
Tough Love for Lazy Kids:

Dynamic Insurance and Equal Bequests

Ctirad Slav́ık† Kevin Wiseman‡

November 1, 2017

Abstract. This paper develops a dynamic insurance model to explain a central puzzle in

intergenerational transfers: gifts partially compensate children for negative income shocks,

but bequests are typically divided equally. In the model, parents use gifts (early in life) and

bequests (later in life) to provide insurance against income shocks, but take into account

that children would shirk if offered large transfers. We show in a simple model that parents

can provide better incentives later in life by giving equal bequests. In a quantitative model,

gifts are compensatory while bequests are nearly uncorrelated with income and approxi-

mately equal in most families.
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1. Introduction

Understanding the transfers from parents to their children plays an important role in un-

derstanding the distribution of wealth, consumption inequality, and the effects of government

redistribution policies. Yet the evidence about the ways parents distribute their money has

defied explanation. In empirical studies, bequests are typically found to be divided equally

among children, independently of their income. By contrast, parents give more to their

poorer children in inter vivos transfers, or gifts, but not enough to fully compensate the

differences in child income within the family.

Why are gifts to poorer children larger, while bequests are divided equally? This paper

explains this behavior as a result of the timing of gifts and bequests in a dynamic moral

hazard problem. In the model, children’s income is a combination of exogeneous productivity,

and endogeneous labor effort. Parents know their children’s income but not their productivity

or labor effort. An altruistic parent wants to help her unlucky low-productivity children,

but she cannot distinguish between hardworking low-productivity children and lazy high-

productivity children. If the parent gives too much money to low-income children, she

encourages high-productivity children to slack off, earn a low income, and receive the transfer.

The parent’s best option is to provide partial insurance (i.e., give more money to her lower-

income children), but not enough to fully compensate differences in income.

A parent could simply hand out the same gift and bequest to a given child. By the logic

outlined above, poorer children would receive both a higher gift and a higher bequest than

their richer siblings. However, the parent can do better by thinking about gifts and bequests

separately. In the model, gifts are received early in a child’s life, whereas bequests are

received later in life. Children face uncertainty about their future productivity. The parent

can take advantage of these two features when deciding about gifts and bequests.
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The relative sizes of gifts and bequests are determined by productivity persistence. In our

model, no productivity persistence corresponds to full mean reversion: all children face the

same probability of becoming high- or low-productive in the future. In this case, the cur-

rently high-productive children are concerned about becoming low-productive in the future.

Therefore, they care relatively more about bequests, which transfer resources to the future.

In contrast, the currently low-productive children care relatively more about the gift. The

parent takes advantage of these differences in time preferences and uses bequests to provide

incentives and gifts to provide insurance: the bequest to the high types is larger than the

bequest to the low types while the opposite is true for gifts.

On the other hand, with perfect persistence there is no mean reversion and no uncertainty:

both types know that they will be of the same type in the future as they are today. In this

case, both types care as much about the current transfer (gift) as they care about the future

transfer (bequest). Therefore, both gifts and bequests are higher for the low types. For

intermediate levels of persistence, bequests are about equal, and for some level they are

exactly equal. Partial insurance implies that if bequests are equal, gifts are higher for the

low types.

To summarize, transfers are weakly progressive in the sense that poorer children are given

a higher transfer, but differences in income between siblings are not fully compensated. Gifts

are distributed more progressively than bequests. Bequests are progressive when income is

highly persistent, regressive when income is very impersistent, and equal or nearly equal

for intermediate values. In a simple model with two productivity types, we demonstrate

that there is a level of persistence at which bequests are exactly equal and gifts are weakly

progressive, which is qualitatively what we observe in the data. This pattern cannot occur in

the public information version of the model, in which the parent observes child productivity

and effort and thus does not need to provide incentives.
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To compare the performance of the model to the data, we build a richer version with many

productivity types. We then pin down the children’s productivity persistence in the model

with U.S. data, solve the model numerically, and compute a number of transfer statistics.

Certain features of the U.S. economy, such as the fact that equal bequest division is the

default legal option, remain unmodelled. However, considering its simplicity, the model

approximates the data reasonably well. In the benchmark parameterization, bequests are

nearly uncorrelated with child income. As in the data, gifts are weakly progressive (albeit

more progressive than in the data). Importantly, both gifts and bequests are substantially

more progressive in the public information version of the model. Siblings’ bequests are

approximately equal (i.e., within 25% of the intrafamily mean) in a large number of families,

as in the data. A rule of thumb in which parents divide their bequests equally results in a

minimal loss in welfare compared to the optimal allocation. This welfare loss is more than

20 times smaller than the equivalent loss in the public information version of the model.

Adding private information thus helps to bring the pattern of intergenerational transfers

closer to the data.

We also examine the sensitivity of these results to alternative parameterizations and al-

ternative specifications of the model. In all cases, gifts are weakly progressive but more

progressive than bequests. Bequests are nearly uncorrelated with income and concentrated

around equal division for a large number of families.

The rest of the paper is organized as follows. The next section provides a more detailed

summary of the puzzle in the empirical literature. Section 3 then reviews papers that have

tried to explain this puzzle, and discusses the place of this paper in the dynamic insurance

literature. Section 4 introduces a simple version of the model, derives the main analytical

results, highlights the forces at work in the model, and considers the model’s robustness to

a number of extensions. Section 5 evaluates the benchmark quantitative model with respect
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to the data on intergenerational transfers, compares it to a version of the model without

incentive problems, and conducts sensitivity analysis. Section 6 concludes.

2. Empirical Evidence

This section first summarizes the evidence on the size of intergenerational transfers present

in the Panel Study of Income Dynamics (PSID). Both bequests and gifts are substantial for

those households that report a nonnegative bequest/gift. In a given year, approximately 2%

of households report a bequest. The ratio of the average bequest relative to average annual

labor earnings of households that report a positive bequest is 98.7% between 1988 - 2011.

Taking all households in the sample, including those that report no bequest, the ratio of

the average bequest relative to average annual labor earnings is 2.22% between 1988 and

2013. On average, 8.23% of households report a gift in a given year and this number has

been rising. The average gift is substantial at approximately 15% relative to the recipient

households’ average annual labor earnings. Taking all households, including those that report

no gift, the average gift between 1985 and 2013 is 0.65% relative to average annual labor

earnings. The details of our empirical work with the PSID are contained in section 5 and

in appendix A. In the PSID, however, one cannot uniquely match the source parent and

recipient child. Therefore, for the within-family patterns of bequests and gifts, we rely on

the existing literature.

As for the within-family pattern of bequests, Menchik (1980) finds in the Connecticut

state tax records that in two-child families, 62.5% of bequests are divided exactly equally

and 70.5% of bequests are divided almost equally (within 2% of the mean) across children.

More recently, Wilhelm (1996) finds in a larger sample of estate tax records, which includes

families of various sizes, that 68.6% of bequests are divided exactly equally, 76.6% almost

equally (within 2% of the mean), and 88% approximately equally (within 25% of the mean)

across children. He finds that even in families in which bequests are unequally divided, the
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difference in bequests does not vary with income differences (in a statistical sense). McGarry

(1999) finds that 83% of respondents report that their wills treat all children about equally

in the Asset and Health Dynamics Study survey (AHEAD). Light and McGarry (2004) find

that 92.1% of mothers who have a will say that their estate will be divided equally among

their children in the 1999 National Longitudinal Surveys (NLS) of Mature Women and Young

Women. Other empirical work has documented the same pattern in other countries.1

Recent empirical work documents a very different pattern of transfers while parents are

alive. McGarry and Schoeni find that lower income increases both the probability and size

of a gift in Health and Retirement Survey (1994) and AHEAD data (1995). Hochguertel and

Ohlsson (2009) analyze six waves (1992 - 2002) of the HRS and find that conditional on giving

a gift, only 9.2% of parents divide gifts equally and only 10.9% of parents divide gifts so that

they are within 20% of the intra-family mean. They also find that gifts are decreasing with

children’s income, but they do not fully compensate the differences in child income within

the family (a 1$ difference in children’s income is compensated by 2 cents in transfers, where

the number is statistically different from zero). McGarry (2016) reports similar results using

the HRS up until 2008. In a similar vein, Altonji, Hayashi, and Kotlikoff (1997) document

partial insurance between parents and children in the Panel Study of Income Dynamics

(PSID).

Dunn and Phillips (1997) find in the AHEAD data set that the probability of receiving

a gift is decreasing with child income, while the probability of receiving a bequest does

not depend on child income. Their paper is one of the first to emphasize the difference in

1Arrondel and Masson (2002) report that in France, unequal estate division, which concerns less than 8% of
estate declarations, in 80% of the cases occurs only through unequal previous gifts, while bequests remain
equally divided. Horioka (2009) reports that in Japan, 48.16% of respondents with two or more children
plan to divide their bequest equally, 29.90% do not plan to leave a bequest, and 21.94% plan to divide their
bequest unequally. Ohlsson (2007) reports that in Sweden, bequests are unequally divided in fewer than 15%
of cases. Using a recent international survey concerning bequest plans, Horioka (2014) reports that equal
bequest division occurs in 92.55% of cases in the United States, in 84.17% of cases in India, in 72.67% of
cases in Japan and in 70.28% of cases in China.
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bequest and gift behavior. Subsequent papers have tried to explain these differences, but to

our knowledge this paper is the first to succeed on a qualitative level, meaning that it delivers

equal bequests and weakly progressive gifts. In addition, this paper brings the model to the

data and evaluates its performance quantitatively, a first for models in this literature. The

next section proceeds with a more detailed discussion of the existing theories.

3. Related Literature

The related theoretical literature can be divided into four groups. The first one focuses

on the patterns of intergenerational transfers across households, but not within households.

The second group of papers studies within household patterns, but typically resorts to a

behavioral explanation. The third group studies how moral hazard problems affect inter-

generational transfers. These models are, however, static and, therefore, cannot distinguish

between gifts and bequests. Finally, the most closely related papers to the present paper are

those that study transfers in the context of dynamic moral hazard models. In what follows,

these four groups of papers are discussed in more detail.

McGarry (1999) studies a one-parent, one-child model with pure altruism. As in our

model, she assumes that gifts are received early in the child’s life while bequests are received

later in life. In her model, gifts are progressive as measured across families, while bequests

may be equal or even regressive depending on parameters. However, this result does not

explain the puzzle in the data that concerns children within the same family. If one adds

a second child to McGarry’s model, bequests will provide full insurance within the family

because of altruism. This feature is also present in the model analyzed by Nishiyama (2002).

He builds a rich overlapping generations model with gifts and bequests to account for the

observed U.S. wealth distribution, but he does not analyze the distribution of gifts and

bequests among children within a family.
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Lundholm and Ohlsson (2000) build a model in which the parent is altruistic with respect

to her children’s consumption, but her utility is decreasing in the difference in bequests.

They argue that this structure could be a result of privately observed gifts and publicly

observed bequests, with the difference in bequests representing reputational concerns of the

parent. Their model delivers equal bequests but perfectly progressive gifts, which is not

quite in line with the data, in which gifts are only weakly progressive.

Bernheim and Severinov (2003) build a model of bequests with more structure with re-

spect to the costs of unequal division. In the model, parents love some children more than

others, and children care about how much their parents love them relative to their siblings.

