

WHY PEOPLE MOVE? DETERMINANTS OF MIGRATION II

Mariola Pytliková

CERGE-EI and VŠB-Technical University Ostrava,

CReAM, IZA, CCP and CELSI

Info about lectures: <u>https://home.cerge-ei.cz/pytlikova/LaborSpring16/</u> Office hours: by appointment

Contact: Email: <u>Mariola.Pytlikova@cerge-ei.cz</u> Mobile: 739211312

https://sites.google.com/site/pytlikovaweb/

Study Materials and Reading List

- Slides of the lectures (provided one day in advance or on the day of the class)
- All materials provided on: <u>http://home.cerge-ei.cz/pytlikova/LaborSpring16/</u>

Compulsory Readings:

 Bodvarsson, Simpson and Sparber: "<u>Migration Theory</u>" in Chiswick and Miller ed. (2015): Handbook of International Migration, Vol, 1A

Other Relevant Literature:

- Gorinas, Cedric and Mariola Pytliková (2016): "Do Natives' Attitudes Influence International Migration?" Forth. in the International Migration Review.
- Palmer, John and Mariola Pytliková (2015): "<u>Labor Market Laws and intra-European Migration: The Role of the State in Shaping Destination</u> <u>Choices</u>". *European Journal of Population*, 31(2), pp. 127-153
- Mayda, A. M.(2010): "International Migration: A panel data analysis of the determinants of bilateral flows". *Journal of Population Economics*, 23(4), 1249-1274.
- Karemera, Oguledo, Davis, (2000): "A gravity model analysis of international migration to North America" *Applied Economics*, 32(13), 1745-1755.
- F. Docquier, G. Peri, I. Ruyssen, (2014): "The cross-country determinants of potential and actual migration", *International Migration Review*, 48, 37-99.

WHY DO PEOPLE MIGRATE? Theory I

• ECONOMIC FACTORS:

- · Wage differences (Hicks, 1932; Kuznetz and Rubin, 1954),
- Human capital model (Sjaastad,1962; Becker,1964): Move if net discounted future expected benefits>costs of migration (assumed to be proportional to distance), later formalization of the model a starting point to most of the literature on migration determinants.
- Sjastaad's framework includes features of gravity model by viewing distance as a proxy for migration costs

Gravity models

Application of Newtons gravity law to migration:

$$M_{ij} = P_i P_j / d_{ij}^2$$

- Application from Karemera et al (2010):
- i..origin, j.. destination
- Migrant flow will depend on potential supply factors Si, which is a function of population n, and factor endowments $S_i = b_o y_i^{b1} n_i^{b2}$
- Potential demand factors are likewise a function of income and population, representing a pull factor in destinations

•
$$D_j = c_o y_j^{c1} n_j^{c2}$$

Gravity models

Combining S and D yields migration flow equation:

$$F_{ij} = a_o S_i^{\ a1} D_j^{\ a2} / R_{ij}^{\ a3}$$

 Where Rij stands for factors helping or restraining migration, i=1,...,N, j=1,...,N. Taking logs on both sides, and replacing by their equivalents gives:

$$m_{ij} = \alpha_0 + \alpha_1 n_i + \alpha_2 n_j + \alpha_3 y_i + \alpha_4 y_j + \alpha_5 c_{ij} + e_{ij}$$

• Which is the simplest empirical form of migrant flow equation proposed by Sjastaad (1962).

WHY DO PEOPLE MIGRATE? Theory II

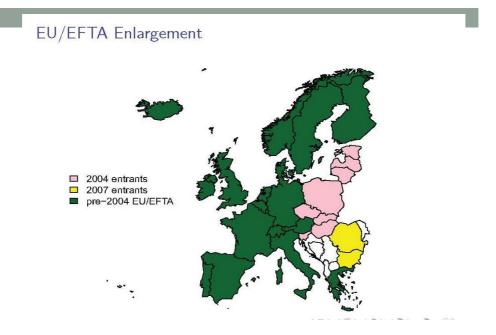
·MIGRATION NETWORKS:

- migration networks: "...sets of interpersonal ties that connect migrants, former migrants, and non-migrants in origin and destination areas through ties of kinship, friendship, and shared community origin" (Massey, 1993)
- help to explain persistence in migration
- "herd behavior" effect (Bauer et al. 2002),

•NON-ECONOMIC FACTORS:

- · war, love/marriage, taste for adventure
- Language proximity

•OTHER FACTORS:


• the role of the state = immigration policy, immigrant rights towards employment, naturalization, welfare provision etc,

•The role of natives' attitudes towards migrants

EMPIRICAL APPLICATIONS

The role of the state:

The effect of EU enlargements and labour market openings on migration

DIFFERENT TIMING OF LABOR MARKET OPENINGS wrt FREE MOVEMENT OF LABOR

1st EU enlargement towards the East - 2004 enlargement:

 \cdot UK, Ireland and Sweden have opened from day one of EU enlargement in May 2004, the rest of "old" EU members imposes restrictions to free movement of workers.

- 2006 Spain, Portugal, Greece, Italy, Finland and Iceland
- · 2007 the Netherlands and Luxembourg (November 2007)
- July 2008 France
- May 2009 Belgium, Denmark and Norway
- May 2011: Austria, Germany and Switzerland hold a maximum period of restrictions.

