distribution q∗(ω) =

p0(ω). The merit distribution mq∗(i, ω) minimizes KL-divergence to q∗(i, ω),

subject to being equal to p0(ω) on the margin. Hence, in this case, mq∗(i, ω) =

q∗(i, ω) and hence mq∗(ω | 1) = q∗(ω | 1). Thus, once more, the growth-

maximizing return function of individual 1 minimizes the KL-divergence from

mq∗(ω | 1). 4

4.6 Learning the Growth-Maximizing Policy

We now examine a series of straightforward policy adjustments, which myopi-

cally optimize a fairness measure. The resulting sequence of policies converges

to the growth-maximizing policy. This finding may be interpreted as offering

a numerical optimization algorithm, and also as an indication that the myopic

application of basic fairness principles can guide societies towards growth max-

imization.

Let m0(i, ω) be an arbitrary joint distribution from the interior of ∆(I ×Ω)

10Recall that mq∗ (ω | i) is the state distribution conditioned on the event that a random
dollar has been produced by individual i. This event is uninformative in autarky, resulting in
mq∗ (ω | 1) = p0(ω).
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such that m0(ω) = p0(ω). Then, define recursively:

qk(i, ω) ∈ arg min
q(i,ω)

KL
(
mk(i, ω) ‖ q(i, ω)

)
(11)

s.t. q(i, ω) ∈ Q,

mk(i, ω) ∈ arg min
p(i,ω)

KL
(
p(i, ω) ‖ qk−1(i, ω)

)
(12)

s.t. p(ω) = p0(ω).

Iteration (12) determines the merit distribution induced by the policy qk−1(i, ω).

Iteration (11) identifies the “fairest” feasible policy given the merit distribution

mk(i, ω). By employing the chain rule for the KL-divergence as in (9), we can

express each policy adjustment (11) as a constrained optimization aiming to

satisfy a combination of both meritocracy principles.

Proposition 5. Suppose that Q is convex and includes a policy q such that

q(i, ω) > 0 for all pairs (i, ω). Then, qk(i, ω) converges to the growth-maximizing

policy q∗(i, ω), and mk(i, ω) converges to the merit distribution mq∗(i, ω) in-

duced by this growth-maximizing policy.

The proof in Appendix A.6 relies on a convergence result by Csiszar and Tusnady

(1984) that uses methods of information geometry.

5 Predictive Coding

We now return to the statistical application as outlined in Section 3.3.3. The

predictive coding literature regards the problem of finding the best fit q∗(i, ω)

and the resulting Bayesian belief q∗(i | ω) as computationally prohibitive, either

for the human brain or for artificial systems. The literature proposes that,

instead of such brute force, the system fits the data indirectly by adopting two

distinct models and maximizing their mutual consistency.

The generative model is a joint distribution q(i, ω) ∈ Q ⊂ ∆(I ×Ω) and the

recognition model is a typically distinct joint distribution p(i, ω), such that its

marginal distribution satisfies p(ω) = p0(ω). The generative model represents

the system’s internal model of the distribution over pairs of causes and signals.

On the other hand, the recognition model specifies the system’s interpretation

of the sampled signals. The marginal distribution p(ω) = p0(ω) represents the
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sampled signal distribution. When a signal ω is observed, the system forms a

belief p(i | ω) about the cause. This belief is allowed to be arbitrary, allowing

for any joint distribution p(i, ω) subject to p(ω) = p0(ω).

Proposition 3 applied to the statistical context provides a formal foundation

for the central result of the predictive coding literature; see e.g. Dayan et al.

(1995).

Corollary 2. The joint distribution q∗(i, ω) is the best fit if and only if it solves

the following optimization jointly with some recognition model p∗(i, ω):

min
p(i,ω),q(i,ω)

KL
(
p(i, ω) ‖ q(i, ω)

)
(13)

s.t. p(ω) = p0(ω)

q(i, ω) ∈ Q.

Furthermore, the recognition model p∗(i, ω) that jointly solves this optimization

specifies the Bayesian belief derived from the best fit: p∗(i | ω) = q∗(i | ω).

