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When choosing his speed, a driver faces a trade-off between private benefits (time savings) and private costs (fuel
cost andowndamage and injury). Driving faster also has external costs (pollution, adverse health impacts and injury
to other drivers). This paper uses large-scale speed limit increases in the western United States in 1987 and 1996 to
address three relatedquestions. First, do the social benefits of raising speed limits exceed the social costs? Second, do
the private benefits of driving faster exceed the private costs? Third, what is the optimal speed limit? I find that
a 10 mph speed limit increase on highways leads to a 3–4 mph increase in travel speed, 9–15% more accidents,
34–60%more fatal accidents, and elevated pollutant concentrations of 14–24% (carbonmonoxide), 8–15% (nitrogen
oxides), 1–11% (ozone) and 9% higher fetal death rates around the affected freeways. Using these estimates, I find
that the social costs of speed limit increases are two to seven times larger than the social benefits. In contrast,
many individual drivers would enjoy a net private benefit from driving faster. Privately, a value of a statistical life
(VSL) of $6.0 million or less justifies driving faster, but the social planner's VSL could be at most $0.9–$2.0 million
to justify higher speed limits. I conclude that the optimal speed limit was lower, but not much lower, than 55 mph.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Two interesting and actively debated policy questions that economists
are well-positioned to consider are: should we increase speed limits on
freeways, and what is the optimal speed limit? When choosing his
speed, a driver faces a trade-off between private benefits (time savings)
and private costs (increased fuel use, risk of personal injury, death or
damage). It is thus an empirical question if driving faster than the current
speed limit is rational. Besides private costs, there are external costs to
driving faster that motivate the use of speed limits: increased pollution,
adverse health impacts and damage or injury to other drivers. Speed
limits have recently beenunder active debate. Early in2011, Spain tempo-
rarily reduced the freeway speed limit from 120 to 110 kilometers per
hour (kph) to achieve gasoline reductions, while the Netherlands raised
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it from 120 to 130 kph to reduce travel time.1 In the United States, travel
time reduction inspired Illinois (2014), Kentucky (2007), Utah (2009),
Ohio (2011) and Texas (2012) to increase their posted maximum
speed. Germany's “no speed limits” rule for rural autobahns is facing in-
creased criticism from politicians and environmentalists.

This paper aims to answer three related questions. First, should we
raise speed limits? A social planner would do so only if the social benefits
of speed limit increases exceed the social (private plus external) costs.
Second, do speed limits constrain drivers' speed choices? That is, would
individuals enjoy private net benefits from driving faster if speed limits
were raised? Third, what is the optimal speed limit? To answer these
questions, I estimate the effect of speed limit increases on a wide range
of outcome variables: travel time, accidents, air pollution and health. I
use these estimates to calculate the private and external benefits and
costs summarized in Fig. 1.
1 Spain's deputy prime minister Alfredo Pérez Rubalcaba expressed it as follows: “We
are going to go a bit slower and in exchange for that we are going to consume less gasoline
and therefore pay less money.” (http://www.guardian.co.uk/environment/2011/feb/25/
spain-speed-limit-oil-prices). Dutch transport minister Melanie Schultz van Haegen
defended her decision by claiming that “a higher speed limit leads to a travel time reduc-
tion of up to eight percent.” (http://www.rijksoverheid.nl/ministeries/ienm/nieuws/
2011/02/28/130-km-u-van-start-op-afsluitdijk.html). Other governments proposed to
decrease speed limits to reduce traffic accidents (United Kingdom, 2009) or pollution
and associated adverse health effects (Texas, 1992; green parties in Europe).
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2 This is surprising, since other driving-related policies have attracted considerable at-
tention from economists. Examples include the impact on accidents of seat belt laws
(Cohen and Einav, 2003), highway police enforcement (DeAngelo and Hansen, 2014)
and vehicle weight (Anderson and Auffhammer, 2014; Jacobsen, 2013).

Fig. 1. An overview of the costs and benefits of speed limit changes. Higher speed limits may lead to a higher average travel speed. This higher speed has a direct benefit (reducing travel
time), but also three direct costs: higher accident rates, increased pollution and increased fuel expenditures. The pollution channel has indirect negative effects on infant and respiratory
health, and climate change. Time savings benefits are private, while some of the costs are externalities.
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I use a unique setting and rich data to address these questions. The
1987 amendment and 1995 repeal of the National Maximum Speed
Law in the United States provide quasi-experimental variation in
speed limits. Between 1974 and 1987, this law prescribed a maximum
speed limit of 55 mph across the entire United States. In 1987, states
were allowed to raise the speed limits to 65 mph on rural interstates,
but not on other similar urban or rural highways. In 1996, speed limit
authoritywas returned to the states, which decided to raise speed limits
on a variety of highways. This provides a rare opportunity to use
difference-in-differences and ratio-in-ratios (count data) methods to
identify the effect of speed limit changes on travel speed, accidents,
pollution and health. I construct control highways or areas that are un-
affected by the speed limit changes, but otherwise very similar to the af-
fected highways or areas. Also, I exploit geographically precise micro
data to make within-state difference-in-differences comparisons
while holding constant weather, daylight, hour-of-day, traffic density,
road construction, and much else.

My paper uses a detailed data set to evaluate the effects of speed
limit changes. First, I use location descriptions of speed limit changes
in California, Oregon andWashington. These states are selected because
of superior data quality and availability. Second, I collect hourly mea-
surements of actual traffic speed. Third, I use a data set of all highway ac-
cidents. Fourth, I use daily air pollution measurements at various
monitoring stations. Fifth, I requested all birth records in California to
estimate the effect on infant health. Finally, I use geographical mapping
techniques to augment these data sets with meteorological and geo-
graphic information wherever applicable.

In terms of the specific outcome variables, I find that a 10mph speed
limit increase leads to a 3–4 mph increase in travel speed, 9–15% more
accidents, 34–60% more fatal accidents, a shift towards more severe ac-
cidents, and elevated pollution concentrations of 14–24% (carbonmon-
oxide), 8–15% (nitrogen oxides) and 1–11% (ozone) around the affected
freeways. The increased pollution leads to a 0.07 percentage point (9%)
increase in the probability of a third trimester fetal death, and a positive
but small and statistically insignificant increase in the probability of in-
fant death. I use these estimates to calculate the time saving benefits
and the private and external costs from accidents and deteriorated in-
fant health. Moreover, I combine the travel speed estimates with engi-
neering data to compute the increase in fuel consumption at higher
speed. Similarly, I combine the air pollution estimates with epidemiolo-
gy research to compute adverse health effects for adults.

Using these estimates and awide array of plausible values of a statis-
tical life (VSL) and values of time routinely adopted by governments, I
find that the social costs of raising the speed limit from 55 to 65 mph
are two to seven times larger than the social benefits. My social cost es-
timates are two to four times larger than in previous studies, in large
part due to the greater comprehensiveness of my approach: I not only
consider travel time and fatal accidents, but also non-fatal accidents,
climate damages, fuel costs and health. While net social benefits
are negative, I find that many individual drivers would enjoy a net
private benefit from driving faster as a result of the higher speed limit.
Privately, a VSL of $6.0 million or less justifies driving faster, but the so-
cial planner's VSL could be at most $0.9 million to justify higher speed
limits ($2.0 million if adult health impacts are conservatively left out
due to their uncertain nature). While $6.0 million is within the conven-
tional range of VSL estimates, $0.9–$2.0 million falls well below it.
Although these results suggest a surprisingly large difference between
the social and private optimal speed choices, the optimal speed limit
was likely not much below 55 mph since driving slower does not
yield substantial pollution reduction benefits and gasoline savings in
that speed range.

A seminal paper in this literature is Ashenfelter and Greenstone (AG;
2004), who use the 1987 speed limit changes to estimate the value of a
statistical life based only on the trade-off between travel time and fatal
accident risk. This is the onlywell-known study that has producedmod-
ern empirical evidence on how speed limits affect speed and fatal
accidents.2 AG use annual data by state and road type in a difference-
in-differences framework to estimate the impact of the 1987 speed
limit changes on speed and fatal accidents. They can employ cross-
state variation in the adoption of the 65 mph speed limit: seven states
in the Northeast retained the 55 mph limit, whereas the other eligible
states adopted the 65 mph limit. They find that the average speed in-
creased by 2.5 mph and fatality rates by 35%. The paper calculates an
upper bound on the value of a statistical life: $1.54 million (1997
USD) for the full sample, but higher estimates for California ($4.75 mil-
lion) andOregon ($5.41million). Section8 discusses howmy results are
different.

My paper's main contributions are threefold. First, I explicitly distin-
guish between private and external costs and benefits and show a stark
contrast between them. Second, because I employ an unusually rich
data set, I can estimate the effect of speed limit changes on additional
important outcomevariables such as severe but non-fatal injuries, prop-
erty damage from accidents, air pollution and the health of infants and
others who live near freeways. These estimates allow me to perform a
more complete cost–benefit analysis. They are also interesting in their
own right. Third, by exploiting within-state variation in speed limits
and a wide range of control variables, my approach mitigates potential

munich
Highlight

munich
Highlight

munich
Highlight

munich
Highlight

munich
Highlight

munich
Highlight

munich
Highlight



46 A. van Benthem / Journal of Public Economics 124 (2015) 44–62
omitted variable bias. Usingwithin-state speed limit variation is a useful
and necessary complementary approach to existing cross-state regres-
sions for speed and fatal accidents. AG use the fact that not all states
raised their rural interstate speed limits in 1987 and compare highways
of the same type (e.g., rural interstates), but across stateswith potential-
ly dissimilar driving conditions (e.g., New Jersey vs. Iowa). I compare
similar but differently classified highways (e.g., rural interstates and
“rural principal arterials”), but within one state so that driving condi-
tions are more similar. I further mitigate concerns about omitted vari-
ables by including a wide set of control variables, such as weather,
road and driver conditions and demographics.3

This research is relevant for today's policy makers, since past experi-
ences can inform them about whether speed limits are desirable and if
raising speed limits further would be in society's best interest. Using en-
gineering and epidemiological evidence on the past and current rela-
tionships between speed, pollution and health, many results in this
paper can be extrapolated to obtain pollution and health effects for cur-
rent speed limit changes. The large difference between private and so-
cial net benefits is likely to persist, especially because governments
currently consider speed limits in the 75–90 mph range where the
strong upward sloping relationship between speed and emissions re-
mains even for today's new vehicles. This paper also demonstrates
that the common approach to evaluating speed limits, based on a single
cost or benefit or a single trade-off between travel time and fatal acci-
dents, may lead to incorrect conclusions.

