Organization of Knowledge and Taxation

Ctirad Slavík, CERGE-EI, Prague
(with Marek Kapička, CERGE-EI, Prague)

December 15, 2020

EWMES-EJM Virtual Meetings

Motivation

A classic question:

- How should people's incomes be taxed?

Renewed interest:

- Recent large changes in wage (and income) inequality.
- Wages change differently at the top and bottom.

Motivation

Answer (to the classic question) typically given in models with:
(1) Exogeneous wage inequality, and/or
(2) limited interaction between top and bottom wages.

This paper:
(1) Optimal (labor) taxes in model with (i) endogeneous wages, (ii) rich interaction between top and bottom wages.
(2) Model can match the wage structure and (potentially) its changes over time.

- Model of knowledge based hierarchies of Garicano (2000), Garicano and Rossi-Hansberg (2006).
- People choose to become workers or managers.
- Form organizations in which knowledge efficiently combined.
- We extend the model to match observed wage inequality.
- Study labor income taxation in this model.

(Quantitative) Results

With a constant-rate-of-progressivity income tax function:

- More progressive taxes decrease wage inequality in upper tail: more managers supervise fewer (less diverse) workers.
- More progressive taxes increase wage inequality in lower tail: workers matched with more diverse managers.
- Nontrivial trade-off. However, in the optimum, taxes are:
(1) modestly more progressive than in the U.S,
(2) much less progressive than when wages are exogeneous.
- Model
(1) Environment
(2) Competitive Equilibrium
(3) Comparative Statics
- Quantitative Analysis
(1) Calibration
(2) Optimal Taxes
- Empirical evidence
- Conclusion

Model

Setup

- Static model.
- Two goods: time and general consumption/output good.
- Government and measure one of agents: $U(c)-V(\ell)$.

$$
U(c)=\ln c, \quad V(\ell)=\kappa \frac{\ell^{1+\eta}}{1+\eta}
$$

- Output produced by solving tasks.
- Agents heterogeneous in skill $z \in[\underline{z}, \bar{z}] \sim G(z)$.
- Every unit of time, continuum of tasks arrives $\sim F(z)$.
- Agent with skill z can solve $[\underline{z}, z]$ tasks.

Organizations

- Agents form organizations with one manager and n production workers.
- Worker of type z_{p} solves $F\left(z_{p}\right)$ tasks, and asks the manager for help with $1-F\left(z_{p}\right)$ tasks.
- Manager of type $z_{m}>z_{p}$ explains $F\left(z_{m}\right)-F\left(z_{p}\right)$ tasks to worker.
- After receiving advice, worker produces output $F\left(z_{m}\right)$ per unit of time, and $F\left(z_{m}\right) \ell_{p}$ total (team) output.

Communication

- Communication between worker and manager takes time; number of workers n a manager working ℓ_{m} can supervise:

$$
n \theta\left(z_{p}\right)=\ell_{m}
$$

Example 1

(Garicano, 2000, constant communication costs h):

$$
\theta\left(z_{p}\right)=h \cdot\left[1-F\left(z_{p}\right)\right]
$$

- Example 2
(this paper, heterogeneity in communication costs):

$$
\theta\left(z_{p}\right)=h\left(z_{p}\right) \cdot\left[1-F\left(z_{p}\right)\right], \quad h^{\prime}\left(z_{p}\right)<0 .
$$

Output

- Output of organization is

$$
n F\left(z_{m}\right) \ell_{p}=\frac{\ell_{p}}{\theta\left(z_{p}\right)} F\left(z_{m}\right) \ell_{m}
$$

- Complementarity between i) skills, ii) hours worked
- Effective communication costs $\frac{\theta\left(z_{p}\right)}{\ell_{p}}$ critical

Incomes and Wages

- Individuals sort to be production workers or managers.
- Production workers receive wage $w\left(z_{p}\right)$. Earnings

$$
y_{p}=w\left(z_{p}\right) \ell_{p}
$$

- Managers z_{m} teaming with n workers z_{p} have earnings

$$
y_{m}=n\left[F\left(z_{m}\right)-w\left(z_{p}\right)\right] \ell_{p}=\frac{\ell_{p}}{\theta\left(z_{p}\right)} \cdot\left[F\left(z_{m}\right)-w\left(z_{p}\right)\right] \ell_{m}
$$

with wages $w\left(z_{m}\right)=y_{m} / \ell_{m}$.

Government

- Income taxed by a type-independent constant-rate-of-progressivity tax function:

$$
T(y)=y-\lambda y^{1-\tau}
$$

- Government consumption G, budget constraint

$$
\mathbb{E}_{y} T(y)=G
$$

- Remark: With this tax and utility functions, labor hours constant across agents; $\bar{\lambda}(\tau)$.

CE is an allocation (assignment, labor hours and consumption) and prices (wages) s.t.:
(a) Individuals optimally choose to be managers or workers.
(b) Workers choose ℓ and coptimally given wages.
(c) Managers choose workers and ℓ and c optimally, taking wage schedule and labor hours of production workers as given.
(d) Supply of managers/workers equal to demand for managers/workers.
(e) Supply of goods equal to demand for goods.

Occupational Choice

Production workers
Managers

Assortative matching: $m^{\prime}\left(z_{p}\right)>0$

Comparative Statics in τ

What happens when τ increases?

- Labor hours $\bar{\lambda}(\tau)$ decrease, effective com. costs $\frac{\theta\left(z_{p}\right)}{\ell_{p}}$ increase.
- Threshold z_{1} decreases.
- Wage structure changes.