For the connection between the two applications, observe that in both con-

texts of economic growth and statistical inference one aims to maximize the

long-run growth rate of the sequence of random variables:

t∏
τ=1

∑
i

q(i)q(ωτ | i).

In the economic context, q(i) represents the allocation of wealth while in the

inference context, it is the generative prior distribution of causes i. Similarly,

q(ω | i) represents either a return in economics or a conditional signal likelihood

in inference. Thus, the inline expression represents the evolution of aggregate

wealth under the policy q(i, ω) = q(i)q(ω | i) in economics, while it is the sample

likelihood under the generative model q(i, ω) in inference. Finally, p(i, ω) serves

as either a path of money in the context of economic growth or a recognition

model in the other context.

In predictive coding, the counterpart to the naive meritocracy principle as-

serts that the system maximizes a degree of Bayesian consistency as follows.

Corollary 3. The optimal generative prior distribution q∗(i) maximizes con-
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sistency with the recognition distribution p∗(i):

q∗(i) ∈ arg min
q(i)∈A∗

KL
(
p∗(i) ‖ q(i)

)
,

where A∗ =
{
q(i) :

(
q(i),q∗(ω | i)

)
∈ Q̂

}
is the set of generative priors q(i)

that are feasible given the optimized likelihood function q∗(ω | i).

Interpreting p∗(i | ω) as the system’s posterior belief about the cause i upon

observing signal ω, p∗(i) stands for the average of these posteriors when the

signals are sampled from p0(ω). The corollary states that the system aligns its

generative prior belief q(i) over the causes as close as possible to p∗(i).

An analogy can also be drawn between the optimization procedures for eco-

nomic growth and predictive coding. As we demonstrated for economic growth

in Section 4.6, an iterative process that sequentially adapts the policy to match

the induced merit converges to the growth-maximizing policy. Similarly, in ma-

chine learning, iterative adaptations of the generative and recognition models

that myopically maximize their mutual consistency are examined, which con-

verge to the best fit.

The predictive coding literature establishes the characterization in (13) us-

ing a variational argument.11 Our approach, on the other hand, emphasizes

the growth aspect. To review the growth-based argument in the context of pre-

dictive coding, consider a system that has adopted a generative model q(i, ω)

and observes a sample of signals (ωτ )tτ=1 drawn from p0(ω). The likelihood of

this sample is the sum of the likelihoods of all samples of pairs (iτ , ωτ )tτ=1 that

coincide with the observed sample on the margin. The sum of likelihoods of all

such samples of pairs with an empirical distribution p(i, ω) grows at the rate

−KL
(
p(i, ω) ‖ q(i, ω)

)
−H

(
p0(ω)

)
.

Maximization of the growth rate over the empirical distribution and the gener-

ative model then leads to (13).

11Using the chain rule, this variational argument points out that the objective in (13) weakly
exceeds the objective in (2) and that the two objectives coincide when p(i | ω) = q(i | ω).
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6 Further Results

6.1 Sufficient as Well as Necessary Conditions

Proposition 3 implies that a growth-maximizing policy q∗(i, ω) and its corre-

sponding merit distribution mq∗(i, ω) constitute a fixed point:

q∗(i, ω) ∈ arg min
q(i,ω)

KL
(
mq∗(i, ω) ‖ q(i, ω)

)
(14)

s.t. q(i, ω) ∈ Q,

mq∗(i, ω) ∈ arg min
p(i,ω)

KL
(
p(i, ω) ‖ q∗(i, ω)

)
(15)

s.t. p(ω) = p0(ω).

This fixed-point condition is necessary but not sufficient for growth maxi-

mization. The following example demonstrates that multiple fixed points may

exist, some of which do not correspond to the growth-maximizing policy.