DIFFERENT TIMING OF LABOR MARKET OPENINGS wrt FREE MOVEMENT OF LABOR

- 2nd EU enlargement towards the East 2007 enlargement:
 - Bulgaria and Romania joined the EU on January 1, 2007.
 - · Restrictions on labour markets possible until 2014;
 - Open doors for 2007 entrants:
 - 2007 Finland, Sweden, Cyprus, Czech Republic, Estonia, Latvia, Lithuania, Poland, Slovakia, Slovenia
 - 2009 Denmark, Greece, Portugal, Spain
 - 2011 Spain reimposes restrictions for workers from Romania
 - 2012 Iceland, Italy
 - 2014 the rest of EU holds a maximum period of restrictions

Motivation - previous evidence on effects of labor market openings

 $\boldsymbol{\cdot}$ many studies trying to forecast migration potential from CEECs prior EU enlargements:

2 different approaches:

A) surveys: 6 - 30% of the CEE populations, see e.g. Wallace (1998), Fassmann and Hintermann (1997).

B) econometric analysis: a long-run migration potential is usually estimated at around 2-5%, net migration potential around 2% of population, see Pytlikova (2006), Dustmann et al. (2003) or Alvarez-Plata et al. (2003).

• Example of a forecast for UK: 5.000-13.000 immigrants per year to UK (Dustmann et al. 2003) Reality: around 500.000 CEE immigrants between 2004 and 2006!!!

Why so bad forecasts?

Motivation – previous evidence

- · out-of-sample historical data on migration;
- and/or past enlargement experience;
- -> extrapolation to predict East-West migration;
- in the EU context: analyses of migration flows into one destination country, specifically Germany;
- On the basis of obtained coefficients forecasts: => problems related to (double) out-of-sample forecasts and the assumption of invariance of migration behavior across a space.

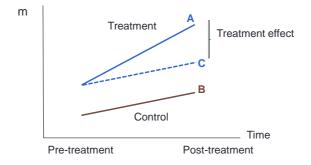
Motivation for analyses

- · Use actual numbers of CEE emigrants = true behavior of CEE emigrants,
- Extended time series 1995 2010
- Exploit a "natural experiment": different timing of lifting of restrictions to the free movement of workers on migration
 - \Rightarrow Estimate a difference-in-differences DD and triple DDD estimator on the flow of migrants from 8 CEECs and Bulgaria and Romania into 18 EEA+CH countries .

Differences-in-Differences and DDD

- 1. Basic idea
- 2. How to estimate
- Application on migration data exploiting labour market openings in connection with the EU enlargements in 2004 and 2007 and migration from the new EU members to Nordic countries.
- 4. "Placebo" treatment model and sensitivity analyses

Diff-in-Diff: Basic Idea


- Evaluate the impact of a program or treatment on an outcome.
- Idea of using differences to estimate causal effects
 - Treatment/control groups in experimental data
 - Individuals Twins data to deal with ability bias
- would like to find "treatment" and "control" group which can be assumed to be similar all aspects except getting the treatment => This might be difficult => so often a weaker assumption:
- Assume that, in absence of treatment, differences between "treatment" and "control" group are the same over time. With this assumption we can use observations on treatment and control group pre- and post-treatment to estimate a causal effect.

Diff-in-Diff: Basic Idea

- Basic Idea
 - one could use data on treatment and control group before the treatment to estimate a "normal" difference between treatment and control group and then compare this with the difference after the receipt of treatment.

Graphically:

Diff-in-Diff: Basic Idea - graphically

Diff-in-Diff: Basic Idea

- Standard differences estimator is AB
- But "normal" difference estimated as CB
- =>Diff-in-Diff estimate is AC
- =>a key identifying assumption here is that trends in outcome variables are the same for treatment and control groups; Thus treatment induces a deviation from this common trend.
- Although the "treatment" and "control" groups can differ (in my case destination countries) this difference is meant to be captured by the group fixed effect.
- The common trend assumption can be tested using data on with more periods.

Diff-in-Diff: Basic Idea

• Define:

 $\mu_{it} = E(m_{it})$

Where j=0 is control group, j=1 is treatment Where t=0 is pre-treatment-period, t=1 is post-treatmentperiod

 Standard 'differences' estimate of causal effect is estimate of:

 μ_{11} - μ_{01}

 'Differences-in-Differences' estimate of causal effect is estimate of:

 $(\mu_{11}-\mu_{01})-(\mu_{10}-\mu_{00})$

How to estimate it?

Diff-in-Diff: How to estimate it?

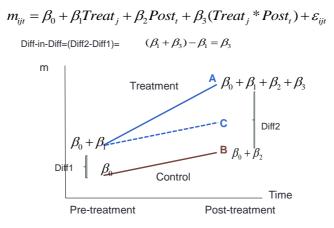
<u>1. in differences</u>

• Can write D-in-D estimate as:

$$(\mu_{11} - \mu_{10}) - (\mu_{01} - \mu_{00})$$

• This is simply the difference in the change of treatment and control groups so can estimate as:

$$\Delta m_{j} = \beta_{0} + \beta_{1} Treat_{j} + \varepsilon_{j}$$


- This is simply 'differences' estimator applied to the difference
- need of having repeated obs on the same countries/individuals
- an alternative is regression-based estimator

Diff-in-Diff: How to estimate it?

- <u>2. regression-based estimator</u>
- $m_{ijt} = \beta_0 + \beta_1 Treat_j + \beta_2 Post_t + \beta_3 (Treat_j * Post_t) + \varepsilon_{ijt}$
- D-in-D estimate is estimate of β₃
 - $p \lim \hat{\beta}_0 = \mu_{00}$ $p \lim \hat{\beta}_1 = \mu_{10} \mu_{00}$ $p \lim \hat{\beta}_2 = \mu_{01} \mu_{00}$ $p \lim \hat{\beta}_3 = (\mu_{11} \mu_{01}) (\mu_{10} \mu_{00})$

• - graphically:

Diff-in-Diff: Basic Idea - graphically

Diff-in-Diff: How to estimate it?