Even parents who love their children unequally may divide bequests equally under some

parameterizations in order to avoid signaling their preferences. It is not clear whether gifts,

which Bernheim and Severinov do not model, can be successfully incorporated into their

framework. The authors suggest that if gifts were incorporated in their model, they would

be perfectly progressive, unlike in the data.

The present paper models classic altruistic parents and delivers the basic features of the

puzzle as a result of a standard moral hazard problem. Parents care about their children’s

utility with equal weight on each child. Tough love refers to the fact that in our model with

private information, parents would treat highly productive kids harshly if they pretended

to be less productive.2 This paper is not the first to consider the role of moral hazard in

intergenerational transfers. Our predecessors include Kotlikoff and Razin (1988), Chami

(1996), Cremer and Pestieau (2001), and Fernandes (2011). Their models are static models,

however, and therefore cannot explain differences between gift and bequest behavior, as we

do in this paper.

2For an alternative notion of tough love, see Bhatt and Ogaki (2012).
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Cremer and Pestieau (1996, 1998) build dynamic models with moral hazard, but their

models deliver the opposite of our results – equal gifts and progressive bequests. They

consider parents giving gifts to fund schooling and to relax credit constraints before children

start working. In this framework, gifts are optimally divided equally, because parents have

no information about their children’s earnings. Bequests are delivered later, when they are

less intrinsically useful, but can be conditioned on earnings information. Thus, they are

distributed progressively and in many cases only the low type receives a bequest. These

papers note the challenge of interpreting their results in light of the prevailing norm of equal

bequest division. Nishiyama and Smetters (2002) build a dynamic moral hazard model as

well, but in their model there is only one parent and one child. As a result, they do not

analyze the distribution of gifts and bequests among children within a family.

The forces in our model are in fact common to a wide range of dynamic insurance models.

Written recursively, these models imply that in the face of income or productivity uncer-

tainty, unlucky types receive a larger transfer today, balanced by a reduction in expected

future welfare (see, e.g., Thomas and Worrall, 1990). In other words, current transfers are

progressive and expected future welfare is regressive. In our model, expected future welfare

is determined by bequests and future productivity. For low levels of productivity persistence,

expected future productivity is similar across children, and bequests must be regressive to

generate regressive expected future welfare. For high productivity persistence, expected fu-

ture welfare is regressive even with progressive bequests (which are desirable as an insurance

device).

4. Model

This section sets up a model of intergenerational transfers and focuses on the basic forces

behind the main results. It shows that if labor productivities are private information of

the children, bequests are equal and gifts are weakly progressive for a particular level of
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productivity persistence. These forces are robust to a number of extensions considered in

this section as well as a version of the model used in the quantitative analysis in section 5.

This section considers the problem of a parent who distributes gifts and bequests that

depend on her children’s income to maximize the children’s welfare.3 This section character-

izes a stylized model of the parent’s choice with two types of children to highlight the basic

forces at work in the parent’s decision and cleanly derive analytical results. Most of these

results hold in a richer version of the model, which is compared to the data in section 5.

4.1. Children. A parent has a unit mass of children so that no child’s individual choice of

output affects the total family resources. The parent lives for one period, the children live

for two periods. Each child draws a productivity type zi ∈ {zL, zH} in each period and can

produce output from labor effort linearly, y = z`. Productivities are i.i.d. across children

and half of the children are of each type in both periods.

A child’s utility is additively separable in first- and second-period consumption and labor

effort, c1, `1(= y1/z1), c2, `2(= y2/z2): u(c1)− v(y1/z1) + E [u(c2)− v(y2/z2)], where u′ > 0,

u′′ < 0, u′(∞) = 0, u′(0) = ∞, v′ > 0, v′′ > 0, v′(0) = 0, v′(∞) = ∞. This section assumes

for simplicity that children do not save on their own. The model is extended to account for

children’s savings in section 4.5. As a result of having no savings, the child enters the second

period with bequest b and one can define his continuation utility as a function of the bequest

b and the first-period productivity z1: W (b, z1) := E [u(c2)− v(y2/z2)|z1].

We now characterize W . At the beginning of period two, the child realizes his second-

period productivity z2 and solves an autarky problem given z2 and bequest b:

W(b, z2) := max
c2,y2

u(c2)− v(y2/z2) s.t. c2 ≤ y2 + b.

3We adopt the convention of a female parent and male children for clarity.
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The probability of being the same productivity type in both periods is π ≥ .5, and the

probability of switching types is 1−π, and, therefore, W (b, zi) = πW(b, zi)+(1−π)W(b, zj).

W (b, z) is strictly increasing and strictly concave in b, and Wb(b, z) is strictly decreasing in

z for π > 1
2
, as shown in appendix D.1.4

4.2. Parent’s Problem. The parent’s moral hazard problem stems from private informa-

tion. We assume that the parent observes her children’s income, but she does not observe

their labor productivity (wage rate) and labor effort (labor hours).5 Parents in the real world

might have information about their children’s productivities and how many hours they work.

However, most of the time this information comes from the children themselves, as it does

in equilibrium in our model. In the model, parents design a schedule of gifts and bequests

so that children do not choose to lie about their productivity. The private information as-

sumption can be restated as saying that parents do not have additional information with

respect to their children’s productivity and labor hours.6

We proceed with the description of the timing in the model. At the beginning of the first

period, the parent has assets, A, to distribute among her children. The parent designs a

schedule of gifts and bequests as a function of her children’s first period income, g(y) and b(y),

to maximize the sum of their utilities. The parent is assumed to be able to commit to the

4Observe that the child does not derive utility from the bequest directly, but rather from the consumption
and leisure implied by the bequest. Similarly, when we define the parent problem below, the parent cares
about children’s utility from consumption and leisure and cares only indirectly about the bequest. Thus,
there is no joy-of-giving motive in our model.
5The available empirical evidence suggests that the private information friction might actually be even
stronger than what we assume in this paper. We find in the Health and Retirement Survey (HRS) that on
average one fourth to one half of parents are not able to place their children’s income into three broadly
defined income brackets (see appendix B for more detail). In a similar vein, Doepke and Tertilt (2015)
provide empirical evidence on imperfect information among couples.
6The main forces analyzed in detail here are also present in a more general version of our model in which
the parent receives a signal about her children’s productivities. This model is analyzed in appendix E. The
public and private information models analyzed below are two special cases of that general model.
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transfer schedule. This means that the parent cannot renege on her promises when the child-

types have been revealed. This is a common assumption in the dynamic insurance literature.

The parent dies at the end of the first period without observing second period productivities

and allocations. Given the transfers, children decide how much output to produce in the

first period. They then consume their first period output plus the gift they receive and carry

the bequest into the next period, in which they are on their own and solve the second period

problem defined above. Formally, the parent chooses functions g, b : <+ −→ < to solve:

max
g,b

∑
i∈{H,L}

1

2
[u(g(yi) + yi)− v(yi/zi) +W (b(yi), zi)] s.t.

1

2
[g(yH) + b(yH)] +

1

2
[g(yL) + b(yL)] ≤ A,

∀i : yi ∈ argmaxyu(g(y) + y)− v(y/zi) +W (b(y), zi).

By a version of the revelation principle,7 one can equivalently think of a parent picking

consumption, output, and bequests directly, as long as her children are willing to truthfully

report their types under this allocation. We focus on this equivalent problem because it can

be characterized more directly. For two possible child-types, the parent’s problem is:8

max
(ci,yi,bi)i∈{H,L}

∑
i∈{H,L}

1

2
[u(ci)− v(yi/zi) +W (bi, zi)] s.t.

∑
i∈{H,L}

1

2
(ci + bi) ≤

∑
i∈{H,L}

1

2
yi + A,(4.1)

∀i, j u(ci)− v(yi/zi) +W (bi, zi) ≥ u(cj)− v(yj/zi) +W (bj, zi).(4.2)

7The proof is standard and therefore omitted. See Fudenberg and Tirole (1991, p. 253).
8For simplicity, we omit the time superscripts: ci, yi, zi correspond to first-period allocations and productivity.
Second period allocations are implied by the bequest and the shock realization as discussed above.
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This model is similar, but not equivalent to the standard two-period Mirrlees model. In

our model (unlike in the Mirrlees model) the parent does not directly choose children’s

consumption and labor effort/income in the second period. The parent only chooses bequests.

As a result, the parent cannot distort children’s second period consumption-labor choices.

4.3. Public Information. Before characterizing the solution to the parent’s problem above,

it is helpful to consider the solution to this problem with public information (i.e., without

the incentive constraints (4.2)) as a benchmark. In this version of the model, the parent

observes first period productivities when handing out gifts and bequests. The parent still

does not observe the second period productivities, because she dies before they are realized.

It is straightforward to show that the solution to the public information problem has the

following properties: (i) cH = cL, (ii) yH > yL, (iii) gL > gH since gi := ci − yi, (iv) bL > bH

if π > .5.

The first three results highlight the fact that with altruistic preferences, gifts completely

offset differences in income (full insurance). The last result follows from the fact that the

parent provides full insurance with respect to bequests as well by equalizing the marginal

utilities of bequests (i.e., Wb(bL, zL) = Wb(bH , zH)). Since second-period low-productivity

types benefit more from bequests, productivity persistence implies more bequests to currently

low-productive children. Therefore, the public information model is not able to qualitatively

account for the equal bequests and weakly progressive gifts observed in the data.

4.4. Private Information. Only the incentive constraint preventing the high type from

pretending to be the low type binds at the solution to the parent’s problem.9 At the optimum,

the parent is doing just enough to keep the productive kid from slacking off. The first order

conditions yield u′(cH) = λ
1+µ

< λ
1−µ = u′(cL), hence cH > cL, where λ is the Lagrange

multiplier on the budget constraint (4.1) and µ
2

is the Lagrange multiplier on the high type’s

9This is a standard result. See appendix D.5 for the proof.
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incentive constraint. µ represents the intensity with which the incentive constraint binds, a

measure of the need to provide incentives. This imperative prevents full insurance with gifts

in our model for any level of productivity persistence.

The next proposition presents the main result of this section. It shows that there is a

level of productivity persistence for which the pattern of gifts and bequests in the model is

qualitatively in line with the data. Gifts are progressive (but weakly, since cL < cH as shown

above) and bequests are equal.

Proposition 4.1. Suppose u has nonincreasing absolute risk aversion, v has constant abso-

lute risk aversion or constant relative risk aversion, and zL is in the neighborhood of zero.

Then there exists a level of persistence π∗ ∈ (.5, 1) under which gL > gH and bL = bH .

Discussion of proposition 4.1. In our model, gifts are received early in children’s life,

whereas bequests are received later in life. Children face significant uncertainty about their

future productivity, which the parent can take advantage of. Productive children will be

relatively more concerned about the size of their bequest, because they may be less productive

in the future. This reasoning is reflected in our finding that gH < bH for any level of

persistence π ∈ (.5, 1) (see the proof of lemma D.4 in appendix D.3 and figure 1 for a

numerical example illustrating this result). Less productive children will be more concerned

about the size of their gift, since they may become more productive in the future. Therefore,

the parent can make the best use of her assets by giving relatively more to her poor children

through gifts and relatively more to her rich children through bequests.