Example 5 (Multiplicity). Consider an economic-growth process in which each

individual i has exogenous return function q(ω | i) and the planner chooses an

unconstrained allocation q(i) ∈ A = ∆(I). Then, for each subset J ( I, there

exists a fixed point satisfying (14)–(15) that excludes all individuals j ∈ J by

allocating them zero wealth shares. Such a fixed point can be constructed by

solving for the growth-maximizing allocation q∗I\J(i) of the restricted problem

that considers individuals I\J only and then extending it to I by allocating zero

shares to all individuals j ∈ J . The resulting allocation indeed generates a fixed

point in the original setting with individuals in I: the induced merit distribution

satisfies mq∗(j, ω) = p0(ω)q∗(j | ω) = 0 for all j ∈ J and all ω ∈ Ω. Thus,

the individuals from J have zero merit. The policy that solves (14) against this

merit distribution mq∗ then allocates shares q∗I\J(i) to i ∈ I \J and zero shares

to all individuals from J , as needed for the fixed point. 4

The following results, proven in Appendix A.7 for our general setting, can

be used to determine whether a candidate fixed point represents a growth-

maximizing policy.

Proposition 6 (Sufficient and Necessary Condition). Suppose that the set Q
of feasible policies is convex. A policy q∗(i, ω) maximizes the growth rate if and
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only if

Ep0(ω)
q(ω)

q∗(ω)
≤ 1 for all q(i, ω) ∈ Q, (16)

where q∗(ω) =
∑
i q
∗(i, ω) and q(ω) =

∑
i q(i, ω) are the aggregate returns in

state ω under the policies q∗ and q, respectively.

Corollary 4. If an interior policy q∗(i, ω) > 0 from convex Q together with the

induced merit distribution mq∗(i, ω) satisfy the fixed point (14)–(15), then the

policy maximizes the growth rate.

The intuition for the proposition is that the left side of (16) is the lineariza-

tion of the objective in the growth-rate maximization problem (1) around a

candidate solution to (1). Since the growth-rate maximization objective is con-

cave, the linearization around optimum does not affect the set of maximizers.

The corollary shows that a interior solution to the fixed-point problem solves

the requisite first-order conditions.

To illustrate the proposition and the corollary, we revisit Example 5.

Example (Example 5 continued). Since the allocation is unconstrained, with

A = ∆(I), the naive meritocracy principle implies that the growth-maximizing

allocation equals the marginal merit distribution: q∗(i) = mq∗(i). If such fixed

point is interior, then it corresponds to the growth-maximizing policy.

Let us now allow for non-interior allocations. Proposition 6 indicates that

the allocation q∗(i) optimizes the growth rate if and only if

∑
ω

p0(ω)

q∗(ω)
q(ω | i) = 1 if q∗(i) > 0, (17)

∑
ω

p0(ω)

q∗(ω)
q(ω | i) ≤ 1 if q∗(i) = 0. (18)

The two inline conditions assert that marginal contributions to growth must be

equal across individuals who possess positive shares of wealth, and that excluded

individuals must have lower marginal contributions to growth. 4

6.2 Rational Inattention

The naive meritocracy principle simplifies in situations where the planner faces

no constraints in choosing an allocation. In such cases, the principle mandates

that the optimal allocation equals the merit distribution. In this subsection,
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we leverage this simple implication of the principle in the absence of allocation

constraints and demonstrate how our characterization of growth-maximizing

policies encompasses some existing results from the rational-inattention litera-

ture.

We study here the setting from Example 5 with unconstrained allocation

and exogenously fixed returns. In Robson et al. (2023) we have investigated

this particular case and established its equivalence to the rational inattention

problem originally presented by Matějka and McKay (2015). We review here

this equivalence using the framework of the current paper.

Matějka and McKay (2015) present a problem of information acquisition for

a single person as follows:

max
r(i,ω)

{
Er(i,ω) u(i, ω)− Ir(i,ω)

}
(19)

s.t. r(ω) = p0(ω).

Their decision-maker has a utility function u(i, ω) and aims to select a joint

distribution r over pairs (i, ω) that maximizes the expected utility minus the

cost of acquiring information, which is measured by the mutual information

Ir(i,ω). In this literature, the variable i ∈ I represents an action and ω ∈ Ω is

an uncertain payoff state.