A Comparison of the Two Methods:

- · Where have repeated observations could use both methods;
- · Will give the same parameter estimates
- But will give different standard errors
- "level" regression-based version assumes residuals are independent – unlikely to be a good assumption:
- · One way to deal with this is clustering

Diff-in-Diff: How to estimate it?

- Other regressors-controls can be put in as well it helps with the assumption that treatment and control groups have the same trend - but one should think about way in which they enter the estimating equation
 - E.g. if level of GDPpc_i affects level of migration m_{ij} then one should include Δ GDPpc_i in the differences version
- Multiple groups and time periods:
 - control for each time period
 - control for each "group"
 - = the coefficient on the treatment dummy is the effect we want to estimate.

BACK TO OUR EXAMPLE OF CEE MIGRATION

Data description

- Immigration flows and foreign population stock into 42 destinations from all world source countries.
- · For 27 destinations data collected from national statistical offices
- for 6 OECD countries from OECD International Migration Database (Chl, Isr, Kor, Mex, Rus and Tur)
- · For 9 others from Eurostat (Bul, Cro, Cyp, Est, Lv, Ltv, Mal, Rom and Slo)
- Period: 1980 to 2010.
- In this paper focus on EEA+CH destinations and migration from CEE new EU members over time 1995-2010
- Additional control variables
 - Economic variables
 - Demographic variables,
 - Distance variables:
 - Physical distance in km
 - Linguistic proximity constructed by Adsera&Pytlikova (forthcoming) based on Ethnologue
 - Neighboring dummy
- Sources: WB-WDI, ILO, OECD
- Unbalanced panel.

Model

The basic DD econometric model has the following form:

 $\ln m_{iit} = \gamma_0 + \delta_i + \delta_i + \theta_t + \gamma_2 OPEN_{ii} + \gamma_3 \ln(GDP_i)_{t-1} + \gamma_4 \ln(GDP_i)_{t-1} + \gamma_5 \ln(GDP_i)_{t-1}^2 + \gamma_5 \ln(GDP_i)_{t-1}$

 $+\gamma_6 \ln u_{jt-1} + \gamma_7 \ln u_{it-1} + \gamma_8 \ln s_{ijt-1} + \gamma_9 lingprox_{ij} + \gamma_{10} \ln dist_{ij} + \gamma_{11} neighbour + \varepsilon_{ijt-1}$

- mijt emigration rate = gross migration flow per source country population,
- · full set of year dummies, and destination and country of origin effects
- OPENij a Labour Market Opening policy variable, to be equal to 1 if there is a free movement of workers between a particular destination and source country, and 0 otherwise.
- · GDPj, GDPi, GDPi2 GDP per capita, PPP, constant 2005 US\$
- Uj, Ui unemployment rates
- · Sijt-1 is stock of immigrants per source country population
- · Lingprox- linguistic proximity index
- · distij is distance in km
- Neighbour
- · Robust st errors clustered on the level of pair of countries
 - All vars in logs except dummies and ling proximity index.

EEA/EFTA countries	Lifting restrictions on free movement of workers	Treatments and Controls	Pre-treatment period	Post-treatment period
Austria	May 2011	Control	1995-2010	-
Belgium	May 2009	Treatment	1995-2008	2009-2010
Denmark	May 2009	Treatment	1995-2008	2009-2010
Finland	May 2006	Treatment	1995-2005	2006-2010
France	July 2008	Treatment	1995-2007	2008-2010
Germany	May 2011	Control	1995-2010	-
Greece	May 2006	Treatment	1995-2005	2006-2010
Iceland	May 2006	Treatment	1995-2005	2006-2010
Ireland	May 2004	Treatment	1995-2003	2004-2010
Italy	July 2006	Treatment	1995-2005	2006-2010
Luxembourg	November 2007	Treatment	1995-2007	2008-2010
Netherlands	May 2007	Treatment	1995-2006	2007-2010
Norway	May 2009	Treatment	1995-2008	2009-2010
Portugal	May 2006	Treatment	1995-2005	2006-2010
Spain	May 2006	Treatment	1995-2005	2006-2010
Sweden	May 2004	Treatment	1995-2003	2004-2010
Switzerland	May 2011	Control	1995-2010	-
UK	May 2004	Treatment	1995-2003	2004-2010

Overview of policy changes with respect to lifting restrictions on the access to labor markets for workers from the new EU 2004 member states

Overview of policy changes with respect to lifting restrictions on the access to labor market for workers from Bulgaria and Romania

EEA/EFTA countries	Lifting restrictions on free movement of workers	Treatments and Controls	Pre-treatment period	Post-treatment period
Austria	January 2014	Control	1995-2010	-
Belgium	January 2014	Control	1995-2010	-
Denmark	May 2009	Treatment	1995-2008	2009-2010
Finland	January 2007	Treatment	1995-2006	2007-2010
France	January 2014	Control	1995-2010	-
Germany	January 2014	Control	1995-2010	-
Greece	January 2009	Treatment	1995-2008	2009-2010
Iceland	January 2012	Control	1995-2010	-
Ireland	January 2014	Control	1995-2010	-
Italy	January 2012	Control	1995-2010	-
Luxembourg	January 2014	Control	1995-2010	-
Netherlands	January 2014	Control	1995-2010	-
Norway	January 2014	Control	1995-2010	-
Portugal	January 2009	Treatment	1995-2008	2009-2010
Spain	January 2009 (Aug 2011)	Treatment	1995-2008	2009-2010
Sweden	January 2007	Treatment	1995-2006	2007-2010
Switzerland	January 2014	Control	1995-2010	-
UK	January 2014	Control	1995-2010	-
Robustness:				
Hungary	January 2009	Treatment	1995-2006	2007-2010
Other EU8 dest	January 2007	Treatments	1995-2006	2007-2010