Proposition 4.1 highlights the importance of the uncertainty of the child’s future produc-

tivity in our model. When there is no productivity persistence, π = .5, each type has the

same chance of being a high or low type in the following period, and therefore both types

feel the same way about bequests for tomorrow. We saw earlier that, since both types get

the same utility from consumption, consumption is unevenly distributed. In a similar vein,
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Figure 1. Persistence and the Distribution and Gifts and Bequests
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with π = .5, both children get the same expected utility from bequests, so the parents use

bequests to help provide incentives. They give more to the richer child but ask him to

produce more in the first period.

When persistence is perfect, π = 1, both types know that they will be the same type next

period as they are today. In this case, both types care as much about tomorrow as today.

Incentives are not concentrated in either period, and therefore both gifts and bequests are

progressive. For intermediate levels of persistence, both effects are at work and bequests are

about equal, and for some level they are exactly equal.

We prove this result for u with nonincreasing absolute risk aversion (NIARA), v with

constant absolute risk aversion (CARA) or constant relative risk aversion (CRRA), and zL

in the neighborhood of zero. Numerically, it appears to be true for a much broader class of

utility functions, including nonseparable ones and any zL < zH . In the rest of this section,

we state and provide intuition for a sequence of lemmas in service of the proposition above.
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Figure 1 is a typical graph of each type’s gifts and bequests, as a function of π for a

particular set of parameters (u(c) = c1−σ/(1 − σ) with σ = 2 and v(l) = `1+γ/(1 + γ) with

γ = 2, zH = 2, zL = 1, A = 1). These figures help illustrate the results proved in the

lemmas below. Bequests to the high type are smaller than for the low type at π = 1, and

larger at π = .5, but never enough to offset the gap in gifts, thus, total transfers are larger

for the low type. In between the extremes the policy functions change smoothly, and for an

intermediate value of π bequests are equal.

Lemma 4.2. Total transfers are progressive: gL + bL > gH + bH .

Proof: See appendix D.2. This result is a reflection of the parent’s insurance motive.

Incentive problems constrain but do not reverse this motive. �

Lemma 4.3. Under no persistence, π = .5, bequests are regressive, bL < bH .

Proof: No persistence implies that the expected value of bequests is independent of to-

day’s type, W (b, zL) = W (b, zH) = W (b). Thus, one can use the same arguments as for

consumption. The first order conditions yield Wb(bH) = λ
1+µ

< λ
1−µ = Wb(bL), which implies

bH > bL. �

The right panel of figure 1 illustrates this result in our numerical example. A related result

holds in benchmark dynamic insurance problems; see, e.g., Thomas and Worrall (1990). In

their model, unlucky types receive a larger transfer today, balanced by a reduction in future

welfare. These forces yield similar results in our model. If there is no income persistence

in our model, less productive children receive more in gifts, gL > gH and future welfare

is determined by bequests only. Therefore, a reduction in future welfare corresponds to a

smaller bequest, bL < bH .

Lemma 4.4. Under perfect persistence, π = 1, and for zL in the neighborhood of zero,

bequests are progressive, bL > bH .
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Proof: Suppose the low type is disabled (i.e., zL = 0). Then he consumes only what he

is given, so that c1
L = gL, c2

L = bL. Since π = 1, W (b, zi) = W(b, zi), and Wb(bL, zH) <

Wb(bL, zL) as established in appendix D.1, we have the following result where superscripts

refer to periods:

u′(c1
L) =

λ

1− µ
>

λ

1− µWb(bL,zH)
Wb(bL,zL)

= Wb(bL, zL) = u′(c2
L).

So c1
L < c2

L, which implies gL < bL. The assumption that zL = 0 implies that c1
L = gL and

c2
L = bL which make it possible to characterize gL and bL using the first order conditions on

consumption. If zL > 0, one can show that y1
L < y2

L (see the proof of lemma D.7), making

c1
L − y1

L = gL difficult to compare to c2
L − y2

L = bL (since c1
L < c2

L).

The high type’s first order conditions are undistorted, he smooths consumption and output,

c1
H = c2

H , y1
H = y2

H , so gH = bH . Lemma 4.2 implies 2bH = gH + bH < gL + bL < 2bL, which

proves the lemma. Continuity of policies in zL (lemma 4.5) guarantees that this will be true

in the neighborhood of zL = 0. �

In a large number of numerical simulations, we always find this neighborhood to be [0, zH).

At perfect persistence, whenever zL < zH , the low type receives a larger bequest than the high

type in all simulations we have run, encompassing a variety of utility functions (including

nonseparable ones) and parameter values. Figure 1 illustrates that, with perfect persistence,

bL > bH in the numerical example in which zH = 2 and zL = 1. The forces driving this

result are also present in simpler models. Imagine a version of the model in which the parent

is alive in both periods. With perfect persistence, the two periods are symmetric and the

static solution to the problem applies: transfers are larger to the low productivity type in

both periods. These considerations suggest that the lemma is satisfied more generally.

Lemma 4.5. Policy functions are continuous in π and zL if u has NIARA and v has CARA

or CRRA.
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Proof: See appendix D.4. The maximum theorem guarantees upper hemi-continuity. We

use the assumptions on the utility functions to show that policies are single valued every-

where. One can relax the assumptions on v, and simply assume that it has nondecreasing

relative risk aversion (NDRRA) if one also assumes that W has NIARA. The stronger as-

sumptions on v are sufficient to show that W has NIARA. �

Proof of proposition 4.1. Combining the above results implies that bH − bL > 0 for π = .5

and bH − bL < 0 for π = 1. Since policy functions are continuous in π, there exists a π∗ such

that bH − bL = 0 by the intermediate value theorem. Lemma 4.2 then implies that gifts are

progressive. This finishes the proof of the proposition. �

We have shown that our model can qualitatively explain a pattern of transfers in which gifts

partially offset income differences but bequests are divided evenly, seemingly providing no

insurance. This model delivers the stylized facts of the equal division puzzle with a standard

altruistic parent facing a common moral hazard problem, one that recognizes concerns about

providing the wrong incentives that real parents face.10 The timing of the two types of

transfers in this relatively standard parent’s problem generates significant differences in the

way gifts and bequests are distributed.

4.5. Extensions. The simple two-period, two-type, many-child model of the previous sec-

tion highlights the basic forces driving apart gifting and bequesting behavior with a minimum

of distractions. This section serves two purposes. First, it shows that the main results are

robust to several extensions, which add realism to our model. Second, it presents the version

of the model, which will be evaluated quantitatively in section 5.

Two-Child Model. To begin, we extend the model with the features which will be used in

the quantitative evaluation in section 5. We extend the model to consider two-child families,

10In appendix E we extend this discussion to a version of the model in which parents receive a signal about
their children’s productivity. We find that the conclusions of this section are robust to adding signals.
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which vary by parents’ assets, parents’ productivity, and children’s productivity. This section

considers the qualitative implications of these changes.

The parent has two children, indexed by 1 and 2. The state of the family (ij) defines

productivity levels for the first child, zi, and the second child, zj. The parent also cares

about her own utility from consumption and labor effort. The parent’s productivity level

is zp, which is public information, her allocations are indexed by p, and she discounts the

welfare of her children by η. Both children are weighted equally. They discount the future

by β and the interest rate is R. A child’s productivity is known neither by the parent nor

by the other child. A version of the revelation principle can be proved for this environment

as well. Therefore, we will consider a problem in which the parent assigns allocations as

functions of the children’s type. The full parent’s problem is

V (A, zp) = maxE

{
u(cp(ij))− v(

yp(ij)

zp
) + η

[
u(c1(ij))− v(

y1(ij)

zi
) + βW (b1(ij), zi) +

+ u(c2(ij))− v(
y2(ij)

zj
) + βW (b2(ij), zj)

]∣∣∣∣zp} s.t.

∀i, j : c1(ij) + c2(ij) + cp(ij) +
b1(ij)

R
+
b2(ij)

R
≤ y1(ij) + y2(ij) + yp(ij) +A,

∀i, k : E
{
u(c1(ij))− v(

y1(ij)

zi
) + βW (b1(ij), zi)

∣∣zp, zi} ≥ E{u(c1(kj))− v(
y1(kj)

zi
) + βW (b1(kj), zi)

∣∣zp, zi},
∀j, k : E

{
u(c2(ij))− v(

y2(ij)

zj
) + βW (b2(ij), zj)

∣∣zp, zj} ≥ E{u(c2(ik))− v(
y2(ik)

zj
) + βW (b2(ik), zj)

∣∣zp, zj}.
Family-Level Heterogeneity. In the simple version of the model, parents vary by their

asset level A. This version of the model adds two other sources of variation in family-wide

resources. Parents have their own productivity zp, and there are only two children in the

family. These additions introduce heterogeneity across families in family-wide resources and

uncertainty in children’s incentive constraints. One can show that a version of proposition

4.1 still holds with two child-types. Parents with two high-type children or two low-type



19

Figure 2. Variation in Parent’s Asset Level A and Equal Bequests
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children will necessarily divide bequests evenly between these “identical twins,” and there is

a π such that parents with one child of each type divide bequests evenly.

With family heterogeneity this π may be family-specific. In figure 2, we simulate parent’s

bequests as in figure 1 for two different wealth levels. Richer parents are more generous,

the children work less, and the incentive constraint does not bind as tightly. Thus, the π at

which the insurance and incentive motives offset each other and bequests are equal is lower.

In the quantitative section, we consider a large number of family types; hence, there will be

no common level of persistence that sets bequests exactly equal within all families. There

is, however, a range of persistence values for which most bequests will be close to equal.

More Than Two Productivity Types. Extending the model to more than two productivity

types makes computations more difficult but does not change our basic quantitative findings.

More child-types means more types of families, which contributes to the issue discussed

above. It also implies that the number of incentive constraints increases to n(n − 1) for n
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types. Numerically, we find that only the n− 1 local downward constraints bind. It can be

proven that this is the pattern of binding constraints in simpler insurance models (Thomas

and Worrall, 1990), but we have not proven this result in our environment, so we cannot

analytically establish the other results from our simple model.

Observed Child Savings. For simplicity, savings are excluded from the model presented

in this section. Savings are, however, an important feature in the data, so we do account

for them quantitatively in section 5. We assume that savings yield the same return R as

bequests. With respect to timing, we assume that after production, children set aside savings

s. The parent then hands out gifts and bequests as a function of both income and savings

(i.e., ĝ(y, s) and b̂(y, s)), rather than just income (i.e., g(y), b(y)), as in the benchmark model.

Bequests and savings are perfect substitutes in this model. If children save, the parent can

achieve identical consumption-labor allocations, as in the model without savings. The parent

simply offsets the savings of the children with the appropriate transfer scheme: ĝ(y, s) =

g(y) + s
R
, b̂(y, s) = b(y) − s. This transfer scheme leaves the children indifferent between

saving and waiting for the bequest. In other words, from the children’s perspective the

optimal level of savings is indeterminate. To pin down the level of child savings in the

quantitative exercises of section 5, we assume a savings level consistent with the data.