Robson et al. select an allocation q(i) ∈ ∆(I) that maximizes the growth

rate in an economy with exogenous returns set to q(ω | i) = expu(i, ω); that

is, u(i, ω) denotes the log-return. Proposition 3 of the current paper implies

that the growth-maximizing policy q∗(i, ω) and the induced merit distribution

mq∗(i, ω) in this growth problem jointly solve (where the merit distribution is

the maximizer over the paths p(i, ω)):

min
p(i,ω),q(i,ω)

KL
(
p(i, ω) ‖ q(i, ω)

)
(20)

s.t. p(ω) = p0(ω)

q(i) = ∆(I)

q(ω | i) = expu(i, ω).

Proposition 7 (Robson et al (2023)). The joint distribution r∗(i, ω) solves the

rational inattention problem (19) if and only if it equals the merit distribution
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mq∗(i, ω) from problem (20).

To understand the statement in Proposition 7, consider an economy under

the growth-maximizing allocation. Sample a dollar from the total wealth at the

end of a random period, and take note of the dollar’s owner i and the current

economic state ω. A selection effect causes a correlation between the owner i

and the state ω, as individuals with high returns in the state ω are oversampled.

The proposition asserts that the resulting joint distribution from this wealth-

weighted sampling, mq∗(i, ω), perfectly matches the joint distribution that a

decision-maker with a utility function u(i, ω) and the entropy-based cost of

acquiring information would opt for.

The redistribution of wealth thus acts as a replacement of active learning

about individuals’ returns. To understand why, consider again the “dynasties

of dollars” introduced in Section 4.3. Our planner allocates the wealth shares

q(i) without the benefit of any information about the realized returns of the

individuals. However, for any given finite horizon, some fraction of the dynasties

benefits from a favorable empirical correlation between its owner i and the payoff

state ω, resulting in an extraordinary growth rate for such lucky dynasties. The

downside of this advantageous correlation is that the fraction of the dynasties

that enjoy such luck decreases exponentially with the considered time horizon.

The growth-maximizing path involves a compromise level of correlation that

balances the growth advantage of the correlation against the cost stemming

from the dwindling number of dynasties that enjoy such a correlation. This

cost-benefit trade-off is equivalent to the trade-off between the benefit and cost

of information in the rational inattention problem with entropy-based cost.

Our sufficient and necessary optimality conditions (17)–(18), derived for the

setting with unrestricted allocation, coincide with the sufficient and necessary

optimality conditions for the rational inattention problem from Caplin and Dean

(2015). In addition, the equivalence to the rational inattention problem implies

a simple bound on the number of individuals who enjoy positive shares of aggre-

gate wealth under the unconstrained growth-maximizing policy: For the setting

with unrestricted allocation, there exists a growth-maximizing policy such that

the number of individuals i who receive positive shares q∗(i) > 0 is at most

equal to the size of the state space |Ω|. This observation follows for the analo-

gous bound on the number of actions chosen with positive probabilities in the

rational inattention problem derived by Caplin and Dean (2013).12

12Caplin and Dean derive the bound by a concavification argument: The value of the rational
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7 Discussion

This paper arbitrages across fields. We point out that a system adapted to

maximize growth must optimize consistency with outcomes it generates. The

result provides guidance on redistribution in the context of economic growth

and a foundation for predictive coding. In the economic setting, the consistency

relation manifests as a meritocracy principle, while it delivers constrained Bayes

consistency in the statistical context.

Our proof techniques emphasize the relevance of rare events, as described in

large deviations theory. Essentially, the growth-maximizing redistribution pol-

icy assists the most productive path of money circulation in the economy, rather

than focusing directly on productive individuals. This emphasis on the path of

money circulation, rather than individuals, clarifies how the naive meritocracy

principle arises. Additionally, we find the growth-based approach helpful for

understanding and interpreting the predictive coding model. We hope that

demonstrating its equivalence with the growth process will offer pedagogical

guidance for economists interested in the predictive coding framework.