EU enlargement effect on migration

Model with both, the labour market openings and the EU enlargement effects:

 $\ln m_{iit} = \gamma_0 + \delta_i + \delta_i + \theta_t + \gamma_1 EUenl_{ii} + \gamma_2 OPEN_{ii} + \gamma_3 \ln(GDP_i)_{t-1} + \gamma_4 \ln(GDP_i)_{t-1} + \gamma_5 \ln(GDP_i)_{t-1}^2$

 $+\gamma_6 \ln u_{jt-1} + \gamma_7 \ln u_{it-1} + \gamma_8 \ln s_{ijt-1} + \gamma_9 lingprox_{ij} + \gamma_{10} \ln dist_{ij} + \gamma_{11} neighbour + \varepsilon_{ijt-1}$

- · EUenlij the EU enlargement policy dummy,
 - equal to 1 for pairs of 17 EEA destination countries and the EU8 and EU2 source countries for the period after year 2004 and 2007, respectively.
 - equal to 0 for the pre-treatment period for those pair of countries, and for pairs of the non-EU destinations - Australia, Canada, New Zealand, Switzerland and USA - and the EU8- and EU2source countries.
- In addition, I run the econometric models above with pairs of country fixed effects in order to capture (unobserved) traditions, historical and cultural ties between a particular pair of destination and origin countries:

$$\ln m_{ijt} = \gamma_0 + \delta_{ij} + \theta_t + \gamma_1 EUenl_{ij} + \gamma_2 OPEN_{ij} + \gamma_3 \ln(GDP_j)_{t-1} + \gamma_4 \ln(GDP_i)_{t-1} + \gamma_5 \ln(GDP_i)_{t-1}^2 + \gamma_6 \ln u_{jt-1} + \gamma_7 \ln u_{it-1} + \gamma_8 \ln s_{ijt-1} + \gamma_9 lingprox_{ij} + \gamma_{10} \ln dist_{ij} + \gamma_{11} neighbour + \varepsilon_{ijt}$$

Difference-in-Differences analyses of labour market openings of EU countries on migration flows from new EU10 member states, 22 destinations, years 1995-2010.

VARIABLES	EU8-	+EU2	E	U8	El	J2
LMO	0.378***	0.353***	0.298***	0.348***	0.536***	0.524*
Dest & Origin FE	YES		YES		YES	
Pair of country FE Constant	-89.043***	YES -93.528***	-116.716***	YES -131.480***	456.667	YES 496.926
Observations	2,424	2,424	1,910	1,910	514	514
Adjusted R-sq	0.861	0.905	0.868	0.9111	0.896	0.8976

Dependent Variable: Ln(Emigration Rate). Controls included: networks, economic and distance variables, time dummies. Robust standard errors clustered on country pairs level, *** p<0.01, ** p<0.05, * p<0.1; The sample of destinations consists of the "old" 17 EEA countries and 5 non-EU countries: Australia, Canada, New Zealand, Switzerland and the United States.

Difference-in-Differences analyses, Controls for the EU enlargement in order to separate the labour market openings effects from the EU enlargement effects, 22 destinations, years 1995-2010.

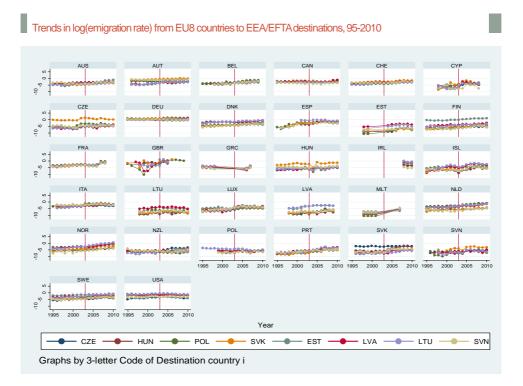
VARIABLES	EU8-	EU2	El	U8	El	J2
LMO	0.290***	0.268***	0.248**	0.282***	0.363**	0.353
EUenl	0.308***	0.334***	0.169	0.246**	0.798***	0.818***
Dest & Origin FE	YES		YES		YES	
Pair of country FE		YES		YES		YES
Constant	-90.909***	-96.769***	-117.518***	-133.533***	425.877	475.934
Observations	2,424	2,424	1,910	1,910	514	514
Adjusted R-sq	0.862	0.9065	0.868	0.9116	0.899	0.9012

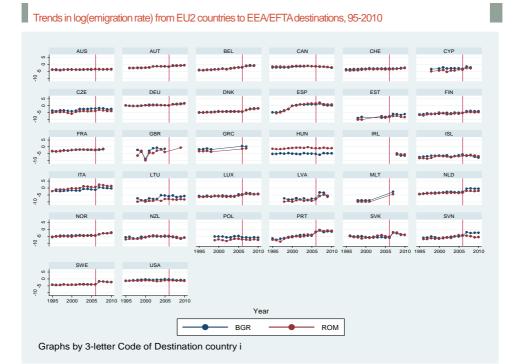
Dependent Variable: Ln(Emigration Rate). Controls included: networks, economic and distance variables, time dummies. Robust standard errors clustered on country pairs level, *** p<0.01, ** p<0.05, * p<0.1; The sample of destinations consists of the "old" 17 EEA countries and 5 non-EU countries: Australia, Canada, New Zealand, Switzerland and the United States.