Unobserved Child Savings. In our model, parents observe the income and consumption

of their children; thus, any child who tried to save secretly would be caught by a parent

who calculates savings s as the difference between income y and consumption c: s = y − c.

For savings to be unobserved, either consumption or income must be unobserved. If parents

cannot observe their children’s consumption and only local downward constraints bind (as

in all versions of our model that we solve numerically), then the child’s Euler equation is

u′(ct) ≥ Wb(b, z) = βRE{u′(ct+1)} with a strict inequality for all but the highest type.

This means that children would like to deviate from the allocation offered by the parent by
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borrowing in the first period. If children were borrowing constrained, they would not deviate.

Hence, the optimal allocation of our model is also optimal in a model with unobserved

savings, unobserved consumption and borrowing constraints. Unobserved income has just

the opposite effect on savings. The intertemporal first order condition in terms of labor is

v′(yt/zt) ≤ Wb(b, z) = βRE{v′(yt+1/zt+1)}. At the solution to our model, children would

prefer to work more in the first period and save. As a consequence, our model is not robust

to making income unobserved in the presence of unobserved saving.

5. Quantitative Analysis

Section 4 shows that the opportunity to provide incentives dynamically (rather than just

statically) offsets parents’ desire to compensate low-income children through bequests. Par-

ents distribute bequests equally across children in a model with two productivity types

and a particular level of productivity persistence. This section pins down the productivity

persistence with U.S. data and quantitatively analyzes the extended version of the model

described in detail in section 4.5. The quantitative analysis highlights the role of incentives

by comparing the private information model with its public information counterpart. To our

knowledge, this is the first paper to evaluate a model addressing the equal division puzzle

quantitatively.

5.1. Parameterizing the Model. To compare the performance of the model to the data, as

many statistics as possible are recovered directly from the Panel Study of Income Dynamics

(PSID). The details of the data work with PSID are contained in appendix A. The statistics

that are not available in PSID are collected from other sources in the literature.

Model Timing. To map the two-period model to the data, we begin by determining ages

representing periods one and two, which are distinguished in the model by the receipt of a

bequest. In the PSID, the average age of the household head when the household receives
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Table 1. Age of Household Head When Receiving a Bequest

Age <25 25-30 30-35 35-40 40-45 45-50 50-55 55-60 60-65 65-70 70-75 >75

Number 59 99 156 141 172 214 173 156 167 113 68 105
Fraction 3.6% 6.1% 9.6% 8.7% 10.6% 13.2% 10.7% 9.6% 10.3% 7.0% 4.2% 6.5%

Cum. Fraction 3.6% 9.7% 19.3% 28.0% 38.6% 51.8% 62.5% 72.1% 82.4% 89.3% 93.5% 100.0%

This table reports the number and percentage of people in the PSID who receive a bequest in a given age bracket between
1988 and 2013.

a bequest has been rising from 47 in 1988 (from this year onwards bequests are consistently

reported) to 53 in 2013, with 50 being approximately the average over the years. The average

median age over the years is also close to 50.11

We also look more closely at the distribution of household head’s ages when the household

receives a bequest (for the combined period 1988 - 2013). These results are summarized in

table 1 and indicate that age 50 is a good approximation of the average age of the household

head when the household receives a bequest. Therefore, we assume that period 1 in the

model corresponds to children’s ages 25-50 (at age 25 the majority of people have completed

their education) and period 2 corresponds to ages 50-75 (according to the World Bank Open

Data database, 75 years is a good approximation of the average age at which people in the

United States die over the PSID sample period). Consistently, parents in period 1 of the

model are interpreted as people between ages 50-75. These assumptions will be important

for the estimation of the productivity process.

Utility Function Parameters. The utility functions take the following forms: u(c) = c1−σ

1−σ

and v(`) = φ `
1+γ

1+γ
for both parents and children. Both functions are CRRA and satisfy the

assumptions of the proofs in the appendix. In the benchmark model σ = γ = 1.12 Labor

effort in the model is interpreted as labor hours in the data. Total hours are normalized to

11PSID reports only the receipt of a bequest by a household and the size of the bequest. We report the age
of the household head at the time of any bequest receipt. Restricting the sample to first bequest receipts
only or using the ages of wives would reduce this number by 3 to 5 years.
12Both values imply a constant relative risk aversion of 1, neutral in the sense of unit wage and price
elasticities. σ = 1 also implies that the preferences are consistent with balanced growth and falls inside the
range used in finance and macro literatures. γ = 1 implies a Frisch elasticity of labor supply also within the
range considered in the literature.
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Table 2. Internally Calibrated Parameters

Parameter Symbol Value Target Data & Model Source

Disutility of labor φ 6.80 Labor supply 1/3
Parents’ altruism η 0.99 Average gift 0.65% PSID
Discount factor β 0.9525 Average bequest 2.22% PSID

This table reports the benchmark calibration procedure. Average gift and average bequest

in the data are defined relative to total household labor earnings.

1 and the labor disutility parameter φ is calibrated so that labor supply in the first period is

one-third on average. The annual interest rate is set to 4% and the discount rate β and the

altruism parameter η are calibrated so that the model replicates the average size of bequests

and gifts in the data. The average size of bequests between 1988 and 2013 is 2.22% relative

to average household labor earnings. The average size of gifts between 1985 - 2013 is 0.65%

relative to average labor earnings. The calibration procedure is summarized in Table 2. The

rest of the parameters are set outside the model.

Productivity Process. Labor productivity in the model z1 is interpreted as hourly wages in

the data averaged over ages 25-50 and labor productivities z2 and zp as average hourly wages

between ages 50-75. The joint distribution of parents’ initial assetsA and wages/productivities

zP is assumed to follow:

(log zP , logA) ∼ N2

µp
µA

 ,

 σ2
p corr(A, zp) · σpσA

corr(A, zp) · σpσA σ2
A

 .(5.1)

Children’s wages/productivities in the first period, z1, and in the second period, z2, evolve

according to:

log z1 = µ1 + ρ1 (log zp − µp) + ε1, ε1 ∼ N (0, σ2
1),(5.2)

log z2 = µ2 + ρ2 (log z1 − µ1) + ε2, ε2 ∼ N (0, σ2
2).(5.3)
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To completely define the asset distribution and wage/productivity processes in equations

(5.1) – (5.3), eleven parameters need to be specified: µA, µp, σ
2
A, σ2

p, corr(A, zp), µ1, ρ1, σ2
1,

µ2, ρ2, σ2
2. These parameters are estimated using the PSID.

The PSID’s principle virtue is its length – it has been tracking participants since 1968 – a

critical feature for estimating the parameters in equations (5.1) – (5.3) directly.13 The long

run persistence of income over one’s lifetime, ρ2, defined in equation (5.3) is central to our

model. A direct estimation of equation (5.3) would mean calculating average wages from

the age of 50 to 75 (z2 in equation (5.3)) and regressing them on average wages from 25 to

50 (z1 in equation (5.3)). This would require a 50-year panel, still beyond the current reach

of the PSID (38 waves are available over a 45-year period from 1968 to 2013). Even with

four additional years of data (and the years missing since 1997 when PSID became biennial),

a simple estimate would rely exclusively on the cohort that was 25 years old in the 1968

sample and continued reporting through 2017, a small sample. To overcome these issues,

equation (5.3) is estimated for less demanding time spans as follows.

We first interpolate wages for the missing years between 1997 and 2013 (taking averages

of the adjacent years). Then, PSID participants for whom there are k consecutive wage

observations between ages 25 and 50 and k consecutive wage observations exactly 25 years

later are selected. Their average real wages z1 and z2 are then calculated over these periods

of length k years. Finally, regression equation (5.3) is estimated using these measures of z1

and z2.14

The estimate of ρ2 varies with k. For small k’s, the number of observations is large, but

the estimates of average wages when young and when old are imprecise. When k is large,

the estimates of average wages are more precise, but the number of available observations

13The PSID does not, however, provide transfer data in which the source parent and recipient child can be
uniquely identified. Thus the model outcomes must be compared to other results from the literature.
14If a person is included in the estimation multiple times, then these observations are weighted by the inverse
of the number of these observations.
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Table 3. Benchmark Parameters Estimated From PSID

Parameter Symbol Value
Average asset level exp(µA) $75,000
Standard deviation of logged asset holdings σA 1.6
Asset-productivity correlation corr(A, zp) 0.65
Average parent’s hourly wage exp(µp) $7.54
Standard deviation of parents’ wages σp 0.78
Intergenerational wage persistence ρ1 0.25
Intergenerational wage volatility σ1 0.47
Average child’s hourly wage when young exp(µ1) $10.92
Average child’s hourly wage when old exp(µ2) $9.18
Intertemporal wage persistence ρ2 0.78
Intertemporal wage volatility σ2 0.88

declines. In the benchmark, an intermediate k = 12 is used. This is the maximum k for

which there are at least 500 people in the PSID for whom one can calculate the average

wages z1 and z2 using the procedure described above. For this value of k, ρ2 = 0.78. We use

this number as a benchmark and analyze the sensitivity of our results to this number. We

also recover the estimates of µ1 = 2.39, µ2 = 2.22 and σ2 = 0.88.15

The details of the estimations of the remaining parameters of the asset distribution and

the wage/productivity process are presented in appendix A. Table 3 summarizes these

parameters which will be used as inputs to the model.16

Child Savings. Recall from section 4.5 that bequests and savings are perfect substitutes

from the perspective of the parents; both transfer money from period 1 to period 2 with the

15The labor literature typically estimates versions of equation (5.3) using residuals from a Mincerian wage
regression in which wages are first regressed on observables (see, e.g., Heathcote, Storesletten, and Violante
(2010)). We chose to work with wages directly, because this is what appears in the model. Nevertheless, we
also check the sensitivity of our estimates to including standard observables (year, age, education) in equation
(5.3). We find that ρ2 decreases by approximately 0.1 (again, this number varies with k). The decline is
intuitive, since part of the persistence in wages is a result of observable characteristics. The estimates of σ2

2

decrease by about 0.05, which is also intuitive. As shown in the quantitative analysis, using a smaller value
for the persistence parameter ρ2 brings the model even closer to matching the data. On the other hand,
changes in the volatility parameter σ2 do not affect the main results.
16To solve the model numerically, we discretize the continuous wealth-wage distributions specified in equa-
tions (5.1) - (5.3). In the benchmark simulations, we use 5 states for assets and 5 skill types for the parents,
thus having a grid of 25 points. The distance on either axis is the same measured in probability of the
unconditional distributions. For each zP we have a grid of 5 values of z1 and 5 values of z2 with equal
distance in conditional probabilities z1|zP and z2|zP . Thus, we have 25 grid points for both z1 and z2.
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same interest rate. The bequests that will be compared to the data are defined as the simple

model (no savings) bequests b minus savings s pinned down by the data b̂ = b−s. Gifts that

will be compared to the data are consequently ĝ = g + s
R

. In our specification, the parent

simply takes children’s savings as a function of children’s income as given, and adjusts her

transfer schedule accordingly.