Our model of redistribution and growth is highly stylized. One natural ex-

tension of our model for future research would incorporate serial correlations of

shocks and Markovian redistribution policies. The current model’s restriction of

the redistribution policy to history-independent allocation is without loss under

serially independent shocks. However, if shocks are serially correlated, Marko-

vian redistribution policies, such as proportional taxes, become advantageous

because currently productive individuals are likely to remain productive. We

conjecture that the current characterization of the optimal policy extends to a

Markovian setting, with the Markovian redistribution policy aiming to maximize

consistency with a Markovian path of money circulation.

A Appendix

A.1 Proof of Proposition 1

Proof. Starting with unit wealth, let S = q(ω) be the random variable rep-

resenting the aggregate wealth accumulated in one period by a generic policy

inattention problem is given by the hyperplane tangent to the decision-maker’s value function
adjusted for information cost. By Carathéodory’s theorem, this hyperplane can be defined
by at most |Ω| tangency points that correspond each to an action chosen with a positive
probability.
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q(i, ω) ∈ Q, and let S∗ = q∗(ω) be the random variable representing the ag-

gregate wealth accumulated in one period by the growth-maximizing policy.

Then,

Ep0

S

S∗
=
∑
ω

p0(ω)
q(ω)

q∗(ω)
≤ 1, (21)

where the expectation is with respect to ω and the inequality follows from the

necessary and sufficient optimality condition on q∗(i, ω) from Proposition 6. The

inequality (21) extends Theorem 16.2.2 from Cover and Thomas (2006) to our

setting. (Cover and Thomas, unlike us, consider unrestricted allocations and

exogenous returns).

The remainder of the proof is taken from the proof of Theorem 16.3.1 in

Cover and Thomas (2006) with no significant changes. Using (21) repeatedly,

we obtain E[St/S
∗
t ] ≤ 1, where St and S∗t represent wealth accumulated in the

first t periods under the generic and the optimal policy. Then, by Markov’s

inequality (Billingsley, 2012, p. 85), we have

Pr

(
St
S∗t
≥ ct

)
≤ 1

ct
.

Hence,

Pr

(
1

t
ln
St
S∗t
≥ 1

t
ln ct

)
≤ 1

ct
.

Setting ct = t2, we obtain

∞∑
t=1

Pr

(
1

t
ln
St
S∗t
≥ 2 ln t

t

)
≤
∞∑
t=1

1

t2
<∞.

Finally, by the Borel-Cantelli Lemma, for almost every sequence of states ωt,

there exists T such that 1
t ln St

S∗
t
< 2 ln t

t for t > T , which implies the statement

in the proposition.

A.2 Proof of Corollary 1

Proof. Denote εj simply by ε. The set of the feasible policies is, for each ε,

Qε =
{
qε(i, ω) : qε(i, ω) = q(i, ω)e1i=jε and q(i, ω) ∈ Q}.
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By Lemma 2, the optimized growth rate r∗(ε) equals

− min
p(i,ω),q(i,ω)

KL
(
p(i, ω) ‖ q(i, ω)e1i=jε

)
−H

(
p0(ω)

)
s.t. p(ω) = p0(ω)

q(i, ω) ∈ Q.

The chain rule (Lemma 4) implies:

KL
(
p(i, ω) ‖ q(i, ω)e1i=jε

)
= KL

(
p(i) ‖ q(i)

)
+
∑
i

p(i) KL
(
p(ω | i) ‖ q(ω | i)e1i=jε

)
.

The envelope theorem then implies that

dr∗

dε
(0) = p∗(j),

where p∗(j) =
∑
ω p
∗(j, ω) and p∗(i, ω) is the optimizer jointly with q∗(i, ω).

We have used that ∂ε KL
(
p(ω | i) ‖ q(ω | i)e1i=jε

)
= −1i=j . The corollary

then follows from the fact that mq∗(j) = p∗(j) by Lemma 3.