2. Empirical strategy

In an ideal speed limit experiment, one would consider two free-
ways that are identical in terms of driving characteristics (speed limit,
traffic counts, number of lanes, curvature, slope, driver experience, vehi-
cle type, weather, etc.) and then randomly raise the speed limit on one
freeway while keeping the speed limit fixed on the other. However,
for good reasons, governments do not randomly assign speed limits.
Nevertheless, there exists a natural experiment that allows me to iden-
tify the treatment effects with some additional assumptions.

2.1. A series of quasi-experiments: the national maximum speed law

In response to the First Oil Crisis, Congress adopted the National
Maximum Speed Law in 1974, which prohibited speed limits in excess
of 55mph on any highway in the country. Its goal was to reduce oil im-
ports from theMiddle East. States had to comply in order to keep receiv-
ing federal highway funding. The lawwas amended in April 1987, when
states were allowed to increase the speed limits to 65 mph on rural in-
terstates only but not on similar freeways. Oregon and Washington
responded by increasing the speed limit on (virtually) all of their rural
interstates; California increased the speed limit on the majority of its
qualified freeways. In December 1995, the National Maximum Speed
Law was repealed, returning all speed limit authority to the states.
California raised the speed limit to 65 mph on 2200 highway miles,
and in addition raised the speed limit on 1272 highway miles to
70 mph (these were primarily the segments that had already been
raised to 65 mph in 1987). Washington also further increased speed
limits. Oregon adopted no further changes. Across all three states, few
highways have experienced further changes in their speed limits since
1996.

2.2. Identification

In the absence of an ideal experiment, two potential concerns arise
when using the amendment and abolishment of the National Maximum
3 For example, weather shocks around the time of the speed limit changes are potential
confounders if they affect treatment freeways differently from control freeways. Another
confounder could be changes in drunk driving and seat belt laws across states.
Speed Law to identify a causal impact of speed limit changes on travel
speed, accidents, pollution and health. The first issue is local treatment
effects and applies mostly to the 1987 speed limit changes on rural
interstates. Although we cannot be certain that the estimated impact
of these changes is representative for, e.g., urban highways, this local
treatment effect is a particularly interesting one: rural highways are likely
candidates to experience (further) speed limit increases today. In 1996,
speed limits increased on a more diverse range of rural and urban
highways.

The second issue is non-random variation in speed limits. However,
the 1987 speed limit changes actually provide a source of almost
random variation: rural interstates were allowed higher speed limits,
whereas rural principal arterials and urban highways must be kept at
55 mph. The Federal Highway Administration (FHWA) classifies both
interstates and principal arterials (mainly federal – “US” – highways)
as highways that “serve corridor movements having trip length and
travel density characteristics indicative of substantial statewide or inter-
state travel” (Federal Highway Administration, 1989). I now discuss
why the distinction between these road types is somewhat arbitrary
in many respects.

The number of highwaymiles that states can designate as interstates
is limited, and de facto rationed. States can apply to add a principal arte-
rial to the interstate system. To obtain approval, a road needs to be a
“logical addition” to the interstate system from a national defense
perspective, andmeet all interstate standards (e.g., sufficient length, con-
nections to other interstates on either end, and safety and environmental
standards). If a principal arterial is deemed to duplicate an existing inter-
state, inclusion will be denied. The year of construction and national de-
fense reasons, as opposed to safety standards, often determine why one
highway is designated as an interstate while another similar highway is
not. In fact, some highwaymiles that are ineligible to become interstates
(because of rationing) are signed as “non-chargeable” interstates, to
avoid driver confusion. Also, strict design standards canmake it undesir-
able for states to turn principal arterials into interstates. If a highway
meets all interstate standards but has a short segmentwithout full access
control (e.g., US-101 near Salinas, CA), inclusion will be denied. Since
adding interstates hardly increases federal highway funding and limits
the state to add new access points, states do not always try to add likely
candidates as interstates (FHWA, personal communication, 26 August
2011). These examples illustrate that the distinction between interstates
and principal arterials can be quite arbitrary.

Therefore, rural principal arterials share many important character-
istics with rural interstates. Both road types had a 55 mph speed
limit before 1987, are designed for speeds at or above 70 mph, and are
typically divided highways with multiple lanes and full or at least
partial access control. Rural principal arterials have fewer lanes than
rural interstates on average, but wide shoulders make driving condi-
tions similar. Urban highways are evenmore similar to rural interstates
in terms of access control and number of lanes, but face a higher traffic
density.

Unfortunately, limited data only allowedme to verify towhat extent
rural interstates differed from rural principal arterials and urban high-
ways in Oregon in 1987. Although these roads obviously share many
similarities, Table 1 reveals at least one observable difference: accident
rates. Rural interstates and urban highways have lower accident rates
than rural principal arterials. These differences are similar to those re-
ported by Ashenfelter and Greenstone (2004) for all states that adopted
the new 65 mph speed limit.

I take these observable differences in 1987 for granted and state the
conditions under which a causal treatment effect is identified. Since one
might be concerned about temporal trends that affect all highways, such
as a gradual decline in fatal accidents because of improved vehicle engi-
neering, seat belt use and air bags, I use a difference-in-differences esti-
mator. For speed and accidents, the treatment group consists of rural
interstates and the control group consists of (subsets of) rural principal
arterials and urban highways. For pollution and health, I compare
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4 This corresponds to 56.3%, 97.3% and 100% of all eligible rural miles per state.
5 Throughout the entire study period, truck speed limits remained at 55mph in Califor-

nia and Oregon. InWashington, truck speed limits were raised from 55 to 60mph in 1996
on those segmentswhere the car speed limits were raised to 70mph. I ignore trucks, since
they only constitute a small fraction of vehicles (see footnote 20).

Table 1
Accident rates by road type before the 1987 speed limit change (Oregon).

Adopted 65 mph
(rural interstates)

Retained 55 mph
(rural principal
arterials)

Retained 55 mph
(urban highways)

Fatal accidents 24 130 26
Per 100 million VMT 0.82 3.76 0.46
Incapacitating accidents 111 411 191
Per 100 million VMT 3.83 11.91 3.37
Non-incapacitating
accidents

240 813 520

Per 100 million VMT 8.30 23.57 9.16
Total accidents 1010 3412 3143
per 100 million VMT 34.94 98.86 55.34
AADT per lane 3554 1823 5091
VMT (million) 2892 3451 5567

Notes: Annual averages over 1985–1987. Oregon is chosen because of data availability.
AADT = average annual daily traffic (supplied by ODOT). VMT = vehicle miles traveled
(Federal Highway Statistics).
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treatment areas close to highways where the speed limit changed with
control areas further away. For speed, pollution and health, I make the
standard identification assumption that treatment (T) and control (C)
groups would have followed the same trend in levels in the absence of
the speed limit changes:

E speedT1jΔSL ¼ 0
h i

−E speedT0
h i

¼ E speedC1
h i

−E speedC0
h i

ð1Þ

where ΔSL denotes the speed limit change, 0 corresponds to the pre-
period (t b tΔSL) and 1 to the post-period (t ≥ tΔSL). The expressions
for pollution and health are analogous, but the treatment group is
now defined as an area close to the treatment freeways.

For accident rates, I assume that absent the policy change, there
would have been equal time trends in ratios for T and C highways:

E
accidentsT1=VMTT

1

accidentsT0=VMTT
0

�����ΔSL ¼ 0

" #
¼ E

accidentsC1=VMTC
1

accidentsC0=VMTC
0

" #
ð2Þ

To assert the reader of the plausibility of these assumptions, the
results sections and Appendix B present evidence that there were no
differential pre-existing trends in the outcome variables for treatment
and control highways and motivates the choice of identification
assumption (2). Moreover, the paper contains a series of robustness
checks that add to the credibility of the identification, such as control-
ling for pre-existing trends in the speed regressions and only including
control highways with comparable accident rates to the treated
highways.

The speed limit changes in 1996 were not as randomly assigned as
in 1987, as states faced no federal restrictions and based their decisions
on accident histories. Therefore, the identification assumption of
equal trends is less convincing (although there is no evidence of differ-
ential pre-existing trends in speed). Nevertheless, I investigate how
changes in the outcome variables are associated with this speed limit
change. This is only possible for speed data. I find that the estimated
effect on speed is similar to the estimate using the 1987 speed limit
changes.

3. Data

First, I collected a list of the freeway segments on which the speed
limits changed in 1987 from the three Departments of Transportation
(CA: Caltrans; OR: ODOT; WA: WSDOT). Following the April 1987
amendment to the National Maximum Speed Law, California
(May 1st), Oregon (December 8th) and Washington (April 23rd)
changed the speed limit for 1157, 604 and 526 rural interstate miles,
respectively.4 Fig. 2 (left panel) displays the interstates on which the
speed limits increased in 1987, as well as highways with no change in
the speed limit.5 The speed limit changes in 1996 are more difficult to
summarize and are discussed in Appendix A.