Children’s savings s as a function of income y are approximated by estimating the following

regression for people at the age of 50, using all the waves of PSID that report household

wealth (i.e., the eight waves between 1999 and 2013): log si = α + β log yi + εi. In this

regression equation, savings si is household wealth at the household head’s 50th year of age

(which is the result of past savings accumulated until the age of 50) and yi are total household

labor earnings between ages 25-50 as defined in appendix A. Total household earnings yi thus

correspond to the sum of 25 years of labor earnings. As expected, savings/wealth is increasing

in earnings: log si = −9.86 + 1.55 log yi. Given these savings/wealth, the parent then hands

out an adjusted bequest and gift b̂(y, s(y)) = b(y) − s(y) and ĝ(y, s(y)) = g(y) + s(y)
R

,

respectively (recall that in the original model, bequests and gifts are functions of income y

only).

5.2. Benchmark Quantitative Results. This section evaluates the performance of the

quantitative model by constructing several uncalibrated statistics for gifts and bequests

and comparing them with the data. Table 4 reports the statistics of interest under the

benchmark parameterization. To highlight the role of dynamic incentives, the table also

includes statistics from a model with public information (i.e. without incentive constraints)

but otherwise identical in structure. The utility parameters φ, η and the discount rate β

are recalibrated so that the public information model matches the same targets as in the

private information model: average labor supply equals 1/3, average bequest equals 2.22%

and average gift equals 0.65% relative to average labor earnings.
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Table 4. Model Statistics for Benchmark Parameters

Data Private info Public info
βby 0 -0.0367 -0.1419
βgy −0.02 -0.4537 -0.9438

Bequests within 2% of mean 77% 20.00% 20.00%
Bequests within 25% of mean 88% 55.87% 22.74%

Equal gifts 9% 20.00% 20.00%
Gifts within 20% of mean 11% 24.89% 20.85%

κb 0.09% 1.94%

Progressivity of Gifts and Bequests. To compare the progressivity of gifts and bequests we

run the following regressions on the within-family model-data:

b̂1 − b̂2 = βby(y
1 − y2), ĝ1 − ĝ2 = βgy(y

1 − y2).

Here, b̂i, ĝi, and yi are the bequests, gifts, and income of child i, and therefore, b̂1 − b̂2, ĝ1 −

ĝ2, y1 − y2 are within-family differences. Using HRS data, Hochguertel and Ohlsson (2009)

estimate βgy to be equal to −0.02 and significantly different from 0. As for bequests, Wilhelm

(1996) runs the same regression using only families in which bequests are divided unequally

(which is a small fraction of all families), and he finds that even with this sample, the

coefficient is not significantly different from 0. In the other families, bequests are equal

across children even if income is not, implying that βby = 0 in this subsample.

In our benchmark private information model, differences in bequests are nearly indepen-

dent of the differences in income, as in the data. The point estimate of βby in our benchmark

model implies slightly progressive bequests: a $1.00 difference in income is compensated by a

$0.0367 difference in bequests. Bequests are much more progressive with public information.

Gifts are more progressive than bequests in the benchmark private information model: an

extra $1.00 difference in income between children is compensated by $0.4537 in gifts. Gifts

are more progressive than in the data, but much less than with public information. As for
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the progressivity of transfers, the private information model thus fits the data better than

the public information model.

These regression coefficients would be closer to zero if we added measurement error in

income when calculating the model implied regression coefficients. Measurement error is

present in the data; see, for instance, the discussion in Wilhelm (1996), on whose estimates

we rely for the bequest coefficient. In this sense, our results can be regarded as conservative,

since adding measurement error would bring the model implied coefficients closer to the data.

Dispersion of Gifts and Bequests. Recall that the model is calibrated so that the average

bequest and gift relative to income match the data. This section discusses how the model

performs with respect to bequest and gift dispersion which was not a calibration target. In

the model, bequests will be exactly equal only in families in which both children are of exactly

the same productivity type. We therefore also look at a broader measure of dispersion in

bequests: the percentage of children who receive bequests within 2% (almost equal) and

within 25% (approximately equal) of the mean bequest for their family. Wilhelm (1996)

reports these numbers to be 77% for the 2% threshold and 88% for the 25% threshold. We

do not have the exact counterpart of these measures for gifts in the data, but Hochguertel

and Ohlsson (2009) report that conditional on giving a gift, 9% of parents give exactly equal

gifts and 11% gifts that are within 20% of the intra-family mean.

As table 4 shows, the private information model accounts, to some extent, for the small

within-family dispersion in bequests that we observe in the data. The public information

model, in contrast, generates a much larger within-family dispersion of bequests than in the

data. Gifts are more dispersed in the data than in both the private and the public information

model (note that children are identical and are given the same allocation trivially in 20% of

the families). In fact, the public information model is slightly closer to matching the data

in this statistic.
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Welfare Loss of Equal Division. To assess whether equal bequests can be explained as a

simple rule of thumb, we compute the welfare loss associated with equal division. For a given

parent with asset level A and productivity level zP , we calculate V (A, zP ), the value at the

solution to her problem defined in section 4.5. This parent does not face any restrictions with

respect to how she divides her gifts and bequests. We then compute V=(A, zP ), the value

at the solution to the same problem with the added constraint b1(ij) = b2(ij) in all states

ij. This is the utility of a parent who must divide bequests equally among her two children.

We then measure the welfare loss of equal division as the difference V (A, zP ) − V=(A, zP )

measured as a fraction of parents’ consumption (holding other allocations fixed) and denote it

as κb(A, zP ). This number expresses how much consumption a parent who is forced to divide

bequests equally is willing to sacrifice in order to be allowed to divide bequests unequally.

It also measures the minimal costs of unequal division that would be needed to make the

parent divide her bequests equally.

The average welfare loss of equal bequest division is equivalent to the loss of 0.09% of

parents’ consumption in the benchmark private information model.17 This number is small

and suggests that parents would be almost as happy to divide bequests equally. The welfare

loss is much higher under public information, equivalent to 1.94% of the parents’ consump-

tion. This value is more than 20 times higher than in the private information model. These

results show that a norm of equal division is nearly optimal in our benchmark model and

that this result is generated by the dynamic incentive problem of the parent.18

17We also investigate the welfare loss if gifts, not bequests, were constrained to be equal across children
in the private information model. The welfare loss in this case is significantly larger in terms of parents’
income, at 5.47%. Parents want to front-load the insurance aspect of their transfers; thus, it is much more
costly to constrain this type of transfer to be equal.
18Alternatively, one can think of equal division arising because of the costs of unequal division. This idea has
been widely considered in the literature. For instance, Wilhelm (1996) argues that parents may be concerned
that unequal division would cause strife in the family. Unequal bequests are more easily challenged, implying
legal costs as well. The cost of unequal division that would be necessary to justify equal division is equivalent
to the welfare loss of equal division discussed above. Our private information model thus provides a much
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Table 5. Role of Wage Persistence ρ2 in the Private Information Model

Data Benchmark
ρ2 = 0.9 · 0.78 ρ2 = 0.78 ρ2 = 1.1 · 0.78

βby 0 -0.0240 -0.0367 -0.0497
βgy -0.02 -0.4819 -0.4537 -0.4593

Bequests within 2% of mean 77% 25.94% 20.00% 20.00%
Bequests within 25% of mean 88% 66.30% 55.87% 44.21%

Equal gifts 9% 20.00% 20.00% 20.00%
Gifts within 20% of mean 11% 24.05% 24.89% 24.89%

Role of Wage Persistence. The life time wage persistence ρ2 is important for the relative

size of gifts and bequests, as shown theoretically in section 4.4. Table 5 documents how the

pattern of intergenerational transfers in the benchmark private information model changes if

the value of the wage persistence parameter ρ2 is lower and higher by 10%, respectively. As

discussed in section 4.4, lower persistence implies less progressive bequests (i.e., a larger βby).

Lower persistence also implies less dispersed bequests. Importantly, for a large set of values

of ρ2, βby is relatively close to 0 (much closer to 0 than βgy). The other model statistics are

not affected much. We conclude that the model performs quite well for a range of ρ2.19

5.3. Extensions. In the benchmark private information model, bequests are neither very

progressive nor very regressive, while gifts are progressive, as in the data. In addition,

bequests are approximately equal in a large number of families. This section considers two

extensions to the benchmark model and analyzes to what extent the main quantitative results

are affected.

Nonnegative Bequests. Negative bequests are allowed in the benchmark model to focus on

the basic forces, insurance and incentives, at work in the model. However, most countries

do not allow parents to pass debt on to their children. To evaluate the sensitivity of the

lower threshold for these costs to matter as explanatory factors than does the public information (pure
altruism) model.
19Appendix C reports the sensitivity of our results to the volatility of the life time wage process, σ2. We
find that our results are robust to this parameter as well as other parameters of the asset-wage specification
(not reported). Appendix C also reports sensitivity results to utility parameters σ and γ.
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Table 6. Restricting b ≥ 0 in the Private Information Model

Data Without b ≥ 0 With b ≥ 0
βby 0 -0.0367 -0.0201
βgy −0.02 -0.4537 -0.4739

Bequests within 2% of mean 77% 20.00% 33.07%
Bequests within 25% of mean 88% 55.87% 63.00%

Equal gifts 9% 20.00% 20.00%
Gifts within 20% of mean 11% 24.89% 24.89%

main results to this type of restriction, we add a constraint that bequests be weakly positive

to the benchmark model (recalibrating φ, η and β). Table 6 summarizes the results of this

extension. The number of approximately equal bequests and the regression coefficient βby

are both larger than in the benchmark, bringing the model closer to the data. On the other

hand, the gift statistics are virtually unchanged under this specification.

Children with a Bequest Motive. In the benchmark model, time ends at the end of the

second period when children die. This section considers a simple extension in which the

children themselves give a bequest (to their own children, who are not modelled explicitly)

and analyzes to what extent the structure of intergenerational transfers is affected. The

utility children derive from bequest b′ is assumed to be: β · u(b′ + ξ), where ξ controls

the degree of non-homotheticity (the extent to which transfers are a luxury good). This

specification is a special case of a more general specification used in DeNardi (2004). ξ is

calibrated so that the average b′ is the same fraction of the children’s second-period income as

the bequest they receive relative to their own parents’ income in the first period.20 φ, η and

β are calibrated to match the same targets as in the benchmark. The results are reported

in Table 7.

As the table shows, this extension brings the model closer to the data as well. Bequests

are almost unrelated to income and the dispersion of bequests is also smaller relative to the

20The results are very similar if one instead requires that the average b′ relative to second period income
matches the average b+ g relative to parents’ income.



32

Table 7. Children With a Bequest Motive

Data Benchmark Bequest motive
βby 0 -0.0367 0.0002
βgy −0.02 -0.4537 -0.5042

Bequests within 2% of mean 77% 20.00% 37.72%
Bequests within 25% of mean 88% 55.87% 91.13%

Equal gifts 9% 20.00% 20.00%
Gifts within 20% of mean 11% 24.89% 24.05%

benchmark model. Gifts, on the other hand, are more progressive. In this version of the

model, high income children care even more about the bequest than in the benchmark. The

parent takes advantage of this fact and uses bequests even more to provide incentives.

6. Conclusion

In the data, bequests are typically equally divided, but gifts partially compensate for

differences in child income within a family. This paper shows that the difference between

gifts and bequests can arise as a result of a moral hazard problem because of the way that

the timing of gifts and bequests affects children’s incentives. We first build a stylized model

with two productivity types and no interfamily heterogeneity. In this model, there is a level

of productivity persistence for which bequests are equal and gifts are weakly compensatory,

as in the data. The forces behind this result are common in dynamic insurance models.