A.3 Proof of Lemma 1

Proof. We interpret the expression of interest, ln
∑
x q(x), as the growth rate of

the multiplicative process (
∑
x q(x))

t
, writing

ln
∑
x

q(x) =
1

t
ln
(∑

x

q(x)
)t
,

with t ∈ N. Denoting a generic sequence of length t as x = (x1, . . . , xt) ∈ Xt,

we rewrite the sum on the right side as a sum over all such sequences, giving

ln
∑
x

q(x) =
1

t
ln
∑
x∈Xt

∏
x∈X

q(x)px(x)t, (22)

where px ∈ ∆(X), defined by

px(x) =
1

t

t∑
τ=1

1xτ=x,
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is the empirical distribution of the sequence x. We rearrange the summand from

(22) as follows,13

∏
x∈X

q(x)px(x)t = exp

[
t×
∑
x

px(x) ln q(x)

]

= exp

[
t×

(∑
x

px(x) lnpx(x)−
∑
x

px(x) ln
px(x)

q(x)

)]
= exp

[
−t×

(
H (px) + KL (px ‖ q)

)]
. (23)

Since all sequences with the same empirical distribution generate the same

value of the last expression in (23), we can substitute (23) into (22) to obtain

ln
∑
x

q(x) =
1

t
ln
∑
p∈∆t

exp
[
−t×

(
H(p) + KL(p ‖ q)

)]
n(p), (24)

where ∆t ⊂ ∆(X) is the set of the empirical distributions that can be generated

by sequences x of length t, and n : ∆t → N returns for each empirical distribu-

tion p the number n(p) of sequences of length t that generate such an empirical

distribution. (We suppress dependence of n(·) on t in our notation.)

The number of the sequences that generate an empirical distribution p can

be approximated as follows.

1

(t+ 1)|X|
exp[t×H(p)] ≤ n(p) ≤ exp[t×H(p)];

for all p ∈ ∆t. See Theorem 11.1.3 in Cover and Thomas (2006) for these

bounds. Substituting this into (24), we obtain the bounds

1

t
ln
∑
p∈∆t

exp [−t×KL(p ‖ q)]− |X| ln(t+ 1)

t
≤ ln

∑
x

q(x) ≤

1

t
ln
∑
p∈∆t

exp [−t×KL(p ‖ q)] .

Since the term |X| ln(t+1)
t vanishes as t diverges, we have proven that

ln
∑
x

q(x) = lim
t→∞

1

t
ln
∑
p∈∆t

exp [−t×KL(p ‖ q)] . (25)

13If q is a distribution, then each summand is the sample likelihood.
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To conclude the proof we use (25) to establish lower and upper bounds for

ln
∑
x q(x) that both equal −minp∈∆(X) KL(p ‖ q), as needed. For the lower

bound, we replace the sum on the right of (25) by its largest summand. To this

end, letting p∗t ∈ arg minp∈∆t
KL(p ‖ q), we have

ln
∑
x

q(x) ≥ lim
t→∞

1

t
ln exp [−t×KL(p∗t ‖ q)]

= − lim
t→∞

KL(p∗t ‖ q)

= − min
p∈∆(X)

KL(p ‖ q).

For the upper bound observe,

ln
∑
x

q(x) = lim
t→∞

1

t
ln
∑
p∈∆t

exp [−t×KL(p ‖ q)]

= − min
p∈∆(X)

KL(p ‖ q) + lim
t→∞

1

t
ln
∑
p∈∆t

exp

[
−t×

(
KL(p ‖ q)− min

p∈∆(X)
KL(p ‖ q)

)]
≤ − min

p∈∆(X)
KL(p ‖ q) + lim

t→∞

1

t
ln(t+ 1)|X|

= − min
p∈∆(X)

KL(p ‖ q),

where we have used the fact that the summands in the sum from the second line

are bounded between 0 and 1. Thus, the sum from the second line is bounded

from above by the number of the empirical distributions, |∆t|, attainable by

sequences of the length t. The number of such distributions is bounded by

(t+ 1)|X| because for each x ∈ X, p(x) attains values 0
t ,

1
t , . . . ,

t
t .

A.4 Proof of Lemma 2

We first verify that the standard result, the so-called chain rule, continues to

hold for the extended definition of the KL-divergence with KL : ∆(X)×RX+ →
R ∪ {∞}.