An Increase in Tax Progressivity

Consider a simple example with a closed form solution:

- $z \in[0,1]$
- F and G are uniform
- $\theta\left(z_{p}\right)=h\left(1-z_{p}\right)$
- The effective communication costs are $h / \bar{\ell}(\tau)$

Initial Equilibrium

Comparative Statics

Blue: Initial equilibrium wage structure. Red: ${ }^{z}$ higher progressivity/a decrease in hours.

Comparative Statics

Tax progressivity $\tau \uparrow$ (effective communication cost \uparrow):
(1) Managers work less: More managers, smaller organizations.
(2) Wage inequality among managers decreases.

- Intuition: Managers now matched with more similar workers.
- Workers' hours decrease.
(3) Wage inequality among workers increases.
- Intuition: Workers matched with more diverse managers.

Summary: Endo wages affect the E-E tradeoff and make redistribution through progressive taxes less attractive.

Quantitative Analysis

Overview

- Calibrate model to U.S. wage moments.
- Compute optimal taxes (progressivity):
(1) When wages are endogeneous.
(2) When wages are exogeneous.
- Extensions/additional exercises.

Calibration: Functional Forms

- Skill types and tasks on $[0,1]$.
- Skill types and task arrival:

$$
\begin{aligned}
& G(x)=1-(1-x)^{1+\rho} \\
& F(x)=x
\end{aligned}
$$

- Note: $F \sim U[0,1]$ WLOG. Degree of freedom in G and F.
- $\theta(x)=h(1-x)^{\gamma}[1-F(x)]=h(1-x)^{1+\gamma}$.

Calibration: Parameters

Parameters set outside the model

- Gvt policy
(1) $T(y)=y-\lambda y^{1-\tau}, \tau=0.181$ (HSV, 2016),
(2) gvt expenditure $G=0$.
- Utility $\ln c-\kappa \frac{\ell^{1+\eta}}{1+\eta}$
(1) $\eta=2$ (Frisch elasticity of labor $=0.5)$,
(2) normalize $\kappa=1$.

Calibration: Parameters

- 3 remaining model parameters: ρ, γ and h.
- 3 targets:
(1) $1-G\left(z_{1}\right)=0.207$ (fraction of managers, CPS 2017)
(2) $\log 90 / 50=0.916($ CPS 2017 $)$
(3) $\log 50 / 10=0.788($ CPS 2017 $)$

Benchmark Model Fit

Thick line: Model wages. Dashed line: CPS data. Thin line: 'Autarky'.

Optimal Taxes

Optimal Taxes

Red line: endogenous wages. Blue line: exogenous wages

Mean Wages

Variance of log Wages

Wage Inequality Measures

Optimal Tax Reform

- $\tau_{U S}=0.181, \tau^{*}=0.197, \tau_{\text {exogenous } w}^{*}=0.429$.
- Welfare gains $\tau^{*}=0.01 \%, \tau_{\text {exogenous } w}^{*}=-3.45 \%$.
- In addition to more redistribution and standard labor supply effects, higher progressivity:
(1) \downarrow average pre-tax wages,
(2) \downarrow wage inequality at top, but \uparrow wage inequality elsewhere (at bottom): \uparrow overall wage inequality.
- These effects \downarrow optimal tax progressivity from 0.429 to 0.197 .

Distributional Consequences

Distributional Consequences

- Compare status-quo tax progressivity $\tau=0.181$ with optimal exo-wage $\tau=0.429$
- Recall: optimal endo-wage $\tau=0.197$.

Benchmark Additional Results - Wages

Blue+red: status quo $\tau=0.181$, yellow+purple $\tau=0.429$.

Benchmark Additional Results - Consumption

Blue+red: status quo $\tau=0.181$, yellow+purple $\tau=0.429$.

Benchmark Additional Results - Marginal Tax Rates

Blue + red: status quo $\tau=0.181$, yellow+purple $\tau=0.429$.

Benchmark Additional Results - Average Tax Rates

Blue+red: status quo $\tau=0.181$, yellow+purple $\tau=0.429$.

Benchmark Additional Results - Welfare

Blue+red: status quo $\tau=0.181$, red $\tau=0.429$.

Benchmark Additional Results - Teamsize

Blue+red: status quo $\tau=0.181$, yellow+purple $\tau=0.429$.

Empirical Evidence

Empirical Evidence

Our mechanism: Progressivity affects pre-tax wages.

- Large empirical literature on how taxes affect labor supply and on how taxes affect pre-tax income.
- Smaller literature on how taxes affect pre-tax wages.
- Comparing our results to empirical literature work in progress.

Empirical Evidence

Papers estimate wage responses to marginal tax rate (MTR) and average tax rate (ATR) changes:

- Scandinavian data (search-and-matching bargaining context):
(1) Arronson et al (1997), Hansen et al (2000): increasing MTR decreses wages; opposite for ATR
(2) Blomquist and Selin (2010): increasing MTR decreases wages for both men and women using Swedish data
(3) Holmlund and Kolm (1995): increasing progressivity leads to lower wages (and hence higher empoyment)

Empirical Evidence

Our model predicts distributional consequences of changes in progressivity:

- Schneider (2005): German tax reforms, increasing progressivity reduces wages, stronger for lower income workers
- Frish, Zussman, Igdalov (2020): Israeli tax cuts, wage elasticity increases with income
- Moffitt, Wilhelm (1998): Wages of rich men have increased due to the 1986 U.S. tax rate cuts

Conclusion

- Model in which taxes interact with top/bottom wage inequality.
- Top/bottom inequality moves in opposite directions: more progressive taxes decrease top but increase bottom inequality.
- Optimal progressivity close to current U.S. tax code and substantially smaller relative to exogenous wages.