In these models, a payout today comes at the cost of reduced future help. In our model,

compensatory gifts are accompanied by less compensatory (equal) bequests.

We then build a richer model with interfamily heterogeneity and evaluate the model quan-

titatively, a novelty in the literature. In this model, no simple two-parameter productivity

process common to all households makes bequests equal within all families. However, be-

quests are nearly uncorrelated with income and approximately equal in many families, which

is consistent with the data. Gifts, in contrast, are weakly progressive. Both bequests and

gifts are more progressive and bequests are more dispersed in the public information version
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of the model. Adding the private information component thus significantly helps to bring the

pattern of intergenerational transfers closer to the data. Finally, the welfare loss of moving

from the optimal policy to a policy of equal division is small in our model, but substantial

(20 times larger) in its public information counterpart. Equal division of bequests is a nearly

optimal policy in our model, possibly explaining its prevalence in the data.

The data on intergenerational transfer behavior pose a serious puzzle for which no con-

sensus solution has arisen. Since this behavior is at the center of long-run intertemporal

economic decisions, the problem is one not just for the economics of the family but also for

many other areas of economics that are concerned with capital accumulation and distribution

or that rely on models of those behaviors. Standard long-run macroeconomic models all use

some form of perfect information in intergenerational transfers. In contrast, our work sug-

gests that savings and transfer decisions may hinge on the dynamic properties of insurance

models with private information.
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Appendix A. PSID

A.1. PSID Sample Selection and Variables of Interest. We follow a procedure similar

to Heathcote, Perri, and Violante (2010) and work with the representative SRC sample for

the period 1968 - 2013. Households whose heads report positive labor income and no hours

worked and vice versa, as well as households that report hourly wages less than 10% of the

minimum federal wage and households whose heads do not report age, are excluded.

Wealth. In our sample, wealth statistics are reported in 1984, 1989, 1994, and then in

every wave from 1999 onwards. Household wealth is defined as the sum of the value of the

farm/business, checking/savings accounts, real estate, stocks, other assets, vehicles net of

debt plus the home value net of mortgage. Wealth is reported within given thresholds (-10

million to +100 million), but these thresholds never bind. We adjust for inflation by using

the CPI.

Wages. To estimate the wage process, we focus on the wages of male household heads

(these are consistently reported throughout the sample period), which are constructed as

annual labor earnings divided by annual hours, adjusted for inflation by using the CPI. No

adjustment is made for top coding (a very small number of people are subject to top-coding

in PSID). For the missing years between 1997 and 2013 when PSID becomes bi-annual, wages

are constructed as simple averages of the two adjacent observations.

Earnings. (Total) household earnings are defined as the sum of the annual labor earnings

of male household heads and their wives.

Bequests. Starting in 1988, PSID reports whether the household has received an inher-

itance (prior to 1988 PSID asks about transfers including inheritance). No adjustment is

made for top-coding, since there are only a handful of such observations. It is not possible

to identify who received the bequest (head or spouse) or who made the bequest.
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Gifts. There is not enough information in PSID to determine the exact flows of gifts in a

way that could be mapped to our model. We use the average (financial) help from relatives

(of the head and the wife combined) as a measure of gifts. Since for wives this measure is

only reported from 1985 onwards, we focus on the time period 1985 - 2013.

A.2. Estimation of the Productivity Process. This subsection describes the estimation

of the wage/productivity process summarized in equations (5.1) - (5.3). The equations to

be estimated are:

(log zP , logA) ∼ N2

µp
µA

 ,

 σ2
p corr(A, zp) · σpσA

corr(A, zp) · σpσA σ2
A

 ,(A.1)

log z1 = µ1 + ρ1 (log zp − µp) + ε1, ε1 ∼ N (0, σ2
1),(A.2)

log z2 = µ2 + ρ2 (log z1 − µ1) + ε2, ε2 ∼ N (0, σ2
2).(A.3)

where zp is the parent’s productivity level and A is the parent’s asset level. The child’s

productivity level in the first period is z1 and in the second period z2. Labor productivities

z1, z2, zp correspond to hourly wages in the data, averaged over ages 25-50 (z1) and 50-75 (z2

and zp), respectively.

These equations/parameters are estimated separately using as much information as pos-

sible for each of them. As for equation (A.1), there is enough data in PSID to construct

25-year long wage histories for people aged 50-75 and hence these are used to compute the

statistics. The average hourly log real wage between ages 50-75 is 2.02 (this corresponds

to 7.54 dollars). To be used as model input µp, this number is adjusted, taking into ac-

count that one period corresponds to 25 years. The other parameters are estimated to be

σp = 0.78, corr(A, zp) = 0.65, σA = 1.60, and µA = 11.23, which corresponds to approxi-

mately 75,000 dollars. Wealth A is calculated at age 50.
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To estimate equation (A.2), first father-son pairs are constructed. There is enough data

in PSID to construct 25-year wage histories for fathers aged 50-75 and for their sons aged

25-50. The intergenerational wage persistence parameter ρ1 is found to be 0.25 and the

error variance in equation (A.2), σ1, is estimated to be 0.47 (these values do not change

substantially when age and time effects are included). The means µ1 and µp are recovered

during the estimation of equations (A.3) and (A.1), respectively. The estimation of equation

(A.3) is explained in the main text.

Appendix B. Private Information in HRS

Table 8 reports the fraction of parents in several waves of the Health and Retirement

Survey (HRS), who report that they do not know their children’s income (provided that

they do not refuse to respond to this question). In the HRS, this means that they do not

know whether their child’s income is lower than $10,000, between $10,000 - $35,000 or above

$35,000. An additional fraction of parents report not knowing the exact income of their

child when the subsequent questions narrow the income brackets. Clearly, if parents do

not have perfect information about their children’s income, they cannot know its individual

components: labor productivity and labor hours, which is what we assume in this paper.

Table 8. Private Information in HRS

2010 2008 2006 2004 2002

27% 37% 46% 38% 38%

This table reports the percentage of parents in HRS, who report that they do not know their children’s income.
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Appendix C. Benchmark Private Information Model Sensitivity Results

Table 9. Sensitivity to Wage Volatility σ2

Data Benchmark
σ2 0.9 · 0.88 0.88 1.1 · 0.88
βby 0 -0.0384 -0.0367 -0.0353
βgy -0.02 -0.4719 -0.4537 -0.4633

Bequests within 2% of mean 77% 20.00% 20.00% 20.00%
Bequests within 25% of mean 88% 56.95% 55.87% 55.17%

Equal gifts 9% 20.00% 20.00% 20.00%
Gifts within 20% of mean 11% 24.89% 24.89% 24.89%

Table 10. Sensitivity to Risk Aversion Parameter σ

Data Benchmark
σ 0.5 1 2
βby 0 -0.0412 -0.0367 -0.0203
βgy -0.02 -0.4087 -0.4537 -0.5530

Bequests within 2% of mean 77% 20.00% 20.00% 32.15%
Bequests within 25% of mean 88% 42.85% 55.87% 74.21%%

Equal gifts 9% 20.00% 20.00% 20.00%
Gifts within 20% of mean 11% 24.05% 24.89% 24.89%

Table 11. Sensitivity to Labor Supply Elasticity Parameter γ

Data Benchmark
γ 0.5 1 2
βby 0 -0.0069 -0.0367 -0.0670
βgy -0.02 -0.4241 -0.4537 -0.5605

Bequests within 2% of mean 77% 27.45% 20.00% 20.00%
Bequests within 25% of mean 88% 77.99% 55.87% 74.21%%

Equal gifts 9% 20.00% 20.00% 20.00%
Gifts within 20% of mean 11% 27.25% 24.89% 21.69%



38

Appendix D. The Benchmark Model without Family-Level Uncertainty

D.1. Characterization of W and W.

Lemma D.1. W(b, z),Wb(b, z),Wz(b, z) ∈ C1 on <× <++.

Proof: First we show that the policy function c(b, z) ∈ C. Recall thatW(b, z) = maxc u(c)−

v( c−b
z

) s.t. c ≥ b. Standard arguments (strict concavity of the objective function, convexity

of the constraint set, and the Inada conditions) imply that this problem has a unique inte-

rior solution ∀b, z. Consumption solves zu′(c) − v′( c−b
z

) = 0. The left-hand side is C1, and

the derivative with respect to c is strictly negative: zu′′(c) − v′′( c−b
z

) < 0, hence invertible

for all c, b, z. Thus, c(b, z) is a continuously differentiable function by the implicit function

theorem, and henceW(b, z) = u(c(b, z))− v( c(b,z)−b
z

) is a continuously differentiable function

as well. By the envelope theorem, Wb(b, z) = u′(c(b, z)) and Wz(b, z) = u′(c(b, z)) c(b,z)−b
z

.

Since c(b, z) is C1, so are Wb and Wz. �

Lemma D.2. Wb > 0 & Wbb < 0 & Wb is decreasing in z.

Proof: (i) The Envelope Theorem implies thatWb = 1
z
v′( c−b

z
) = u′(c) > 0. Clearly,W(b, z)

is increasing in b. (ii) Differentiation with respect to b yields ∂
∂b
Wb = 1

z2
v′′( c−b

z
)(∂c
∂b
−1). Then

it is enough that ∂c
∂b
< 1, which must be true since more money must reduce output somewhat.

We can establish that by noting that ∂
∂b
Wb = ∂u′(c)

∂b
= u′′(c)∂c

∂b
. Setting the two expressions

equal, we get ∂c
∂b

=
v′′( c−b

z
)

v′′( c−b
z

)−z2·u′′(c) < 1 ⇒ ∂
∂b
Wb < 0. (iii) Differentiation with respect to z

yields ∂
∂z
Wb = u′′(c) ∂c

∂z
. ∂c
∂z
> 0 which we obtain by differentiating the first order condition

zu′(c)− v′( c−b
z

) = 0 to get ∂c
∂z

=
c−b
z
v′′( c−b

z
)+z·u′(c)

v′′( c−b
z

)−z2u′′(c) > 0⇒ ∂
∂z
Wb < 0. �

Lemma D.3. Wb > 0,Wbb < 0. π ≥ 1
2

=⇒ Wb(b, zL) > Wb(b, zH).
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Proof: The first two follow from the previous lemma and the definition: W (b, zi) :=

πW(b, zi) + (1 − π)W(b, zj). Since we have Wb(b, zL) > Wb(b, zH) and π ≥ 1
2
, we have

Wb(b, zL) = πWb(b, zL) + (1−π)Wb(b, zH) > (1−π)Wb(b, zL) +πWb(b, zH) = Wb(b, zH). �

D.2. Proof of Lemma 4.2. Total transfers are progressive: gL + bL > gH + bH .

Proof: Consider an artificial problem of a high type who is given a transfer xH . We let

him decide how much he wants to work, consume, and save. His problem is the following

max
c,y,b

u(c)− v(
y

zH
) +W (b, zH) s.t. c+ b ≤ y + xH .