Second, I obtained detailed speed data for a reasonable range of
monitoring stations in the period 1994–1998 (CA), 1983–1992 (OR)
and 1994–2001 (WA). These data were extracted from archived
databases and scanned paper records. Depending on the state, I observe
counts by speed bin (e.g., 55–60 mph), by year–month–day–hour,
by direction, by lane. California data are available for one month per
quarter. Oregon data are available for one day per quarter. The
Washington data contain speeds for almost all days. I have data for 61
speed stations in California, 48 of which had a speed limit increase
(treatment stations). The Oregon data cover 51 stations (12 treatment
stations). In Washington, I only have six stations, but well balanced
(three treatment stations) and extensive daily coverage throughout
the year. Fig. 2 (right panel) shows the speed stations. Taken together,
these locations represent a wide range of road characteristics. The U.S.
Department of Transportation required states to submit speed data for
a representative sample of roads, which mitigates sample selection
concerns.

Third, I requested the universe of accident records since 1985
(OR) and 1980 (WA). The inclusion of all accidents takes away con-
cerns about selective monitoring in high-risk areas. Unfortunately,
Caltrans has destroyed all accident data older than 10 years. Detailed
information on each accident is reported, such as the date, time, type
(fatality, incapacitating injury, non-incapacitating injury, property
damage), location (highway number and milepost), city, county,
type of highway, urban status and a range of road, weather, daylight
and driver characteristics. Using the accident location and speed
limit change information, I assign each accident a treatment or
control status.

Fourth, the California Department of Public Health's birth cohort
files (1984–1990) contain infant health information from all birth
records, including birth weight, gestational age, infant deaths in
the first year of life and fetal deaths in the second or third trimester
of the pregnancy. The files also contain a large number of characteristics
of the child, mother and father, as well as medical information
about the pregnancy. I use zip code information to approximate
the mother's residence during pregnancy, and use ArcGIS to calculate
the distance between the zip code's population-weighted average
centroid and the closest highway segment on which the speed limit
changed.

Fifth, daily measurements for CO, NO2, O3 and PM10 were obtained
from the California Air Resources Board, the Oregon Department of
Environmental Quality, and the Washington Department of Ecology.
Fig. 2 (right panel) plots the 431 stations that reported emissions for
some part of the period 1984–1990. I calculate the distance between
each air pollutionmonitoring station and the closest point on a highway
segment where the speed limit changed. Stations are located at various
distances from such highways, but only occasionally right next to them.
31 stations were located within three miles of these highways and re-
ported both before and after the speed limit changes (treatment sta-
tions), 42 within five miles and 69 within 10 miles. Since few stations
monitor all five pollutants, the number of treatment stations by pollut-
ant is more limited.

Finally, I obtained weather data from the National Climatic Data
Center's “Global Summary of the Day” (1980–2010). Each weather
station in California, Oregon and Washington reports average,
maximum and minimum temperature, precipitation, wind speed,



6 Standard errors are clustered at the station by year level and at the station level. Clus-
tering at the station level increases the standard errors, but does not affect the conclusions
about statistical significance. A particular concern about correlation of errors within a sta-
tion across time is road construction. Since road construction is typically a shorter-term
(e.g., several weeks ormonths) phenomenon, clustering at the station by year level is like-
ly to be conservative enough while mitigating concerns about a paucity of clusters.

Fig. 2. Rural interstates with increased speed limits in 1987 (left) and the distribution of pollution and speed monitoring stations (right). (Left panel) Gray solid lines indicate interstates.
Black solid lines indicate the interstate segments in CA, OR andWA onwhich the speed limit changed from 55 to 65mph in 1987. Double black lines are a subsample of principal arterials,
onwhich no speed limit change occurred. (Right panel) Black dots indicate pollutionmonitoring stations that were active in the period 1984–1990.White dots indicate speedmonitoring
stations.
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plus indicator variables for rain, fog, snow, hail, thunder or a
tornado. I follow Knittel et al. (2011) and assign each pollution/
speed station a set of weather variables: the inverse distance-
weighted average of observations from all weather stations within
a 20-mile radius.

4. The effect of speed limit changes on travel speed

4.1. Econometric framework

I estimate the effect on travel speed using the following linear
difference-in-differences specification:

speedijth ¼ β0 þ β11 i∈Tð Þ � 1 t≥tΔSLð Þ � TI þ β2Xit þ θi j þ θl j þ θh
þ θd þ θm þ θy þ εijth ð3Þ

for speed station i, traffic direction j, lane l, date t, hour-of-day h, day-
of-week d, month-of-year m and year y. Control variables include
weather conditions (maximum, minimum and average temperature,
wind speed, fog, rain, snow, hail, thunder, tornado) and a measure
of traffic density (number of vehicles per lane per hour). Since
California had speed limit changes from 55 to 65 mph and from 65
to 70 mph, the treatment intensity varies: TI = 1 if ΔSL = 10 and
TI = 0.5 if ΔSL = 5. This assumes an equal treatment effect for
every mph increase in the speed limit. I also estimate separate
coefficients for the two speed limit changes. Moreover, I estimate
separate treatment effects for different years, traffic conditions and
hours of the day.
4.2. Travel speed results

The first panel in Table 2 shows the treatment effect of a 10 mph
speed limit increase in California (1996), Oregon (1987) and Washing-
ton (1996).6 A potential concern is that the speed limit increases caused
substitution of traffic towards highways with higher speed limits. This
wouldmake treatment highwaysmore congested, and reduce the effect
on speed. In addition, traffic density would be an outcome of the treat-
ment and should not be included as a control. In column (5) of the first
panel, I exclude traffic density as a control variable. In the secondpanel, I
test for traffic substitution more directly by estimating Eq. (3) with the
log of the hourly number of vehicles as the left-hand side variable.

The effects on travel speed (panel 1) is quite stable across states
(a 3–4 mph increase in travel speed for a 10 mph speed limit increase),
even though the speed limits were not all raised by the same amount,
from the same original speed limit, and at the same point in time. This
is reassuring and suggests that the estimated coefficient is representa-
tive of a range of speed limit changes between 55 and 70 mph. The re-
sults are robust to the inclusion of station by direction fixed effects
(columns (2) and (4)) and of station by day-of-week fixed effects
(columns (3) and (4)). This is to be expected if the experiment is
clean and the panel is well-balanced. The estimates are considerably
below 10 mph. This might not be surprising, since it is not always the



7 I also did a placebo experiment in which specification (3) is estimated as if the speed
limit change occurred on 1 January 1992,…, 1996. I should find that the coefficients are
insignificant and close to zero, since no speed limit change occurred in reality. This exper-
iment is only possible for Oregon, since the speed data for California and Washington do
not cover a long enough period. Using a symmetric eight year window around the five hy-
pothetical treatment dates, I indeedfind small and insignificant (at the 5% level) treatment
coefficients: 0.86 (1992), 0.56 (1993),−0.06 (1994),−0.63 (1995) and 0.41 (1996) mph.

Table 2
The effect of speed limit changes on travel speed and traffic substitution.

Panel 1: effect on travel speed

(1) (2) (3) (4) (5)

CA 1996
Speed limit 3.10*** 3.06*** 3.12*** 3.08*** 2.98***

(0.52) (0.51) (0.58) (0.58) (0.50)
[0.80] [0.80] [0.80] [0.80] [0.78]

Observations 356,661 356,661 356,661 356,661 356,661

OR 1987
Speed limit 4.09*** 4.23*** 4.10***

(0.46) (0.46) (0.46)
[0.76] [0.71] [0.77]

Observations 19,103 19,103 19,103

WA 1996
Speed limit 3.69*** 3.60*** 3.69*** 3.60*** 3.54***

(0.61) (0.63) (0.61) (0.62) (0.50)
[0.67] [0.67] [0.65] [0.66] [0.54]

Observations 1,371,156 1,371,156 1,371,156 1,371,156 1,371,156

Fixed effects: station, year, month, day-of-week, hour-of-day, plus
Direction Y (CA, WA) Y (CA, WA) Y (CA, WA) Y (CA, WA) Y (CA, WA)
Station × direction N Y (CA, WA) N Y (CA, WA) Y (CA, WA)
Lane × direction Y (WA) Y (WA) Y (WA) Y (WA) Y (WA)
Station × day-of-week N N Y Y N
Controls All All All All Weather only

Panel 2: effect on traffic substitution towards treatment highways

(1) (2) (3)

California (1996) Oregon (1987) Washington (1996)

Interaction (β1) 0.0549 0.0002 0.0020
[0.0342] [0.1186] [0.0870]

Observations 356,661 27,931 1,371,156

Fixed effects: station, direction, year, month, day-of-week, plus
Station × direction Y N Y
Lane × direction N N Y
Hour-of-day Y Y Y
Controls All All All

Notes: (Panel 1) The dependent variable is hourly travel speed. The coefficient on the interaction term of 13 separate regressions is reported. Coefficients are normalized to reflect the
effect of a 10 mph speed limit change. (Panel 2) The dependent variable is the log of the hourly number of vehicles. The coefficient on the interaction term of 3 separate regressions
is reported. (Both panels) Standard errors in parentheses clustered at the station by year level in (), and clustered at the station level in [] (used for stars). The time window is 1994–
1998 (CA), 1983–1992 (OR) and 1994–2001 (WA). ***, ** and * indicate significance at the 1%, 5% and 10% levels, respectively.
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posted speed limit that constrains a driver's speed. During times of con-
gestion and poor visibility, we should expect little effect. Moreover,
some driversmight not respond to higher speed limits because their op-
timal speed choice is at or below the old speed limit.

Panel 2 shows that the traffic substitution coefficients are small and
statistically insignificant at the 10% level, but someof the standard errors
are large. Treatment and control roads do not appear to be strong substi-
tutes. One reason is that they are often quite far apart, while more than
75% of vehicle miles are for commuting and other short-distance travel
(National Personal Transportation Survey, 1995): not many drivers are
at the margin between choosing one over the other. This is confirmed
by column (5) in panel 1: the exclusion of traffic density as a control var-
iable hardly changesβ1. These results suggest that traffic substitution to-
wards roads with increased speed limits is not a major issue.