Triple difference (DDD) estimator -2004 EU-8

- similarly as in DD, but add:
 - · Non-experimental group of source countries:
 - · Russia, Croatia, Albania and Ukraine sources
 - post-treatment period varies according to the different time of lifting restrictions

DDD analyses of labour market openings and EU enlargements; Period: 1995-2010. Experimental groups of source countries: Albania, Croatia, Russia and Ukraine.


	EU8+EU2	+4CEECs	EU8+4	CEECs	EU2+4	CEECs
VARIABLES						
LMO	0.237***	0.338***	0.233**	0.385***	-0.051	0.401*
EUenl	0.594***	0.637***	0.548***	0.596***	1.142***	1.238***
Dest & Origin FE	YES		YES		YES	
Pair of country FE		YES		YES		YES
Constant	-22.903	-35.511**	-4.795	-25.343	-17.699	-27.292
Observations	3,110	3,110	2,596	2,596	1,200	1,200
Adjusted R-sq	0.861	0.9081	0.864	0.9130	0.886	0.9133


Dependent Variable: Ln(Emigration Rate). Controls included: networks, economic and distance variables, time dummies. Robust standard errors clustered on country pairs level, *** p<0.01, ** p<0.05, * p<0.1; The sample of destinations consists of the "old" 17 EEA countries and 5 non-EU countries: Australia, Canada, New Zealand, Switzerland and the United States.

TESTING VALIDITY: Placebo tests: period 1995-2003; placebo enlargement year for EU8=1997; placebo for EU2=2000

	EU8-	+EU2	EU8-	+EU2
VARIABLES				
LMO	0.140	0.093	0.123	0.091
EUenl			0.121	0.018
Dest & Origin FE	YES		YES	
Pair of country FE		YES		YES
Constant	-131.288***	-162.262***	-121.079***	-160.794***
Observations	1,239	1,239	1,239	1,239
Adjusted R-sq	0.856	0.9175	0.856	0.9175

Dependent Variable: Ln(Emigration Rate). Controls included: networks, economic and distance variables, time dummies. Robust standard errors clustered on country pairs level, *** p<0.01, ** p<0.05, * p<0.1

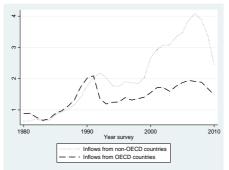
SUMMARY:

- · A positive effect of labour market openings on migration:
 - migrants move to countries with greater formal labor market access over those in which their access is restricted.
 - The relationships hold even in the most restrictive models with economic and distance indicators, existing immigrant stocks and country or country pair FE.
 - in models without networks, the coefficients on DD and DDD are always significant positive;
 - It holds also for 32 destinations
 - It holds even if I control for the overall effect of the "EU entry" on migration.
 - the estimated "EU entry" effect is positive and significant in all DD and DDD model specifications, and it is larger than the "labour market opening" effect.

Labor Market Laws and intra-European Migration: The Role of the State in Shaping Destination Choices

By John Palmer and Mariola Pytlikova European Journal of Population, 2015

- ⇒ Use an employment rights index collected by John Palmer to evaluate how granting employment rights law influence migration.
- \Rightarrow We study immigrants *multiple choices*
- \Rightarrow We study potential *mechanisms* behind
- \Rightarrow WE FIND:
- ⇒ migrants are attracted to destinations that give them greater formal labor market access.
- ⇒ Descreasing restrictions in one destination diverted migrants from other potential destinations.
- \Rightarrow The effect of destination labor market access is:
 - ⇒ weaker for destinations with *larger existing co-national networks*, and for migrants from *linguistically closer* countries and from countries with *higher average education*.


THE INFLUENCE OF ATTITUDES TOWARD IMMIGRANTS ON INTERNATIONAL MIGRATION

CEDRIC GORINAS MARIOLA PYTLIKOVA

Forthcoming in the International Migration Review

MOTIVATIONS

• CAN NATIVES' HOSTILITY TO IMMIGRANTS REDUCE THE NUMBER OF IMMIGRANTS IN A COUNTRY?

Natives' opinion in 30 OECD countries: "I do not want immigrants or foreign workers as neighbors:" **18** pct.

"I agree that employers should give priority to [nation] workers, when jobs are scarce." **64** pct. "I think that my government should place stricter limits on the number of immigrant workers or prohibit immigrants to come:" **50** pct.

(Integrated Values Survey 80-2010)

MECHANISMS

• WHY SHOULD NATIVES' HOSTILITY AFFECT IMMIGRATION?

Attitudes influence the integration process of immigrants

- Directly: interethnic conflicts (Dustmann & Preston 2001)
- Indirectly: policies and public debate (Dustmann & Preston 2001; Facchini and Mayda 2008)
- Barriers for labor market (Waisman & Larsen 2007; Constant et al. 2009)
- Might reflect ethnic discrimination (Carlsson & Eriksson 2012)
- \Rightarrow Negative attitudes increase migration costs
- ⇒ Countries with more hostile natives receive fewer immigrants

THIS STUDY

- IS THE FIRST STUDY TO LOOK AT WHETHER NATIVES' ANTI-IMMIGRANT ATTITUDES CAN HINDER IMMIGRATION
- EXPLORES POSSIBLE MECHANISMS
 - Migration policies
 - Types of migrants: e.g., labor-driven migrants
 - Information channels behind mechanisms
- EXPLOITS RICH MULTIPLE-DESTINATION-AND-ORIGIN LONGITUDINAL DATA

RELATED LITERATURE (1/2)

The determinants of international migration

- e.g., Hicks (1932), Borjas (1999), Clarck et. al (2007), Pedersen et al. (2008), Mayda (2010), Adsera & Pytlikova (2012), Ortega & Peri (2012)
- Migration factors include: income differentials; employment opportunities; welfare benefits; geographic and linguistic distance; ethnic networks; immigration policies, etc.