Lemma 4 (Chain Rule). Consider any distribution p(x, y), generalized distri-

bution q(x, y) on X×Y and a pair q(x) and q(y | x) such that q(x, y) = q(x)q(y |
x). Assume p(x) > 0 for x in a set X∗ ⊆ X. Then,

KL
(
p(x, y) ‖ q(x, y)

)
= KL

(
p(x) ‖ q(x)

)
+
∑
x∈X∗

p(x) KL
(
p(y | x) ‖ q(y | x)

)
.
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Proof.

KL
(
p(x, y) ‖ q(x, y)

)
=

∑
(x,y)∈X×Y

p(x, y) ln
p(x, y)

q(x, y)

=
∑

(x,y)∈X∗×Y

p(x)p(y | x) ln
p(x)p(y | x)

q(x)q(y | x)

=
∑
x∈X∗

p(x) ln
p(x)

q(x)
+
∑
x∈X∗

∑
y∈Y

p(x)p(y | x) ln
p(y | x)

q(y | x)

= KL
(
p(x) ‖ q(x)

)
+
∑
x∈X∗

p(x) KL
(
p(y | x) ‖ q(y | x)

)
,

where we used for the third equality that p(x, y) is a distribution and thus∑
y p(y | x) = 1.

Proof of Lemma 2. Fix ω and observe that

ln
∑
i

q(i, ω) = − min
p(i|ω)∈∆(I)

KL
(
p(i | ω) ‖ q(i, ω)

)
= − min

p(i|ω)∈∆(I)
KL
(
p(i | ω) ‖ q(i | ω)q(ω)

)
= − min

p(i|ω)∈∆(I)

{
KL
(
p(i | ω) ‖ q(i | ω)

)
− ln q(ω)

}
,

where the minimization is over state-contingent distributions p(i | ω) ∈ ∆(I).

We treat here q(i, ω) as function of i only, with a fixed parameter ω. The first

inline equality follows from Lemma 1. The last equality follows from the fact

that

KL(p ‖ λq) = KL(p ‖ q)− lnλ

for any distribution p, generalized distribution q and λ > 0.

Taking expectation with respect to ω gives that a policy q(i, ω) induces the
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growth rate∑
ω

p0(ω) ln
∑
i

q(i, ω)

= −
∑
ω

p0(ω) min
p(i|ω)∈∆(I)

KL
(
p(i | ω) ‖ q(i | ω)

)
+
∑
ω

p0(ω) ln q(ω)

= −
∑
ω

p0(ω) min
p(i|ω)

KL
(
p(i | ω) ‖ q(i | ω)

)
−KL

(
p0(ω) ‖ q(ω)

)
−H

(
p0(ω)

)
= − min

p(i,ω)∈∆(I×Ω)

{
KL
(
p(ω) ‖ q(ω)

)
+
∑
ω

p(ω) KL
(
p(i | ω) ‖ q(i | ω)

)}
−H

(
p0(ω)

)
s.t. p(ω) = p0(ω).

Applying the chain rule, Lemma 4, to the last objective function gives the

result.

A.5 Proof of Lemma 3

Proof. Using the chain rule, we can write the objective from optimization in (7)

as

KL
(
p(i, ω) ‖ q(i, ω)

)
= KL

(
p(ω) ‖ q(ω)

)
+
∑
ω

p(ω) KL
(
p(i | ω) ‖ q(i | ω)

)
= KL

(
p0(ω) ‖ q(ω)

)
+
∑
ω

p0(ω) KL
(
p(i | ω) ‖ q(i | ω)

)
,

where we have used for the second equality that p(ω) is constrained to equal

p0(ω). Minimization of this objective with respect to p(i | ω) for each ω implies

that p∗q(i | ω) = q(i | ω). The lemma then follows from the definition of mq(i, ω)

in (8): mq(i, ω) = p0(ω)q(i | ω) = p∗q(i, ω).