Table 3 reports the effect of the speed limit changes on the distribu-
tion of travel speed. The results reveal – consistently across the three
states – that the average and 85th percentile speed increase by approx-
imately the same amount. This suggests that most drivers drive “with
the flow of traffic”. This result is important, since not only an increase
in average speed but also in speed variance at higher speeds could
cause more accidents. The impact on the speed variance is negligible
in California, and small and statistically insignificant in Washington.
However, the variance is imprecisely measured since the lowest speed
bin is truncated at 30mphor below. Also, the data does not fully capture
extreme differences in speed, such as rapid changes between high-
speed driving and stop-and-go congestion.
Column (4) reports two robustness checks. First, when the coeffi-
cients on the two speed limit changes in California (55 to 65 mph and
65 to 70 mph) are not constrained to be equal, the resulting estimates
are almost identical. Second, when I only include rural control highways
in Oregon, the speed increase is slightly lower.7

The graphs in Fig. 3 plot the difference-in-differences coefficients,
allowing for a separate treatment effect for each year before and after
the speed limit change. All three states show an increasing treatment ef-
fect over time, which reflects adaptation towards the new driving con-
ditions. There is no visual evidence of differences in pre-trends across
treatment and control stations. To address this issue more formally,
Appendix Table C.1 re-estimates the speed effects after estimating and
extrapolating pre-existing trends. The results are very similar. Appendix
C also shows that the treatment effect also varies across different driving
conditions and hours of the day (Appendix Fig. C.1) and that the imme-
diate effect of the speed limit changes was small (using a time disconti-
nuity specification).

In summary, I find that a 1 mph speed limit increase leads to a 0.3–
0.4 mph increase in travel speed. This result is similar across the three



8 This happens frequently for fatal (88.39%) and (non-)incapacitating injury (22.20%,
57.08%) accidents.

9 Non-linear panel data models with fixed effects can suffer from incidental parameters
bias. Since the numbers of groups in Eq. (5) is relatively small (28) and the total number of
observations relatively large (6573), the fixed effects are estimated using a reasonable
number of observations per group. Greene (2004) finds that the bias rapidly diminishes
when the number of observations per group exceeds 10. Therefore, the incidental param-
eters concern is likely mitigated in this setting.
10 Appendix Table C.3 presents similar regression results for Oregon and Washington
separately.
11 Standard errors are clustered at the highway type by year level. This assumes common
unobserved shocks to accidents on a particular highway typewithin a given year. This is a
conservative choice, since I control for road characteristics, road construction andweather.
Moreover, accidents happen at different locations and times within a particular day and
highway type, and are plausibly uncorrelated conditional on observables.

Table 3
Speed regression results: distribution and robustness.

LHS variable (1) (2) (3) (4)

speedijth speed85pijth var(speed)ijth speedijth

CA 1996
Speed limit 3.06*** 3.12*** −0.81

(0.51) (0.56) (4.04)
[0.80] [0.87] [5.71]

Speed limit
(65 to 70 mph)

3.11***
(0.82)
[1.24]

Speed limit
(55 to 65 mph)

3.08***
(0.52)
[0.80]

Observations 356,661 356,661 356,501 356,661

OR 1987
Speed limit 4.09*** 4.10***

(0.46) (0.45)
[0.76] [0.81]

Speed limit
(U.S. highways)

2.96***
(0.68)
[1.00]

Speed limit
(rural arterials)

3.18***
(0.49)
[0.81]

Observations 19,103 19,103 6962; 11,008

WA 1996
Speed limit 3.60*** 3.72*** 5.58

(0.63) (0.69) (3.54)
[0.67] [0.86] [3.77]

Observations 1,371,156 1,370,345 1,350,409

Notes: The coefficient on the interaction term of 11 separate regressions is reported. Coef-
ficients normalized to reflect the effect of a 10mph speed limit change. Standard errors in
parentheses clustered at the station by year level in (), and clustered at the station level in
[] (used for stars). The time window is 1994–1998 (CA), 1983–1992 (OR) and 1994–2001
(WA). All specifications contain weather controls, as well as station, year, month, day-of-
week andhour-of-day fixed effects. The regressions for CA andWAalso contain station-di-
rection fixed effects, and the regressions for WA contain lane-direction fixed effects. No
variance regressions are shown for OR, since the low and high speed bin definition
changed discontinuously around 1988. ***, ** and * indicate significance at the 1%, 5%
and 10% levels, respectively.
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states, and for speed limit changes of various magnitudes between 55
and 70mph. I nowproceed to estimating various costs related to this in-
crease in speed.

5. The effect of speed limit changes on accidents

Vehicles are more difficult to control at higher speed. It is harder to
get and retain traction if a sudden change in speed or direction is re-
quired. There is also less time to avoid hitting other cars or fixed objects
(Wong, 2008). This section tests two hypotheses about the effects of in-
creased speed limits on accidents. The first hypothesis is that traveling
at higher speed leads to an increase in the amount of accidents. The sec-
ond hypothesis is that a higher speed causes a shift towardsmore severe
accidents.

5.1. Econometric framework

To test these hypotheses, I use count datamodels to estimate the im-
pact of the 1987 speed limit changes in Oregon andWashington on the
number of various types of accidents (fatality (fatal), incapacitating in-
jury (inc), non-incapacitating injury (non-inc), property damage only
(pd)). The second hypothesis can also be tested using ordered choice
models. See Appendix C for details.

Accidents are discrete events and a natural application of count data
models. Moreover, under identification assumption (2) and given the
graphical evidence provided in Appendix B, it is reasonable to employ
a “ratio-in-ratios” estimator. Count data models possess that feature
and are preferred to a linear model in logs, which leads to biased
estimates if there are zero count observations— days with no accidents
on a particular road type.8 The two dimensions for the ratio-in-ratios es-
timator are time (before and after the speed limit change), and the type
of highway (treatment: rural interstates vs. control: (subsets of) rural
principal arterials and urban highways).

I estimate a negative binomial model (using maximum likelihood)
since it fits the data better than a Poissonmodel. It has the following ex-
pressions for the conditional mean and variance:

E yjXð Þ ¼ λ ¼ exp X0β
� �

Var yjXð Þ ¼ λþ α−1λ2 ¼ exp X0β
� �þ α−1exp2 X0β

� � ð4Þ

whereα−1=σ2 N 0. I separately estimate the following specification for
each accident type i ∈ {fatal, inc, non ‐ inc, pd}:

E
ai jt

vmt jy

�����X
 !

¼ exp
�
β0 þ β11 j ¼ rural interstateð Þ � 1 t≥tΔSLð Þ

þ β2X jt þ θd þ θm þ θy þ θ j

� ð5Þ

where aijt represents the number of accidents of type i on highway type
j∈ {rural interstate, rural principal arterial, urban highway} on date t. Xjt
includes control variables (weather, road, daylight and driver character-
istics). Since the data are collapsed to the daily level, these control var-
iables are averages (or relative frequencies) over all accidents that
occurred on road type j. vmtjy denotes vehicle miles traveled. θ indicates
fixed effects for day-of-week d, month-of-year m, year y and highway
type j.9 In the definition of thedependent variable, the count variable ac-
cidents aijt is scaled by vmtjy to reflect an accident rate. Count data
models are equally suitable when the dependent count variable is
scaled to non-integer values.

The average marginal effect is a function of both the covariates and
the estimated parameters. However, the parameters have an easy inter-
pretation in terms of proportional changes:β is the proportional change
in E(y|X) associatedwith a small change inX. If the dependent variable is
binary,β is an approximation of the proportional change in E(y|X)when
the dummy variable changes from 0 to 1.

5.2. Accident results

Table 4 shows the effect of the speed limit changes on various types
of accidents, for Oregon and Washington (1987) combined, using the
negative binomialmodel in Eq. (5).10 Columns (1)–(4) restrict the sam-
ple to fatal, incapacitating, non-incapacitating and property damage ac-
cidents, respectively. Column (5) reports the effects on total accidents.

The results from the upper panel indicate that the rates of various
types of accidents on rural interstates went up sharply and significantly
following the 1987 speed limit increases. The effect is strongest for fatal
accidents, with an estimated increase of 44.1%.11 This effect may appear
large at first, but could be explained by the fact that the impact of a
collision increases in the square of the difference in speed between
two colliding objects. Thus, any given collision becomes substantially
more likely to be fatal at higher speed. Moreover, I find that collisions
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Fig. 3. Travel speed treatment effect coefficients by year. Graphs report the coefficients on the interaction between the treatment indicator and indicators for each year before and after the
speed limit changes. The treatment effect is normalized to zero for the first year before the speed limit changes. Coefficients are normalized to reflect the effect of a 10 mph speed limit
change. Dotted lines represent 95% confidence intervals, with standard errors clustered at the station by year level.

12 The negative binomial model is invariant to the level of VMT by highway type. There-
fore, under the assumption that trends in VMT on individual roads were the same as the
VMT trend for the corresponding highway type, the highway type specific VMT data can
be used to estimate the treatment effect using subsets of highways of a particular type.
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(of any type) happened more frequently after the speed limit changes.
All increases in the rates of less severe types of accidents are substantial
and statistically significant at the 1% level, and vary between 13.2% and
23.5%. Non-fatal accidents, not included in previous speed limit re-
search, have the potential to be important contributors to total accident
costs. Their coefficients are 2–3 times smaller than the coefficient on
fatal accidents, but their incidence rates are about 4–50 times larger.

The estimates above show that both hypotheses hold: the speed
limit changes not only led to a sizable increase in accidents, but also
caused a shift towards more severe accidents. The ordered choice
models presented in Appendix Table C.2 confirm this.