The formation of natives' attitudes toward immigrants

e.g., Bauer et al. (2000); Fertig & Schmidt (2002); Dustmann and Preston (2004); O'Rourke & Sinnott (2006); Facchini & Mayda (2008, 2009); Card, et al. (2012)

RELATED LITERATURE (2/2)

Anti-Immigrant Attitudes and International Migration

Not much evidence.

- Facchini and Mayda (EP, 2008): 1 wave of the ISSP; positive correlation between net migration and pro-immigration opinions
- Wilkes et al. (IMR, 2008): the number of immigrants in a country does not influence anti-immigrant attitudes.
- ⇒ No study looks at anti-immigrant attitudes as a potential determinant/cost of migration

DATA

- Bilateral (destination-origin) data on international migration: flows and stocks for up to 224 origin and 30 OECD receiving countries (Adsera and Pytliková, EJ, 2015)
- Survey data from the Integrated Values Survey: 30 OECD destination countries
- Averages by country for each wave. Up to 7 waves; linear interpolation for the years with no survey.
- Other time-variant covariates: GDP, U rates, distance, social redistribution, immigration policies, political pressure, etc.

MEASURING NATIVES' ATTITUDES

Measure	Survey questions from the IVS	N	Obs. period	М	SV
<u>No neighbor</u>	"On this list are various groups of people. Could you sort out any that you would not like to have as neighbors?" (1) If a respondent mentions either "immigrants/foreign workers" or "people from a different race," (0) otherwise.	28,224	1981 – 2009	0.18	0.12
Labor discrimination	"When jobs are scarce, employers should give priority to [nation] people over immigrants. Do you: (0) disagree or neither, or (1) agree?"	25,536	1989 _ 2009	0.62	0.18
<u>no neighbor</u>	With linear interpolation of the years with no IVS wave	150,080	1981 - 2009	0.18	0.11
Labor discrimination	With linear interpolation of the years with no IVS wave	116,480	1989 - 2009	0.62	0.18

A MODEL OF INTERNATIONAL MIGRATION (IN SHORT)

 $\begin{aligned} \ln m_{ij} &= \gamma_1 + \gamma_2 \underline{\ln Att_{j\,t-1}} + \gamma_3 \ln(GDP_j)_{t-1} + \gamma_4 \ln(GDP_i)_{t-1} + \gamma_5 \ln(GDP_i)_{t-1}^2 \\ &+ \gamma_6 \ln U_{j\,t-1} + \gamma_7 \ln U_{i\,t-1} + \gamma_8 \ln pse_{j\,t-1} + \gamma_9 \ln p_{ij\,t-1} + \gamma_{10} \ln s_{ij\,t-1} \\ &+ \gamma_{11} F H_{i\,t-1} + \delta_{ij} + \theta_t + \varepsilon_{ij\,t} \end{aligned}$

with:

- m_{ii} : propensity to migrate from origin *i* to destination *j*
- Att_{j t-1}: (2 alternative) measures of natives' attitudes toward immigrants: No_neighbor & Labor_discrimination
- GDP, U rates, share of public social expenditure, population ratios, ethnic networks, political pressure (Freedom House indices)
- · Year FE and country-pair FE
- Similar applications in, e.g., Clark et al. (2007); Mayda (2010), Ortega & Peri (2012); Adsera & Pytlikova (2015)

IDENTIFYING THE EFFECT OF ATTITUDES

- Possible reverse causality between migrant inflows and natives' attitudes and other migration factors
- ⇒ As in Mayda (2010), Ortega & Peri (2012) we use lagged values (t-1) of time-variant variables and treat them as predetermined
- $\Rightarrow\,$ Alternatively: with // without interpolation of the years with no actual survey
- \Rightarrow Test for plausible mechanisms
- Indirect effect of immigration policies:
- ⇒ Control for migrant entry restrictions in a robustness
- Unobserved country-specific and country-pair characteristics:
- ⇒ Country-pair FE and extensive sets of controls

49

BASELINE RESULTS – DETERMINANTS OF IMMIGRATION

		Dep.	Var. : Propensi	ty to emigrate fr	om i to j, Mijt	= log of the shar	e of emigration	flows to country	j in country i t	total population
		No in	iterpolation of a	attitudes measure	s			Int	erpolation of at	titudes measure
		OLS esti	mates		Beta standa	ardized coeff.		OLS est	imates	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
No neighbor (t-1)	-0.263*** (0.077)		0.056 (0.078)		0.014		-0.335*** (0.090)		0.041 (0.036)	
Labor discrimination (t-1)		-0.695*** (0.113)		-0.357*** (0.119)		-0.065***		-1.055*** (0.111)		-0.096 (0.059)
N	4,131	4,336	4,131	4,336	4,131	4,336	25,654	23,685	25,654	23,685
Adjusted R-sq	0.157	0.139	0.949	0.950	0.949	0.950	0.011	0.038	0.951	0.952

10% increase in Labor_discr yields a 3.6% decrease in migrant inflows.

A s.d. incr in Labor_discr yields a 0.07 incr in s.d. of migrant inflows: negligible next to the size of effect of networks or GDP, but bigger than unemployment in j.