A.6 Proof of Proposition 5

Proof. The result follows from Theorem 3 and the subsequent Remark in Csiszar

and Tusnady (1984). Their result requires the condition that (in their notation)

p0 ∈ P is positive for exactly those x ∈ X for which there exist p ∈ P and

q ∈ Q such that p(x)q(x) > 0. The condition is satisfied in our setting be-

cause m0(i, ω) (the counterpart of their p0) is assumed to be interior and Q is
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assumed to contain an interior q(i, ω) (giving the counterpart of their p and q

with p(x)q(x) interior). Their result ensures that our qk(i, ω) converges to the

growth-maximizing policy for those (i, ω) such that m∗(i, ω) > 0. In our specific

setting, qk(i, ω) converges also for those (i, ω) such that m∗(i, ω) = 0, because,

mk(i | ω) = qk−1(i | ω) (by Lemma 3) and hence qk(i | ω) converges to 0 and

also qk(i, ω)→ 0.

A.7 Proof of Proposition 6 and Corollary 4

Proof of Proposition 6. Fix individual j and state ω̃. The derivative of the

growth rate from (1) with respect to the policy is

∂q(j,ω̃)

∑
ω

p0(ω) ln
(∑

i

q(i, ω)
)∣∣∣∣∣
q=q∗

=
p0(ω̃)∑
i q
∗(i, ω̃)

=
p0(ω̃)

q∗(ω̃)
.

Since the optimization objective
∑
ω p

0(ω) ln (
∑
i q(i, ω)) is concave in q and the

feasible set Q is convex, the set of maximizers is unaffected by the linearization

of the objective around the optimum. Thus, q∗(i, θ) is a growth-maximizing

policy if and only if it maximizes
∑
i,ω

p0(ω)
q∗(ω) q(i, ω) on Q. Summing up the

latest objective across i leads to the inequality from (16).

Proof of Corollary 4. If the policy q∗(i, ω) is positive, then

∂q(j,ω̃) KL
(
mq∗(i, ω) ‖ q(i, ω)

)∣∣
q=q∗

= −mq∗(j, ω̃)

q∗(j, ω̃)

= −p0(ω̃)q∗(j | ω̃)

q∗(ω̃)q∗(j | ω̃)

= −p0(ω̃)

q∗(ω̃)
,

where we have used that the merit distribution induced by policy q∗ is mq∗(i, ω) =

p0(ω)q∗(i | ω) for the second equality and positivity of q∗(j | ω̃) for the third

equality. Since the objective in the minimization problem (14) is convex, q∗(i, ω)

that solves (14) also maximizes

∑
i,ω

p0(ω)

q∗(ω)
q(i, ω) = Ep0(ω)

q(ω)

q∗(ω)

37



onQ. Hence, q∗(i, ω) satisfies the necessary and sufficient condition from Propo-

sition 6.

A.8 Proof of Proposition 7

Proof. Since the allocation q(i) ∈ A = ∆(I) is unconstrained, the naive meri-

tocracy principle from Proposition 2 implies that q∗(i) = mq∗(i) (which equals

p∗(i)). This simplifies the objective in (20) as follows.

KL
(
p(i, ω) ‖ q(i, ω)

)
= KL

(
p(i) ‖ q(i)

)
+
∑
i∈I∗

p(i) KL
(
p(ω | i) ‖ q(ω | i)

)
=

∑
i∈I∗

p(i) KL
(
p(ω | i) ‖ q(ω | i)

)
= −

∑
i∈I∗

p(i)
(

Ep(ω|i) u(i, ω) + H
(
p(ω | i)

))
= −

(
Ep(i,ω) u(i, ω)− Ip(i,ω)

)
−H

(
p0(ω)

)
,

where I∗ ⊆ I is the set of i with p(i) > 0. We have used the chain rule for the

first equality and the fact that KL
(
p(i) ‖ q(i)

)
= 0 at optimum for the second

equality. The third equality follows from the definitions of the KL-divergence

and the entropy and from the assumed relationship q(ω | i) = expu(i, ω). The

last equality follows from the fact that mutual information Ip(i,ω) = H
(
p(ω)

)
−∑

i p(i) H
(
p(ω | i)

)
and p(ω) = p0(ω).

We have demonstrated that, after optimization of q(i), the objectives in

the minimization problem (20) and the rational-inattention problem (19) differ

only in the sign and the term H
(
p0(ω)

)
, where this term is independent of the

controls, as needed.
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