The lower three panels investigate if these results are robust to alter-
native econometric specifications. First, to mitigate concerns about traf-
fic substitution, I exclude rural principal arterials and compare rural vs.
urban portions of interstates. Table 2 shows that the effect of the speed
limit changes on substitution of traffic towards treatment highways is
estimated to be small, although some of the standard errors are large.
Since traffic substitution is more likely between parallel rural freeways
than between the urban and rural stretches of the same interstates, I in-
clude rural and urban interstate segments only in the second panel of
Table 4. The accident effects are similar to themain specification. The ef-
fect on the most important accident category, fatal accidents, even in-
creases in magnitude. This provides further evidence that the results
are not driven by traffic substitution.

Second, I limit the control highways to a subsample of highways
with (more) similar accident rates to the treatment highways, to allevi-
ate the concern that rural interstates typically have lower accident rates
per vehicle mile traveled than rural principal arterials (see Section 2).
Using data on highway specific VMT in Oregon, I calculate total accident
rates for all highway segments and remove the least safe rural principal
arterials and urban highways until all three highway types have the
same average accident rate. In Washington, highway specific VMT
data have only been collected since 2004. I therefore cannot compare
accident rates around 1987 directly.12 Instead, I compute the total acci-
dent rate by highway using 2004 VMT data, and keep the control high-
ways with accident rates in the bottom half. The third panel shows that
themain results in the first panel are remarkably similar to those when
the control highways are limited to a set of highways with similar acci-
dent rates to the rural interstates. In other words, the treatment effect is
unlikely to be driven by the inclusion of themore accident prone control
freeways (mostly unsafe rural principal arterials). This finding contrib-
utes to the credibility of identification assumption (2).

Third, I include more flexible, highway type specific, control coeffi-
cients. Accidents follow strong seasonal trends: the majority of acci-
dents occur between November and February. It is conceivable that
the effect of a speed limit change on accidents varies by season. A poten-
tial bias could arise if accidents on different highway types are affected
by the weather in different ways, but this is not allowed in the econo-
metric specification. If the winters following the speed limit changes
were more severe than before, and if accidents on rural interstates
responded more strongly to winter conditions, the treatment effect
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Table 4
Impact of the 1987 speed limit changes on accident rates: negative binomial models.

(1) (2) (3) (4) (5)

Fatal Incapacitating Non-incapacitating Damage only Total

Oregon & Washington combined
Interaction (β1) 0.365*** 0.211*** 0.140*** 0.124*** 0.131***

(0.113) (0.048) (0.030) (0.019) (0.019)
Exact proportional change 0.441 0.235 0.150 0.132 0.140

Rural vs. urban portions of interstates
Interaction (β1) 0.495*** 0.165*** 0.160*** 0.089*** 0.101***

(0.124) (0.030) (0.035) (0.022) (0.020)
Exact proportional change 0.615 0.179 0.173 0.094 0.106

Safe control highways
Interaction (β1) 0.510*** 0.237*** 0.154*** 0.142*** 0.151***

(0.097) (0.047) (0.038) (0.020) (0.023)
Exact proportional change 0.666 0.267 0.166 0.153 0.163

Highway type specific control coefficients
Interaction (β1) 0.344*** 0.216*** 0.166*** 0.165*** 0.169***

(0.082) (0.040) (0.030) (0.027) (0.024)
Exact proportional change 0.410 0.241 0.180 0.179 0.184
Share of total accidents 1.5% 6.7% 17.2% 74.6% 100.0%

Notes: The dependent variable is the number of accidents per VMT per day. The coefficient on the interaction term of 20 separate negative binomial regressions is reported. Highway type,
year, month-of-year and day-of-week fixed effects are included. Controls are included. “Safe control highways” have the same average accident rates per vehicle mile traveled as rural inter-
states (OR), or include only the safest rural principal arterials per vehiclemile traveled (US-97, US-195, US-395, US-730). The exact proportional change is calculated as exp(β1)− 1. Standard
errors clustered at the highway typeby year level in parentheses. Observations are takenwithin a six year symmetric timewindowaround the dates of the speed limit changes. The number of
observations is 6573 for all specifications except the “rural vs. urban interstates”, which have 4382 observations. ***, ** and * indicate significance at the 1%, 5% and 10% levels, respectively.
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would absorb this weather-induced change in accidents. Specification
(5) restricts β2 to be equal for all highway types. The last panel of
Table 4 relaxes this assumption and allows the control variable coeffi-
cients to vary by highway type.13 It is reassuring to observe that the es-
timates are similar to the main specification.

Fig. 4 shows how the treatment effect for fatal and total accidents
varies over time by allowing for a separate treatment effect for each
pre- and post-treatment year.14 There are no obvious visual differences
in pre-trends, although the year-by-year estimates for fatal accidents
are noisy due to their relative infrequency. After the speed limit changes,
a strong effect on accidents appears directly in the first year, while the ef-
fect on speed builds up more gradually (Fig. 3). This suggests that speed
limit changes have an immediate negative effect on road safety as drivers
adjust to new traffic conditions, even if it takes longer for the effect on
speed to reach the average post-treatment effect. One potential explana-
tion is that congestion caused by increased accidents during an early ad-
justment period puts downward pressure on the average speed.

Appendix Table C.4 presents additional robustness checks. These
demonstrate that the main results are not driven by alcohol or drug re-
lated accidents. The results of a time discontinuity specification are
somewhat similar in magnitude to the main results, but the estimates
are sensitive to the choice of the order of the time polynomial.15 Finally,
a comparison of proportional changes in accidents instead of accident
rates per VMT yields somewhat higher point estimates. This under-
scores the importance of controlling for trends in VMT.16
13 The treatment effect in winters is higher than in summers (Appendix Table C.4).
14 See Appendix Table C.6 for a more detailed overview of the yearly post-treatment
effects.
15 I also performed a placebo test for the accident results. I ran regressions inwhich a hy-
pothetical speed limit changewas introduced on rural interstates 6, 7, 8, 9 and 10 years af-
ter the real speed limit change, using symmetric time windows of 6, 8 and 10 years
(sufficiently long after the 1987 speed limit changes). This adds up to a total of 75 regres-
sions: 15 for each category of accidents. I find that only 4 of these 75 regressions have t-
statistics larger in absolute value than the corresponding t-statistics from the regressions
with the 1987 speed limit changes. This corresponds to a “p-value” of 5.3%. These results
suggest that the probability that the treatment effects found in 1987 are a result of pure
chance is small. This test should be interpreted with caution, since the 75 regressions
are not performed on independent samples. Details are available on request.
16 Analyzing accidents per vehicle mile traveled also largely deals with potential substitu-
tion of traffic from control highways to rural interstates as a result of the speed limit changes,
although the robustness checks in Tables 2 and 4 suggest that this is not a major concern.
Appendix Table C.5 shows the results of a difference-in-differences
specification that investigates if the composition of vehicle types
involved in accidents changed following the speed limit changes. I
find that accidents involving only cars became more likely, while ac-
cidents involving only trucks, or both cars and trucks, became less
frequent. This may suggest that light-duty trucks are relatively
safer to drive at higher speeds given their better vision from the
driver seat.

Notwithstanding the various robustness checks above, there re-
mains a risk of confounding unobserved trends that affected accidents
in the period around the speed limit changes. A first possibility is chang-
es in seat belt laws (Cohen and Einav, 2003) and child seat laws
(Insurance Institute for Highway Safety, 2001). However, changes in
these laws affect occupants of vehicles on all highways. A confounding
effect would only be present if there was a differential impact of the
seat belt laws on rural interstates. Moreover, most of the changes hap-
pened outside the six-year window.17 I also confirmed that there were
no changes in DUI laws during the study period (Insurance Institute
for Highway Safety, 2001).

A second challenge would be the existence of differential trends in
enforcement of speed limits. It is not inconceivable that the higher
speed limits were accompanied by a period of increased enforcement
on rural interstates. This could have put a downward pressure on traffic
speed and accidents. In that case, the estimates presented in this section
should be interpreted as the combined effect of higher speed limits plus
increased enforcement. Increased enforcement is likely to reduce the
benefits of higher speed limits (time savings) as well as the costs
(e.g., accidents), but the benefit–cost ratio is likely to remain similar.
Moreover, the highway patrol in all three states stated that there had
been no official orders to increase enforcement following the speed
limit increases.18
17 Oregon implemented a seat belt law on 7December 1990. This falls almost outside the
study period. Oregon and Washington introduced child seat laws on 1 January 1984,
which is outside the six year windows for both states. Washington, however, required
the use of seat belts from 11 June 1986.
18 None of the states has collecteddata onenforcement by highway type, so I cannot con-
trol for enforcement in the regressions.
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21 The laws of physics and vehicle engineering explain the positive relationship between
speed and emissions at higher speeds. In terms of physics, the energy required per unit of
distance to overcome air resistance is proportional to the square of speed. Thus, keeping
technology fixed, fuel economywill eventually decline rapidly with speed. In terms of en-
gineering, manufacturers can tune their engines to bemost efficient at a higher speed fol-
lowing a speed limit increase within a limited range. In fact, today's cars operate more
efficiently between 55 and 65 mph than the 1990 fleet did. However, this tuning makes

-0.60

-0.40

-0.20

0.00

0.20

0.40

0.60

0.80

1.00

-3 -2 -1

T
re

at
m

en
t 

E
ff

ec
t 

(C
h

an
g

e 
in

 A
cc

id
en

t 
R

at
es

)

Year (Relative to Treatment)

Fatal Accidents

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

-3 -2 -1

T
re

at
m

en
t 

E
ff

ec
t 

(C
h

an
g

e 
in

 A
cc

id
en

t 
R

at
es

)

Year (Relative to Treatment)

Total Accidents

1 2 3

1 2 3

Fig. 4. Accident treatment effect coefficients by year. Graphs report the coefficients on the interaction between the treatment indicator and indicators for each year before and after the
speed limit changes. The treatment effect is normalized to zero for the first year before the speed limit changes. Dotted lines represent 95% confidence intervals, with standard errors clus-
tered at the highway type by year level.
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6. The effect of speed limit changes on pollution

This section estimates the changes in air pollutant concentrations as
a result of the 1987 speed limit changes. In Section 8, I use epidemiolog-
ical “concentration–response functions” to translate these estimates to
adult health impacts not covered in my data set.