ROBUSTNESS – MORE HOMOGENOUS RECEIVING COUNTRIES

	(1) Weste	m destinations:	EU15, USA, C	AN, AUS	(2) Old de	stinations: USA	, CAN, AUS, U	K, FR, NL	
	No Inter	polation	Interp	olation	No Inte	rpolation	Interpolation		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	
No neighbor(t-1)	0.007		-0.004 (0.044)		-0.265 (0.225)		0.059 (0.131)		
Labor discrimination(t-1)		-0.437*** (0.133)		-0.161*** (0.061)		-1.152*** (0.282)		-0.626** (0.262)	
Constant	-39.146*** (13.779)	-46.304*** (12.369)	-40.590*** (5.223)	-37.856*** (5.460)	-9.020 (19.777)	-47.299** (21.066)	-58.556*** (9.812)	-60.290*** (12.651)	
N	2,996	3,011	17,585	15,986	756	773	4,041	3,428	
Adjusted R-sq	0.940	0.942	0.951	0.953	0.947	0.947	0.938	0.939	

\Rightarrow Stronger effect of Labor_discrimination for migrants to EU15, US, CAN, AUS.

ANTI-IMMIGRANT ATTITUDES AND INTERNATIONAL MIGRATION

MECHANISMS -

- 1. POSSIBLE INDIRECT EFFECT OF RESTRICTIVE IMMIGRATION POLICIES
- 2. EFFECT OF ATTTITUDES ON DIFFERENT TYPES OF IMMIGRANTS
 - Proxy for labor motivation

3. INFORMATION CHANNELS

- Ethnic networks
- Destination language and medias
- Out-migration

MECHANISMS – 1. INDIRECT EFFECT OF RESTRICTIVE IMMIGRATION POLICIES?

			Control	(2) Within	n-EU migration	with no entry a	estriction					
	N	o interpolation o	of attitudes measure	s	In	terpolation of a	ittitudes measur	es	No Inter	polation	Interp	olation
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
to neighbor(t-1)	1.156**		2.056***		-0.160***		-0.139***		-0.055		0.028	
	(0.573)		(0.742)		(0.043)		(0.046)		(0.160)		(0.079)	
abor discrimination(t-1)		-0.521		-0.521		-0.219***		-0.213***		0.154		-0.276**
		(0.331)		(0.332)		(0.066)		(0.066)		(0.232)		(0.092)
intry laws tight(t-1)	NO	NO	-0.990*	0.000	NO	NO	-0.017**	-0.023**	NO	NO	NO	NO
2011			(0.517)	(0.071)			(0.008)	(0.009)				
Constant	-93.615***	-11.613	-61.719*	-11.614	-39.231***	-53.923***	-38.704***	-51.911***	-110.426	-110.769	-49.937*	-44.321
	(34.524)	(28.508)	(36.889)	(28.567)	(5.316)	(5.689)	(5.314)	(5.612)	(83.280)	(84.082)	(30.162)	(30.871)
ī.	1,387	1.514	1.387	1.514	12,550	10,951	12,550	10,951	744	758	4,181	3,995
Adjusted R-sq	0.969	0.969	0.970	0.969	0.959	0.963	0.959	0.963	0.960	0.958	0.938	0.940
Notes: All specificati	ions include year	and country-pair	r fixed effects, and	other controls	including GDF	per capita in	the source (in a	addition to a sq	uared term), GI	DP per capita i	n the destinatio	n, a

 \Rightarrow Effect persistent even when controlling for immigration policies

MECHANISMS – 2. EFFECT OF ATTTITUDES ON DIFFERENT TYPES OF IMMIGRANTS

	(1)) OECD vs. nor	-OECD Migrar	ıts	(2) S	ize of the source	country's GDP	p.cap.
	No Inter	polation	Interpo	olation	No Inter	polation	Interp	olation
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
No neighbor (t-1)					1.702*** (0.614)		0.545** (0.263)	
Labor discrimination (t-1)						2.139** (0.920)		0.860*
No neighbor(t-1)_OECD	-0.107		-0.104** (0.048)			(0.520)		(0.401)
No neighbor(t-1)_NonOECD	0.188*		0.161***					
Labor discrim(t-1)_OECD		-0.593*** (0.131)		-0.369*** (0.076)				
Labor discrim(t-1)_NonOECD		-0.133		0.127				
Attitudes measure x Source country GDP (t-1)		· · · · · ·			-0.173***	-0.264***	-0.053*	-0.101**
county obt (CT)					(0.063)	(0.093)	(0.028)	(0.048)
ln GDPpc _{it-1}					-0.653**	-0.471**	-0.155	-0.135
					(0.264)	(0.210)	(0.121)	(0.117)
Constant	-26.739***	-26.531***	-30.989***	-28.687***	-40.449***	-41.667***	-30.565***	-30.050***
	(10.008)	(7.894)	(4.071)	(4.369)	(6.942)	(5.927)	(2.869)	(3.072)
N	4,131	4,336	25,654	23,685	4,128	4,332	25,642	23,672
Adjusted R-sq	0.950	0.950	0.951	0.952	0.949	0.950	0.951	0.952

⇒ Economically driven immigrants react more to antiimmigrant attitudes, espec. to the likelihood of labor discrimination