Notice that the first order conditions for this problem are the same as those for the high

type in the parent’s problem without ICL (i.e., relaxed problem). Thus, by setting xH =

cH+bH−yH , we guarantee that the unique solution (the objective function is strictly concave,

the constraint set is convex) to the maximization problem above is (c∗, y∗, b∗) = (cH , yH , bH),

the high type’s allocations in the relaxed problem.

Since the ICH is binding in the relaxed problem, cL, yL, bL give the high type the same

utility as cH , yH , bH . Thus, cL, yL, bL cannot be in the constraint set of the artificial problem

above (otherwise a convex combination of cL, yL, bL and cH , yH , bH would give a strictly

higher value of the objective function while still being in the constraint set).

Thus cL + bL > yL + xH and hence cL + bL > yL + yL + A − cL − bL. This implies

(cL − yL) + bL = gL + bL >
A
2

and by feasibility (cH − yH) + bH = gH + bH < A
2
. �

D.3. High-type bequests are higher than high-type gifts.

Lemma D.4. gH < bH wherever ICH binds except for π = 1 where they are equal.

Proof: High type allocations are undistorted:

u′(c1
H) = v′(y1

H/zH)/zH = Wb(bH , zH) = πWb(bH , zH) + (1− π)Wb(bH , zL).
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For π = 1 we have

u′(c1
H) = v′(y1

H/zH)/zH =Wb(bH , zH) = u′(c2
H) = v′(y2

H/zH)/zH

⇒ c1
H = c2

H y1
H = y2

H ⇒ gH = c1
H − y1

H = c2
H − y2

H = bH .

For π ∈ [.5, 1), using Wb decreasing in z and π < 1 we have

Wb(bH , zH) < Wb(bH , zH) <Wb(bH , zL) hence:

u′(c1
H) = v′(y1

H/zH)/zH >Wb(bH , zH) = u′(c2
HH) = v′(y2

HH/zH)/zH ,

where the subscript XY indicates (second period’s) allocations for a child that was type X

in period one and type Y in period two. The last expression implies c1
H < c2

HH , y
1
H > y2

HH

and hence gH = c1
H − y1

H < c2
HH − y2

HH = bH . �

D.4. Proof of Lemma 4.5. Policy functions are continuous in π and zL if u has non-

increasing absolute risk aversion, and v is CARA or CRRA.

Proof: The proof has two steps. In the first, we show that under our assumptions, the

policy correspondence is single valued. In the second that it is upper hemi-continuous in

π and z. Combined, these properties imply that the policy correspondence is in fact a

continuous function.

Step 1. The policy is a function (i.e., a single valued correspondence). We can convexify

the constraint set by having the parent choose utility values instead of real values. In this

setup, the parent chooses utility from consumption, output, and welfare for the high type

(uH , vH , wH), and for the high type pretending to be the low type (uL, vL, wL). Here, we use

capital letters to denote the functions U , V , and W . The parent solves

max
u,v,w

uH − vH + wH + uL − V (
zH
zL
V −1(vL)) + WL(W−1

H (wL)) s.t.
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U−1(uH) + U−1(uL) +W−1
H (wH) +W−1

H (wL) ≤ zHV
−1(vH) + zHV

−1(vL) + 2A,

uH − vH + wH ≥ uL − vL + wL.

The incentive constraint is linear. Since U(·) and Wi(·) are strictly increasing and strictly

concave, their inverses are strictly convex. Similarly, the inverse of V (·) is strictly concave.

The convex functions are on the lesser side of the inequality and the concave ones are on the

greater side, so this constraint is convex as well.

To show the uniqueness of the solution, it remains to demonstrate that the objective

function is weakly concave. The first four terms are linear. We will show that our as-

sumptions guarantee that V and W are weakly concave. Both of the functions are of the

form h(x) = f(g−1(x)). Recall that ∂
∂x
g−1(x) = 1

g′(g−1(x))
. Then: h′(x) = f ′(g−1(x))

g′(g−1(x))
and

h′′(x) =

[
g′(g−1(x))f

′′(g−1(x))
g′(g−1(x))

−f ′(g−1(x))g
′′(g−1(x))
g′(g−1(x))

]
/(g′(g−1(x)))2. The sign of the second de-

rivative is the sign of the numerator, which can be written as

(
− g′′(g−1(x))

g′(g−1(x))

)
−

(
− f ′′(g−1(x))

f ′(g−1(x))

)
.

We want to show that the second derivative of WL as a function of wL is negative and that

it is positive for V as a function of vL, since this function is subtracted, so we need it

to be convex. Let RRV (l) denote the relative risk aversion of V and similarly the ab-

solute risk aversion ARW (b; z) where the derivatives are taken with respect to b. Plug-

ging into the formulas above we get
∂2V (

zH
zL
V −1(vL))

∂v2L
≥ 0 ⇐⇒ RRV ( y

zH
) ≥ RRV ( y

zL
) and

∂2WL(W−1
H (wL))

∂w2
L

≤ 0 ⇐⇒ ARW (b; zH) ≤ ARW (b; zL). Thus, v needs to be NIRRA, which

covers CARA. For the last term in the objective function, we prove the following lemma.

Lemma D.5. Assume u is NIARA (covers CRRA) and v is CARA or CRRA. Then −Wbb

Wb

is decreasing in z and Wbb is increasing in z.

Once we prove this claim, it is easy to show that −Wbb(b,zL)
Wb(b,zL)

≥ −Wbb(b,zH)
Wb(b,zH)

and Wbb(b, zL) ≤

Wbb(b, zH) using π ≥ 1
2

in a way similar to lemma D.3.



42

Proof: From above we have that:

Wbb

Wb

=
u′′(c)

u′(c)

∂c

∂b
=

1
z
v′( c(z)−b

z
)

1
z2
v′′( c(z)−b

z
)

+
u′(c(z))

−u′′(c(z))
.

So now, Wbb

Wb
increasing in z ⇐⇒

1
z
v′( c(z)−b

z
)

1
z2
v′′( c(z)−b

z
)

+ u′(c(z))
−u′′(c(z)) increasing in z. The second term

is increasing in z for u NIARA since c is increasing in z. We claim that the first term is

increasing in z for v CRRA. To see that, note that the first term can be rewritten as

y(z) · v′(y(z)
z

)
y(z)
z
· v′′(y(z)

z
)

=
y(z)

−RRv(y(z))
.

Remember that RRv(y(z)) is negative so that −RRv(y(z)) is positive. Assuming CRRA

−RRv(y(z)) is constant, we get that ∂
∂z

y(z)
−RRv(y(z))

=
∂y
∂z

−RRv(y(z))
> 0 since y is increasing in z

(by c is increasing in z which was established above). Note that it is not straightforward to

find a sufficient condition in terms of DRRA or IRRA, because we donot know the sign of

∂`(z)
∂z

. The argument is similar for CARA (again we need not worry which way `(z) goes).

Another sufficient condition would be `(z) constant in z. The functions that we are using

do not have this property, so we do not include this sufficient condition in the statement of

the lemma. Finally, the fact that Wbb is (strictly) increasing in z follows from the fact that

Wb is (strictly) decreasing in z.

Step 2. The policy correspondences are upper hemi-continuous in π and z.

Proof: for upper hemi-continuity in π, define f(π; cH , cL, yH , yL, bH , bL) := u(cH)−v(yH
zH

)+

πW(bH , zH) + (1− π)W(bH , zL) + u(cL)− v(yL
zL

) + πW(bL, zL) + (1− π)W(bL, zH),Γ(π) :={
(cH , cL, yH , yL, bH , bL) ∈ <4

+ × <2 : cH + cL + bH + bL ≤ yH + yL + A, u(cH) − v(yH
zH

) +

πW(bH , zH)+(1−π)W(bH , zL) ≥ u(cL)−v( yL
zH

)+πW(bL, zH)+(1−π)W(bL, zL)
}

and h(π) :={
(c∗H , c

∗
L, y

∗
H , y

∗
L, b
∗
H , b

∗
L) ∈ <4

+ ×<2 : f(π; c∗H , c
∗
L, y

∗
H , y

∗
L, b
∗
H , b

∗
L) = max(cH ,cL,yH ,yL,bH ,bL)∈Γ(π)

f(π; cH , cL, yH , yL, bH , bL)
}
.We have shown above thatW(b, z) is continuous in b. This means
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that f is a continuous mapping [0, 1] × <4
+ × <2 −→ <. Clearly, Γ : [0, 1] −→ <6

+ is a non-

empty valued correspondence. Γ is also a continuous correspondence, since all the functions

are continuous and π enters linearly. One can show that ∃L large enough and ∃B small

enough s.t. ∀π : lH , lL < L, bH , bH > B at a solution to the relaxed problem. Then WLOG

Γ can be made compact valued, since these bounds imply an upper bound on cH , cL, yL, yH

as well. Thus, h(π) is a non-empty, compact, upper hemi-continuous correspondence. The

proof of upper hemi-continuity of the policy correspondences in zL and zH on <++ with

zL ≤ zH is similar. For zL = 0, one can show that policies are right continuous.

D.5. Relaxed problem valid.

Lemma D.6. The constraint preventing the high type from reporting the low productivity

level, ICH , is sufficient (i.e. at the solution to the relaxed problem where ICL is not included,

ICL will be satisfied for π ∈ {1
2
, π∗, 1}). For π = 1 we have the result as long as bL > bH ,

which has been established for zL small enough and v is CRRA or CARA.

Proof: Clearly, at the solution to the relaxed problem, the ICH binds. To prove the

lemma, we need to characterize the solutions in more detail. We will proceed case by case.

Note that for zL = 0, the validity of the relaxed problem is clear, because the low type

cannot pretend to be the high type.

(i) π = 1
2
. First, note that yH > yL. This is because, as we established above, cH >

cL, bH > bL and the ICH binds. Moreover W (bi, z) = W (bi). Denote W (bi) as wi. Then we

want to show that if u(cH)− v(yH
zH

) + wH = u(cL)− v( yL
zH

) + wL then u(cL)− v(yL
zL

) + wL ≥

u(cH) − v(yH
zL

) + wH . This is equivalent to u(cH) − u(cL) + wH − wL = v(yH
zH

) − v( yL
zH

) ⇒

v(yH
zL

)− v(yL
zL

) ≥ u(cH)− u(cL) + wH − wL. Thus it is enough to show that v(yH
zL

)− v(yL
zL

) ≥

v(yH
zH

)− v( yL
zH

), which is equivalent to
∫ yH
yL

v′( y
zL

)

zL
dy ≥

∫ yH
yL

v′( y
zH

)

zH
dy. This is true by convexity

of v, yH > yL, and zH > zL.
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(ii) π = 1. Showing yH > yL is more complicated here. It deserves a separate lemma.

Lemma D.7. Suppose v is NIRRA. Then y1
L < y1

H .