6.1. Speed and air pollution

Vehicle emissions are important sources of local air pollution and
global greenhouse gas emissions. Carbon monoxide (CO), nitrogen ox-
ides (NO2/NOx), volatile organic compounds (VOCs) and carbon dioxide
(CO2) are all direct byproducts of the internal combustion process.
Motor vehicles are responsible for the majority of CO emissions (67–
97%), and a large share of NO2 emissions (33–50%) (Chatterjee et al.,
1997; Environmental Protection Agency, 2011a). Vehicles are also indi-
rectly responsible for the formation of ground level ozone (O3), through
a reaction between NOx and VOCs in the atmosphere in the presence of
sunlight. Direct emissions of particulate matter smaller than 10 μm in
diameter (PM10) from gasoline car engines are minimal, but NOx can
react with other atmospheric pollutants to form PM10 indirectly
(Environmental Protection Agency, 2011a). PM10 emissions from
diesel-fueled commercial trucks are substantial, but truck speed limits
did not change in most of the cases considered in this paper.19

Extensive engineering research shows that the relationship between
vehicle speed, per-mile tailpipe emissions (CO, NOx) and the rate of fuel
consumption is U-shaped (e.g., Transportation Research Board, 1995;
Litman and Doherty, 2009). Fig. 5 shows these relationships for the ve-
hicle fleet in 1990.20

At low speeds, emissions per mile and the rate of fuel consumption
are high. Atmoderate speeds (30–50mph), fuel consumption and emis-
sions per mile reach a minimum. At higher speeds, CO and NOx
19 Several empirical studies have confirmed the strong relationship between traffic and
local air pollution. Hu et al. (2009) document elevated air pollutant concentrations in a
wide area surrounding freeways. Davis (2008) analyzes the effect of Mexico City's Hoy
No Circula policy on local air pollution and finds no discernible impact. Knittel et al.
(2011) find a strong relationship between unusually high local traffic density and pollu-
tion levels in California.
20 Both gasoline and diesel engine emissions exhibit this U-shaped relationship, al-
though the relationship between speed and CO is less steep for diesel (Transportation Re-
search Board, 1995; Barlow and Boulter, 2009). I focus on gasoline vehicles, since diesel
vehicles represented only 0.0–4.3% of new retail car sales and 1.7–8.5% of light-duty truck
sales in the United States between 1975 and 2009 (Davis et al., 2010). Diesel-fueled com-
mercial trucks represent only 3.2–3.6% of the vehicle fleet (and 6.8–7.6% of vehicle miles
traveled) in the period 1980–2009 (Ward's, 2010).
emissions per mile increase rapidly and disproportionately to fuel
consumption.21 CO emissions triple when the vehicle speed increases
from 55 to 65 mph. NOx emissions increase by about 50%. The average
fuel economy decreases by 18%.

In summary, the engineering literature suggests that wemay expect
that the 1987 and 1996 increases in speed limits above 55 mph led to
substantial increases in most pollutant concentrations. However, we
should expect little effect on PM10, since most speed limits for trucks
did not change.
6.2. The spreading of air pollution

There is a large literature in engineering, epidemiology and atmo-
spheric modeling on the spreading of air pollution. One strand of papers
focuses on pollution gradients at short distances from freeways.22 At
the same time, the EPA reports that many pollutants can spread
very far: pollution from the U.S. Midwest can reach the East Coast
(Environmental Protection Agency, 2011a). In fact, there are two rele-
vant air pollution effects: changes in pollution gradients and changes in
pollution background concentrations. These two phenomena can co-
exist: at any point in time, a pollution gradient can exist as long as atmo-
spheric conditions (e.g., wind speed and direction) donot changemuch.
Over the course of one or several days, wind directions change and the
increased pollution disperses within a larger area (“buffer zone”)
around the freeway. There is no clear evidence on how wide such
the vehiclemore polluting and less fuel efficient at lower speeds, and thusmore expensive
to drive. Moreover, it takes several years to bring new, re-optimized, vehicles to the mar-
ket. Then, even if all newmodels were adjusted (an unlikely scenario), penetration would
be slow due to limited vehicle fleet turnover: the average age of the U.S. light vehicle fleet
between 1995 and 2009was 8.4–10.2 years (Ward's, 2010). Today's engines still exhibit a
U-shaped emissions pattern, albeit shifted to the right by about 10 mph.
22 The typical experiment measures pollutant concentrations both upwind and down-
wind from a highway, and establishes how far the downwind station has to be moved
from the highway to observe pollution levels within (e.g.) 5% of the upwind (“back-
ground”) station (see Zhou and Levy (2007) for an overview). Most papers find that such
gradients exist over relatively short distances, up to 1000 ft. However, several papers
found gradients to stretch out over much longer distances up to two miles (Hu et al.,
2009), or even that there is hardly any spatial decay in downwind concentrations during
stable atmospheric conditions (Roorda-Knape et al., 1998).



Fig. 5. The relationship between vehicle speed, emissions and fuel consumption. 1990 fleet-wide average for gasoline vehicles.
Source: Litman and Doherty (2009) based on the EPA's MOBILE5a model (http://www.epa.gov/oms/m5.htm).
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buffer zones are in practice. It is reasonable to assume effects for dis-
tances up to 10 miles (EPA, personal communication, 2 June 2011).
The relevantwidth of the pollution buffer is to some extent an empirical
question.

Pollution gradients are relevant to people living very close to free-
ways by exposing them to high temporary emission levels. Pollution
buffers are relevant to people within a wider area around the freeway
by exposing them to generally elevated pollutant concentrations.
Section 3 discussed the limited availability of pollution stations very
close to freeways. For that reason, I can only test for the “pollution buffer
effect” of speed limit changes with varying buffer distances. To keep a
reasonable sample size, distances smaller than three miles are not
used in this analysis.
Fig. 6. Treatment and control pollution stationsusing various pollution buffer definitions. (Left p
pollutionmonitoring stations. (Right panel) 3, 5 and 10-mile buffers near Sacramento, CA. In th
there are 15 treatment stations. Using a (3,10) buffer, there are 5 treatment stations and the a
6.3. Econometric framework

To estimate the effect of the 1987 speed limit change from 55 to
65 mph on pollution, I use a difference-in-differences estimator. I
group stations based on their proximity to the relevant freeway seg-
ments. This estimator is preferred over a single difference design,
since air pollution concentrations are not only determined by local
emissions, but also by imported pollution from other regions and by
state and federal environmental policies. I define treatment stations as
being located at most x miles away from the 10 mph change. Control
stations are located at least y miles away from the 10 mph change,
where y ≥ x (Fig. 6). The central case is (x, y) = (3, 3), but I report the
robustness to the buffer distance.
anel) 3, 5 and 10-mile buffers around treatment freeways inCalifornia, 1987. Black dots: air
is example, a (3,3) buffer corresponds to using 5 treatment stations. Using a (10,10) buffer,
dditional 10 stations within the 10 mile buffer would be excluded.

http://www.epa.gov/oms/m5.htm
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Pollution concentrations are highly seasonal at both the monthly
and daily levels, have a declining annual trend, and depend onmeteoro-
logical conditions. For example, PM10 concentrations tend to be lower
on rainy days. I therefore employ the following specification:

ln pitð Þ ¼ β0 þ β11 dist≤xð Þ � 1 t≥tΔSLð Þ þ β2Xit þ θi þ θd þ θm þ θy
þ εit; dist∉ x; yð Þ ð6Þ

where pit∈ {CO, NO2, O3, PM10} indicates the pollution concentration for
pollution station i at date t. Xit includes weather variables (average,
maximum and minimum temperatures, wind speed and indicator vari-
ables for rain, fog, snow, hail, thunder or tornado) and county-level in-
dustry controls. θ represents fixed effects for pollution station i, day-
of-week d, month-of-year m and year y. I include industry controls
since unobserved shocks to industrial activity around the time of the
speed limit changes could bias the estimates. This concern appliesmost-
ly to NO2, since CO emissions from industrial sources are minimal. I
therefore collected data on the number of industrial establishments
and the associated employment levels (by industry SIC code) from the
census County Business Patterns. I then selected the SIC codes for
which CO, NO2 and PM10 emissions exceeded one percent of total
emissions during the period 1984–1990, and created county by
year counts of “dirty sector” employment and large establishments
(N1000 employees).

6.4. Pollution results

Table 5 shows the estimation results for varying treatment and con-
trol group cutoff distances in columns (1), (3) and (5). Columns (2),
(4) and (6) restrict the control group to stations within 10 miles of
the affected freeways. The sample includes observations from 1984 to
1990, approximately a symmetric time window around the speed
limit changes. Data availability for treatment stations before 1984 is
very limited.

The estimates show a large and statistically significant increase in
concentrations of CO (+23%), NO2 (+15%) and O3 (+11%). The effect
on PM10 is small and not significantly different from zero.23 Restricting
the control station distance to 10miles does not change the overall con-
clusions, though the point estimates for CO and O3 are mostly higher
and those for NO2 are somewhat lower.