MECHANISMS - 3. INFORMATION CHANNELS

	(1) The ethnic net				ite from i to j, Mijt = log of the share of emigration flows to country j in c (2) The linguistic proximity channel					(3) The out-migration channel			
	No Interpolation Interpolation		No Interpolation Interpolation			No Interpolation Interpolation			No Inter	polation	Interp	Interpolation		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	
No neighbor (t-1)	0.027 (0.095)		0.051 (0.047)			0.099*		0.052 (0.040)		0.266 (0.267)		0.084 (0.063)		
Labor discrimination (t-1)	. ,	-0.374*** (0.134)		-0.139* (0.079)			-0.285*** (0.090)		0.008 (0.064)		0.288 (0.250)		-0.035 (0.106)	
Attitudes measure x Immigrant Stock (t-1)	-0.019	-0.011	0.005	-0.023										
	(0.031)	(0.051)	(0.016)	(0.028)										
ln s _{ij t-1}	0.608***	0.639***	0.542***	0.527***										
	(0.094)	(0.061)	(0.044)	(0.037)										
Attitudes measure x Linguistic Proximity (t-1)						-0.286***	-0.383**	-0.219*	-0.538***					
•						(0.108)	(0.194)	(0.115)	(0.166)					
Linguistic Proximity					(0.076)	-0.185 (0.248)	(0.153)	(0.252)	(0.103					
Constant	-25.984*** (10.056)	-24.707*** (7.828)	-30.048*** (4.098)	-27.275*** (4.268)	-17.514*** (2.906)	-29.138*** (6.526)	-28.442*** (5.770)	-23.001*** (3.982)	-18.376*** (3.498)	-43.860** (17.834)	-41.667** (17.172)	-40.139*** (4.110)	-36.028** (4.435)	
N Adjusted R-so	4,131 0,949	4,336 0.950	25,654 0.951	23,685 0.952	27,749 0.902	4,131 0.912	4,336 0.911	25,654 0.905	23,685 0,904	2,820 0,876	2,889 0.871	19,278 0.867	17,667 0.869	

⇒ Language knowledge (media?): the most plausible information channel

CONCLUSION

Most robust finding:

Natives' readiness to discriminate against immigrants, when jobs are scarce, influences the location choice of immigrants

- Directly; not only through tighter immigration policies
- Natives' hostility to immigrants: a larger cost for immigrants
 - that are economically driven (i.e., OECD migrants)
 - from countries with a common language/countries linguistically closer
- ⇒ Political challenge: How to influence natives' hostility when high structural demand for foreign workers?
- ⇒ Strengthening interpersonal trust across ethnic groups (Putnam 2007; Rustenbach 2010)

BASELINE RESULTS – DETERMINANTS OF IMMIGRATION

		Dep.	Var. : Propensi	ty to emigrate fr	om i to j, Mijt =	log of the shar	e of emigration	flows to country	y j in country i	total population	
	No interpolation of attitudes measures						Interpolation of attitudes measure				
		OLS est	OLS estimates			Beta standardized coeff.		OLS estimates			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	
No neighbor (t-1)	-0.263*** (0.077)		0.056 (0.078)		0.014		-0.335*** (0.090)		0.041 (0.036)		
Labor discrimination (t-1)		-0.695*** (0.113)		-0.357*** (0.119)		-0.065***		-1.055*** (0.111)		-0.096 (0.059)	
$\ln(GDP_j)_{t-1}$			3.229*** (0.495)	2.981*** (0.388)	0.390***	0.375***			2.309*** (0.211)	2.131*** (0.219)	
$\ln(GDP_i)_{t-1}$			-3.799** (1.490)	-4.099*** (1.099)	-1.565**	-1.692***			-0.324 (0.596)	-0.885 (0.604)	
$\ln(GDP_i)_{t=1}^2$			0.211**** (0.081)	0.221*** (0.063)	1.567***	1.649***			0.016 (0.033)	0.047	
ln pse _{j t-1}			2.484***	2.324*** (0.403)	0.243***	0.217***			0.749*** (0.128)	0.782*** (0.134)	
$\ln U_{jt-1}$			-0.146**	-0.201***	-0.032**	-0.044***			-0.072**	-0.044	
ln U _{it-1}			(0.070) 0.166** (0.084)	(0.066) 0.172** (0.084)	0.043**	0.045**			(0.036) 0.086*** (0.027)	(0.036) 0.096*** (0.027)	
ln p _{ij t-1}			0.179 (0.453)	0.472	0.155	0.410			0.524*** (0.196)	0.543** (0.223)	
FH _{1t-1} Political Rights			0.028	-0.012	0.008	-0.004			0.083** (0.034)	0.029	
FH _{it-1} Civil Rights			-0.151 (0.094)	-0.148 (0.091)	-0.038	-0.038			-0.126*** (0.038)	-0.192*** (0.041)	
ln s _{ij t-1}			0.649*** (0.063)	0.644*** (0.060)	0.724***	0.718***			0.532*** (0.039)	0.536*** (0.037)	
Country pair FE	NO	NO	YES	YES	YES	YES	NO	NO	YES	YES	
Constant	-4.235*** (0.350)	-4.950*** (0.133)	-26.696*** (4.313)	-29.080*** (3.978)			-4.405**** (0.362)	-5.163**** (0.128)	-30.228*** (4.071)	-26.696*** (4.313)	
N Adjusted R-sq	4,131 0,157	4,336 0,139	4,131 0,949	4,336 0,950	4,131 0,949	4,336 0.950	25,654 0.011	23,685 0.038	25,654 0.951	23,685 0.952	

OUR NEXT LECTURE – Tuesday 2.2.2016, 8.30-10.00

Selectivity in migration, models of migration and empirical evidence

THE NEXT LECTURES

- Immigrant performance and integration; the second generation
- · Immigrants and innovation; International migration and globalization
- Impacts of immigration
- Immigration policy
- · Diversity Impacts of workforce diversity on firms and economies
- Emigration and source countries; Brain drain and brain gain; Remittances