Proof: First, we will show that y1
L < y2

L. We use superscripts for periods. We have π = 1 so

the types are constant over time. Define the output that will be chosen in the second period

by a high type who misreported in the first period as a function of bL:ỹ := u′(ỹ(bL) + bL) =

v′( ỹ(bL)
zH

) · 1
zH
. The properties of u and v imply that y2 is strictly increasing in z and therefore

∀b : y2
L(b) < ỹ(b). Now, output in the first period is determined by v′(

y1L
zL

) 1
zL
− µv′( y

1
L

zH
) 1
zH

=

W1(bL, zL)−µW1(bL, zH). Using W1(bL, zH) = v′( ỹ(bL)
zH

) · 1
zH

and W1(bL, zL) = v′(
y2L(bL)

zL
) 1
zL

we

can rewrite this as v′(
y1L
zL

) 1
zL
−µv′( y

1
L

zH
) 1
zH

= v′(
y2L(bL)

zL
) 1
zL
−µv′( ỹ(bL)

zH
)· 1
zH
. Since y2

L(b) < ỹ(b), this

implies (dropping the arguments for simplicity) v′(
y1L
zL

) 1
zL
−µv′( y

1
L

zH
) 1
zH

< v′(
y2L
zL

) 1
zL
−µv′( y

2
L

zH
)· 1
zH
.

Now to prove the claim, we will show that f(y) := v′( y
zL

) 1
zL
− µv′( y

zH
) 1
zH

is increasing in

y, which implies that y1
L < y2

L. Taking the derivative yields f ′(y) = v′′( y
zL

) 1
z2L
− µv′′( y

zH
) 1
z2H
.

By NIRRA we have that −
v′′( y

zL
)

v′( y
zL

)
y
zL
≤ −

v′′( y
zH

)

v′( y
zH

)
y
zH

=⇒ v′′( y
zL

) 1
z2L
> v′′( y

zH
) 1
z2H
. The reasoning

comes from v′, v′′ > 0 and zL < zH . Combine the last expression with µ ∈ (0, 1) to get

f ′(y) > 0. Thus, y1
L < y2

L. To prove the lemma, suppose by way of contradiction that

y1
H ≤ y1

L. Then either bH ≥ bL or bH < bL. The first is inconsistent with the ICH binding

because cH > cL. For the second we would have y2
L < y2

H and hence y1
L < y2

L < y2
H = y1

H , a

contradiction. Thus, y1
L < y1

H . �

To show that the relaxed problem is valid, we want to show that u(cH) − v(yH
zH

) +

W (bH , zH) = u(cL)− v( yL
zH

) + W (bL, zH)⇒ u(cL)− v(yL
zL

) + W (bL, zL) ≥ u(cH)− v(yH
zL

) +

W (bH , zL). Thus, it is enough to show that v(yH
zL

) − v(yL
zL

) + W (bL, zL) − W (bH , zL) ≥

v(yH
zH

)− v( yL
zH

) +W (bL, zH)−W (bH , zH). Since we have bL > bH , yL < yH we can rewrite the

inequality as
∫ yH
yL

v′( y
zL

)

zL
dy +

∫ bL
bH
Wb(b, zL)db ≥

∫ yH
yL

v′( y
zH

)

zH
dy +

∫ bL
bH
Wb(b, zH)db, which is true

by the convexity of v, zH > zL, and Wb(b, zL) ≥ Wb(b, zH). �
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(iii) π = π∗. The W s in the ICs cancel out by bL = bH . Moreover, ICH binding implies

that yH > yL. Thus, this reduces to showing the following, which has been already shown

above: v(yH
zL

)− v(yL
zL

) ≥ v(yH
zH

)− v( yL
zH

). �

Appendix E. Model with Two States and Signals

In this section, we analyze a variant of the model described in section 4. The only difference

is that now the parent first receives a signal about her children’s productivity. This model

subsumes the private and public information models we analyze in the main body of this

paper as special cases. We show that in the two-type version of the model with informative

signals, there is no level of persistence such that all children within a family are given an

equal bequest. However, we also show that our model with private information is robust to

adding signals in the sense that the welfare loss of equal division does not increase much

as we add signals. In this sense, the private information model without signals is a good

approximation of the model with signals (as long as the information content is not “too

high”).

E.1. Model. The basic setup of the model is the same as in section 4. A parent has a

continuum of children. One-half of them is more productive (type H) than the other half

(type L). In the second period, children remain of the same type with probability π and

switch type with probability 1−π. The parent does not know which is which. However (and

this is how this model differs from the one described in section 4), the parent receives a signal

on the children’s productivity {θH , θL}. This is the children’s probability of becoming the

high type, with θH ≥ θL. Without loss of generality we assume that one-half of children draw

a signal θH and one-half of children draw θL, with the appropriate consistency condition:

1
2
θH + 1

2
θL = 1

2
(i.e., θH + θL = 1). The parent’s problem (for the allocations, the first
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subscript denotes the signal, the second the realized type) is as follows:

max
c,y,b

∑
i

θi

[
u(ciH)− v(

yiH
zH

) +W (biH , zH)

]
+ (1− θi)

[
u(ciL)− v(

yiL
zL

) +W (biL, zL)

]
s.t.

∑
i

θi[ciH − yiH + biH ] + (1− θi)[ciL − yiL + biL] ≤ A,

∀i, j : u(cij)− v(
yij
zj

) +W (bij , zj) ≥ u(cijc)− v(
yijc

zj
) +W (bijc , zj).

Here jc defines the complement of j in the set(L,H). There are two special cases: (i)

θH = θL = 1
2

(i.e., signals are not informative at all), and (ii) θH = 1 (i.e. full information).

In the main body of this paper, we focus on these two special cases. In the model with

informative signals, the parent is solving two separate problems for children of each signal

that are connected only though the budget constraint. We denote θ := θH = 1 − θL and

focus on the relaxed problem with downward constraints only (the expressions on the left

denote the Lagrange multipliers we will use):21

(θµHH) : u(cHH)− v(
yHH
zH

) +W (bHH , zH) ≥ u(cHL)− v(
yHL
zH

) +W (bHL, zH),

((1− θ)µLH) : u(cLH)− v(
yLH
zH

) +W (bLH , zH) ≥ u(cLL)− v(
yLL
zH

) +W (bLL, zH).

E.2. Characterization. We are now ready to show that, with informative signals (i.e.,

θ > 1
2
), there no measure zero set in the parameter space in which all four types (i.e.

HH,HL,LH,LL) receive the same bequest.

Theorem E.1. For any parameters, there is no θ > 1
2

s.t. bHH = bHL = bLH = bLL.

21The relaxed problem is trivially valid for zL ∈ Nε(0), for which we have established our main result in
section 4. In the quantitative examples we report below, we check and find that the relaxed problem is
always valid as well.
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Proof: The first order conditions on bequests from this problem are

λ = (1 + µHH)W1(bHH , zH) = (1 + µLH)W1(bLH , zH)

= W1(bHL, zL)− θ

1− θ
µHHW1(bHL, zH) = W1(bLL, zL)− 1− θ

θ
µLHW1(bLL, zH).

bHH = bLH requires µHH = µLH . This implies that bHL = bLL requires θ
1−θ = 1−θ

θ
, which

is equivalent to θ = 1
2
. �

Note that this proof does not rely on the transition matrix between states in the first

and second period being symmetric. We show in section 4.4 that with symmetric transition

matrices and uninformative signals θ = 1
2
, there is a level of persistence π such that bHH =

bHL = bLH = bLL. This follows from the fact that with uninformative signals, children with

different signals are treated the same way. Note that when signals are perfectly informative

(i.e., θ = 1) and productivity shocks are i.i.d. (i.e., π = 1
2
), then bHH = bLL as shown in

section 4.3. However, the two measure zero types (i.e., LH and HL) do not get the same

bequest: bHH = bLL 6= bLH 6= bHL.

Next we show that positive surprises (low signal and high realization) are rewarded and

that negative surprises (high signal and low realization) are punished. This seems a fairly

intuitive way to provide incentives.

Theorem E.2. cHH < cLH , yHH > yLH , bHH < bLH , cHL < cLL, yHL > yLL, bHL < bLL.

This result follows from the following lemma, which we provide without proof.

Lemma E.3. θ > 1
2
, π ≥ 1

2
implies µLH > µHH and µLH

1−θ
θ
< µHH

θ
1−θ .

Next, we prove that the welfare loss of equal division κ at θ = .5 is robust to adding signals

in the sense that ∂κ
∂θ
|θ=.5 = 0. κ is defined as the welfare loss of equal division in consumption
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units. Specifically, we use the following approximation: V (A,θ)−V=(A,θ)
∂V=(A,θ)

∂A

.22 Here, V (A, θ) is the

solution to the parents’ problem above and V=(A, θ) is a solution to the same problem with

added constraints: bHH = bHL = bLH = bLL. Note that the theorem also applies to the

model with multiple types and family-level uncertainty that we use in section 5.

Theorem E.4. Assume that V (A, θ) and V=(A, θ) are twice differentiable. Then ∂κ
∂θ
|θ=.5 = 0.

Proof: Both value functions are symmetric around θ = .5. Therefore, their deriva-

tives ∂V (A,θ)
∂A

and in particular ∂V=(A,θ)
∂A

are symmetric around θ = .5. This implies that

∂
(
∂V=(A,θ)

∂A

)
/∂θ = 0. Using this fact, we can express the derivative of κ with respect to θ

as:

∂κ

∂θ
=

∂

∂θ

[
V (A, θ)− V=(A, θ)

∂V=(A,θ)
∂A

]
=
∂V (A, θ)/∂θ − ∂V=(A, θ)/∂θ[

∂V=(A,θ)
∂A

]2 .

Since the value functions are symmetric around θ = .5, we have that ∂V (A, θ)/∂θ =

∂V=(A, θ)/∂θ = 0 and thus ∂κ
∂θ
|θ=.5 = 0. �

E.3. Quantitative Example. In this section, we illustrate the theorems above. We set the

parameter values to the same ones as in section 4.4: zH = 2, zL = 1, A = 1. The transition

matrix is assumed to be symmetric. Figure 3 provides a good representative picture of the

effect of signals. Nearly uninformative signals (θ = .55) result in allocations close to the

model without signals, with both productivity types doing better when they received a low

signal. As the signal θ approaches 1, so that productivity types are nearly public, the HH

and LL allocations converge to their perfect information equivalents, while the HL and LH

converge to wherever the incentive constraints push them as the other types move to full

information.

22One can also prove theorem E.4 for an alternative approximation: κ = [V (A, θ)− V=(A, θ)] /∂V=(A,θ)
∂A and

the simpler approximation associated with log utility, which we use in section 5.
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Figure 3. Bequests for Various Levels of Persistence π and Signal Precision θ
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(a) Bequests for θ = .55
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(b) Bequests for θ = .95

Figure 4. Welfare Loss κ for Various Levels of π and θ
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We also compute the welfare loss of equal division associated with various values of the

signal precision parameter θ and the persistence parameter π. These results are reported

for two particular values of π in figure 4. The case of π = .75 is the one in which bequests

are nearly equal with uninformative signals, as in our quantitative analysis of section 5. We

add the case of higher persistence π = .9 and unequal bequests for comparison. We see
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that the welfare loss of equal division as a function of signal precision θ is flat for small

values of θ. This implies that in terms of the welfare loss, the uninformative signal case of

θ = .5 is a good approximation of the cases when the signals have some small information

content. For this reason, it makes sense to focus on the two extreme cases of public and

private information. In addition, we do not see a straightforward way to use the data to

determine the precision of the signals that parents get that would enable us to use a model

with signals in our quantitative analysis.
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