These estimates suggest that the speed limit changes led to elevated
pollutant concentrations in at least a three-mile buffer zone. The relative
magnitude of the coefficients on CO and NO2makes sense in light of the
discussion of Fig. 5, which shows that the effect on CO is expected to be
larger than the effect on NO2. As argued above, I should find no effect on
PM10. The results in Table 5 confirm this. This is a useful specification
check which adds to the credibility of the results. I also confirmed
that traffic substitution towards treatment highways does not drive
the results.24 Appendix Table C.7 indicates that as the size of the
23 Standard errors are clustered at the station bymonth and county bymonth level. Clus-
tering by station is reasonable since it is plausible that certain unobserved shocks, such as
changes in imported pollution from other regions, lead to correlation between the mea-
surements from a station over time. Clustering at the county level is more conservative,
by not treating stations in the same county as independent observations. To determine
the relevant time dimension of the clustering, I investigated the autocorrelation functions
(ACFs) of the measurements of all stations and for all five pollutants. I then recorded the
first time lag for which the ACF was insignificant, and calculated the average over all sta-
tions for each pollutant. The result is 34.5, 33.3, 30.7 and 16.5 days for CO, NO2, O3 and
PM10, respectively. The median is slightly lower. Therefore, I conclude that the relevant
time dimension for clustering is the monthly level.
24 Sections 4 and 5 present estimates that suggest that such substitution is limited. Even
if I combine the highest, but insignificant, point estimate (5.49%, for California) with the
speed-emissions curves in Fig. 5, 93% of the increase in CO and 75% of the increase in
NO2 tailpipe emissions can be attributed to higher speed. The remainder would be due
to substituted traffic. In the extreme casewhere I take the upper end of the confidence in-
terval for the substitution coefficient, I can easily rule out that the pollution increase attrib-
utable to speed is zero: 87% and 59% of the CO and NOx increases are still due to higher
speed, respectively.
buffer zone increases to 10 miles, the effects become smaller in
magnitude. This is consistent with a gradual decay of the impact of
pollution.

I interpret the pollution results as broadly consistent with the litera-
ture on speed and pollution, air pollution dispersion and the effect of
speed limit changes on speed. However, given the limited number of
treatment stations, the results cannot be estimated at a great degree
of precision, and future research (e.g., using some of the recent speed
limit changes) is warranted.
7. The effect of speed limit changes on health

7.1. Health and air pollution

A final input for the cost–benefit analysis is the effect of the
higher speed limits, through increased pollution, on health. Air pollution
has been shown to negatively affect several health outcomes, among
adults, children and infants.25 Some highly credible studies of related
questions suggest that speed limit increases might have adverse infant
health effects. Currie and Walker (2011) find that the reduction in
congestion related air pollution from the introduction of electronic toll
payments in New Jersey and Pennsylvania decreased prematurity and
low birth weight by 10.8% and 11.8%, respectively. Chay and
Greenstone (2003) estimate that a 1% reduction in total suspended par-
ticulates leads to a 0.35% decrease in the infant mortality rate. Signifi-
cant effects of CO and PM10 on infant mortality have been found in
California (Currie and Neidell, 2005) and New Jersey (Currie et al.,
2009). Using periods of unusually heavy traffic as an instrument,
Knittel et al. (2011) find that the impact of pollution on infant mortality
is even higher.

I follow the EPA's approach and draw on the epidemiology and
health economics literature to quantify the effect of air pollution on
adults' and children's health in Section 8. Health economics studies typ-
ically seek to exploit quasi-random variation in pollution exposure.
Most epidemiological studies use a case–control design, in which sub-
jects are not randomly assigned to pollutant concentrations. Rather,
they assign treatment and control groups based on cross-sectional var-
iation in observed exposure levels and apply a matching estimator. In
addition to the infant health results discussed above, key findings
from these studies are that air pollution leads to premature deaths,
mostly due to respiratory causes but also from cardiovascular disease
(Bell et al., 2004). Wilhelm et al. (2008) find that children living
in high O3 and PM10 areas experienced more frequent respiratory
problems. CO (Neidell, 2004; Schlenker and Walker, 2011) and O3

(Lleras-Muney, 2010) have been shown to have significant effects on
child hospitalizations for asthma. The EPA uses some of these, and var-
ious other, studies to quantify health effects associated with changes
in pollution.

I focus my empirical analysis on fetal health and infant health at
birth for three reasons. First, since a fetus can only be exposed to air pol-
lution in a relatively short nine-month window, we can be sure that
only recent (prenatal) exposure to pollution can affect health outcomes
at birth. Second, the economic costs of (infant and fetal) deaths tend to
25 A large number ofmedical and epidemiological studies have documented a strong as-
sociation between adverse health outcomes for infants and fetuses, and for patients with
respiratory diseases (Wilhelm and Ritz, 2003). High CO concentrations suppress the
body's ability to deliver oxygen to organs and tissues. NO2 has been associated with respi-
ratory problems. PM10 can cause heart and lung damage, possibly through inflammations
that weaken the immune system. O3 exposure is thought to lead to breathing difficulties,
inflammation, aggravation of asthma and increased susceptibility to pneumonia and bron-
chitis, as well as permanent lung damage (Seaton et al., 1995; Environmental Protection
Agency, 2011a). Further, O3 and PM10 have been shown to be risk factors for respiratory
related post-neonatal mortality and sudden infant death syndrome (Woodruff et al.,
2008).



26 Standard errors are clustered at the zip code level, to account for unobserved shocks at
a regional scale. An example could be the opening or closing of a hospital, which could
change the quality of prenatal care for many inhabitants of a zip code.

Table 5
Regression results for the effect of the 1987 speed limit changes on pollution, for various buffer distances (California, Oregon & Washington combined).

(x, y) = (3, 3) (x, y) = (3, 5) (x, y) = (5, 5)

All control stations Control stations ≤ 10 miles All control stations Control stations ≤ 10 miles All control stations Control stations ≤ 10 miles

(1) (2) (3) (4) (5) (6)

CO 0.2313*** 0.1790*** 0.2425*** 0.3332*** 0.2437*** 0.3679***
(0.0576) (0.0720) (0.0576) (0.0765) (0.0405) (0.0752)
[0.0572] [0.0699] [0.0579] [0.0802] [0.0449] [0.0800]

NO2 0.1477*** 0.0993** 0.1486*** 0.1214** 0.0888*** 0.0759*
(0.0350) (0.0370) (0.0351) (0.0477) (0.0233) (0.0453)
[0.0356] [0.0420] [0.0358] [0.0502] [0.0256] [0.0455]

O3 0.1069*** 0.1641*** 0.1043*** 0.1625*** 0.0559*** 0.1194***
(0.0199) (0.0238) (0.0200) (0.0268) (0.0166) (0.0245)
[0.0218] [0.0247] [0.0220] [0.0284] [0.0196] [0.0262]

PM10 0.0236 0.0331 0.0072 0.0078 −0.0290 −0.0327
(0.0358) (0.0402) (0.0366) (0.0465) (0.0287) (0.0399)
[0.0376] [0.0414] [0.0394] [0.0516] [0.0325] [0.0446]

Navg 179,308 31,306 172,538 24,325 179,308 31,306

Notes: The dependent variable is the log of the pollutant concentration. The coefficient on the interaction term of 30 separate regressions is reported. Standard errors clustered at the sta-
tion bymonth level in (), and clustered at the county bymonth level in [] (used for stars). The time window is 1984–1990. Navg denotes the average number of observations for the spec-
ifications in a column. All specifications containweather and industry controls, and pollution station, day-of-week,month-of-year and yearfixed effects. ***, ** and * indicate significance at
the 1%, 5% and 10% levels, respectively.
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overshadow non-fatal health costs in most existing cost–benefit analy-
ses (Environmental Protection Agency, 2002, 2011b). Third, extensive
infant health data are available from birth records.

Fetal health is typically measured by low birth weight or gestational
age at birth. Another direct measure of fetal health is the occurrence
of fetal death. Data on fetal deaths are often hard to obtain and
incomplete (Sanders and Stoecker, 2011). Fetal deaths are by far the
most likely during the first trimester of the pregnancy, and such early
fetal losses are rarely officially recorded. Some states or countries
require the reporting of late-term fetal deaths. Pereira et al. (1998)
find a positive association between late-term intrauterine mortality
(28 weeks of gestation or more) and prenatal exposure to CO
and NO2 in São Paulo, Brazil. California requires fetal deaths of
20 weeks gestation or more to be registered. Since many of these
more developed fetuses would have been viable if born alive, the wel-
fare costs of such late fetal losses should be of particular interest to pol-
icy makers.

Currie (2011) describes a selection mechanism that operates when
using live birth data to estimate the impact of pollution on fetal health
and birth outcomes. An increase in pollution leads to more fetal
deaths, but also to the survival of fewer marginal, less healthy, fetuses.
This decreases the number of less healthy infants whose birth
weight and gestational age gets recorded. It is an empirical question
whether this “harvesting effect” dominates the pollution-induced
reduction in average birth weight and gestational age among non-
marginal fetuses.

Using the universe of birth records in California during the period
1984–1990, I estimate the impact of the 1987 speed limit changes on
four infant health outcomes: fetal death, infant death, low birth weight
(less than 2500 g) and (extreme) prematurity (gestational age
28 weeks or less). In the cost–benefit analysis (Section 8), I combine
these results with estimates from the health economics and epidemiol-
ogy literature to also take into account the effect of the speed limit
changes on important adult health outcomes such as prematuremortal-
ity due to pollution.

7.2. Econometric framework

To estimate the effect of speed limit changes on infant health, I
use a difference-in-differences estimator similar to specification (6)
for air pollution. The zip code of the mother's residence during
pregnancy is the finest available geographic entity in the data. I
classify zip codes by the distance between their population-weighted
average centroid and the closest highway on which the speed limit
changed (see Appendix A for details). Treatment zip codes have cen-
troids at most x miles away from the change; control zip codes' cen-
troids are at least y miles away from the change (y ≥ x). I report
results for various buffer definitions. Appendix B contains evidence
that treatment and control zip codes are similar on observables, and
that there are no differential pre-existing trends. I employ the following
specification:

healthit ¼ β0 þ β11 dist≤xð Þ � 1 t≥tΔSLð Þ � TI þ β2Xit þ θz þ θm þ θy
þ εit ; dist∉ x; yð Þ ð7Þ

where healthit∈ {fetal death, infant death, low birth weight, premature
birth} are binary variables indicating the health outcome for baby/fetus i
at date t. Xit includes controls such as the race of the baby/fetus i
and its parents, the mother's age at birth, the month in which
prenatal care began, and medical complications during pregnancy and
delivery (see Appendix A for details). θ represents fixed effects
for zip code z, month-of-year m and year y. TI is the treatment
intensity that indicates how long the fetus was exposed to increased
pollution. TI ¼ month

9 where month = 1 if the date of birth falls within
the first month after the speed limit change, 2 for the second month,
etc. For all births in or after the ninth month following the speed limit
change, TI = 1.

7.3. Infant health results

Table 6 shows the regression results for the four infant health out-
comes discussed above.26 In short, the table presents evidence that
the 10 mph speed limit changes in 1987 resulted in more fetal deaths.
Combining the estimates with the population of pregnant women in
the buffer zones (computed in GIS using zip code information from
the birth records), I find that the higher speed limits caused 17–45 ad-
ditional fetal deaths per year in California, depending on the buffer
specification. Of these, 4–36 are third trimester fetal deaths. Taking
the average of the treatment coefficients in Table 6, the increased pollu-
tion leads to a 0.07 percentage point increase (+9.4%) in the probability
of a third trimester fetal death. This large effect is consistent with other
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Table 6
Regression results for the effect of the 1987 speed limit changes on infant health, for various buffer distances (California).

(x, y) = (3, 3) (x, y) = (3, 3) (x, y) = (3, 5) (x, y) = (3, 5) (x, y) = (3, 10) (x, y) = (5, 5) (x, y) = (5, 5) (x, y) = (5, 10)

dist ≤ 10 dist ≤ 20 dist ≤ 10 dist ≤ 20 dist ≤ 20 dist ≤ 10 dist ≤ 20s dist ≤ 20

(1) (2) (3) (4) (5) (6) (7) (8)

Fetal death 0.00061 0.00072 0.00101** 0.00083* 0.00083* 0.00163*** 0.00131*** 0.00132***
Gestational age ≥ 98 (0.00050) (0.00046) (0.00052) (0.00046) (0.00047) (0.00045) (0.00038) (0.00040)
Observations 418,099 1,027,017 333,980 942,898 718,105 418,099 1,027,017 802,224

Fetal death 0.00016 0.00028 0.00060 0.00041 0.00038 0.00131*** 0.00104*** 0.00102***
Gestational age ≥ 196 (0.00040) (0.00035) (0.00042) (0.00035) (0.00036) (0.00039) (0.00032) (0.00033)
Observations 414,687 1,018,569 331,243 935,125 712,185 414,687 1,018,569 795,629

Infant death 0.00003 −0.00001 0.00006 −0.00001 −0.00002 −0.00007 −0.00006 −0.00006
Gestational age ≥ 196 (0.00067) (0.00059) (0.00071) (0.00060) (0.00060) (0.00060) (0.00046) (0.00046)
Observations 412,777 1,014,103 329,714 931,040 709,132 412,777 1,014,103 792,195

Infant death 0.00010 0.00008 0.00028 0.00013 0.00009 0.00045 0.00033 0.00030
Gestational age ≥ 259 (0.00059) (0.00054) (0.00063) (0.00054) (0.00055) (0.00051) (0.00039) (0.00040)
Observations 376,106 924,135 300,428 848,457 646,562 376,106 924,135 722,240

Low birth weight −0.0024 −0.0023 −0.0021 −0.0023 −0.0022 −0.0006 −0.0007 −0.0006
Gestational age ≥ 196 (0.0021) (0.0019) (0.0023) (0.0020) (0.0020) (0.0020) (0.0016) (0.0017)
Observations 412,777 1,014,103 329,714 931,040 709,132 412,777 1,014,103 792,195

Low birth weight 0.0022 0.0010 0.0026* 0.0010 0.0004 0.0020 0.0005 −0.0001
Gestational age ≥ 259 (0.0014) (0.0013) (0.0015) (0.0013) (0.0014) (0.0012) (0.0010) (0.0011)
Observations 376,106 924,135 300,428 848,457 646,562 376,106 924,135 722,240

Premature birth −0.00034 −0.00038 −0.00044 −0.00041 −0.00041 −0.00036 −0.00037 −0.00037
Gestational age b 196 (0.00062) (0.00054) (0.00063) (0.00054) (0.00055) (0.00057) (0.00047) (0.00047)
Observations 414,444 1,018,101 331,051 934,708 711,911 414,444 1,018,101 795,304

Notes: The coefficient on the interaction term of 56 separate regressions is reported. Standard errors clustered at the zip code level in parentheses. Zip code, month-of-year and year fixed
effects are included. Controls are included. ***, ** and * indicate significance at the 1%, 5% and 10% levels, respectively.
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findings that fetuses are very sensitive to pollution in utero (Sanders
and Stoecker, 2011).

The fairly wide range reflects that the results are sensitive to the
exact buffer definition. The air pollution results in Section 6 suggest
that increases in background concentrations occur in three and five-
mile buffer zones, beyond which the effect diminishes. It is difficult to
argue for a preferred buffer choice,27 but the estimates for the first
two specifications in which (x, y) = (3, 3) might be biased downward
if much of the additional pollution spreads further than three miles.28

Ignoring these specifications, the additional third trimester fetal death
range narrows to 11–36. Fig. 7 shows the time pattern of the treatment
effects for fetal mortality. The figure does not suggest a presence of dif-
ferential pre-trends.

I find no significant impact on the other three health outcomes
(infant death, low birth weight and premature birth). The effect on
infant deaths (conditional on being born in the third trimester;
premature birth is estimated separately) is about zero, while infant
deaths among children born within the normal window (gestational
age at least 37 weeks) increase slightly. The (statistically insignificant)
estimates translate to 2–11 additional infant deaths per year.
Extrapolating Currie and Neidell's (2005) finding that infant deaths
increase by 0.18 per 1000 births for each ppm increase in the CO
concentration, one should expect about two additional infant deaths
per year following the speed limit changes. The lack of statistical signif-
icance is not surprising given the coarse geographic information at the
zip code level. Moreover, since I do not know the mother's exact
27 I removed mothers living in zip codes more than 10 or 20 miles away from the treat-
ment freeways, since unobservable differences between geographically distant areas ren-
der the treatment–control comparison less convincing.
28 The effects on fetal deaths are higher in the 3–5mile range than in the 0–3mile range.
A possible explanation is that CO has been documented as the most relevant air pollutant
for infant mortality (Currie and Neidell, 2005; Currie et al., 2009). Columns (2), (4) and
(6) in Table 5 suggest that CO concentrations rose faster between 3 and 5 miles from
the freeway than between 0 and 3 miles.
address, the distance variable is measured with error. This may lead to
attenuation bias.

The effects on low birth weight, premature birth and (by inference)
infant deaths before 37weeks are insignificant but often negative. A po-
tential reason is the “harvesting effect” discussed above: more fetuses
do not survive, instead of being born prematurely and/or with low
birth weight. Conditional on surviving and on being born at full term,
the risk of low birth weight increases.
-0.0015T
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Fig. 7. Fetal mortality treatment effect coefficients by year. Graph reports the coeffi-
cients on the interaction between the treatment indicator and indicators for each
year before and after the speed limit changes. The treatment effect is normalized to
zero for the first year before the speed limit changes. Treatment zip codes have a
population-weighted average centroid less than 5 miles from a highway with a
speed limit change. Zip codes with centroids more than 20 miles away are excluded.
Dotted lines represent 95% confidence intervals, with standard errors clustered at the
zip code level.



31 While there exists considerable heterogeneity in the external accident costs depend-
ing on a vehicle's weight (Anderson and Auffhammer, 2014), this paper focuses on the av-
erage external cost for policy evaluation.
32 I use the adjusted 1990 data from the 1995 Nationwide Personal Transportation Sur-
vey to compute the fraction of personmiles by trip purpose around1990. This yields 19.6%
(commuting), 8.2% (business travel), 5.0% (school/church), 30.8% (family/personal), 22.4%
(leisure/vacation) and 13.4% (visiting friends/relatives). Under the U.S. DOT guidelines
(http://www.dot.gov/sites/dot.dev/files/docs/vot_guidance_092811c_0.pdf), I value busi-
ness travel time at the average wage, and all other purposes at 60% of the average wage
(the average of the 50% and 70% prescribed for local and intercity traffic). In the VTPI sce-
nario, I define personal travel as trips to school, church, family, relatives or friends. In ad-
dition, I multiply the VOT for people aged 65 and above or between 16 and 19 by 50%, and
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8. Cost–benefit analysis

8.1. Methodology

The cost–benefit analysis requires four key ingredients. First, the
various costs and benefits need to be quantified.Many are estimated di-
rectly in Sections 4–7 (time savings, accidents and infant health). To
make the cost–benefit analysis more complete, I use my estimates of
the travel speed and pollution increases to infer increases in fuel con-
sumption, greenhouse gases and several effects on adult health. Second,
I classify the various costs into private versus external. Third, I value the
costs and benefits using generally accepted literature estimates of,
e.g., the value of time and the value of a statistical life. Since the range
of such estimates is wide, I perform extensive sensitivity analysis. In
Appendix D, I use the estimated standard errors to introduce uncertain-
ty about several parameter estimates in a Monte Carlo simulation.

Of course, no cost–benefit analysis is complete. For example, the
analysis abstracts from the marginal excess tax burden from changes
in speeding ticket and gas tax revenues, changes in enforcement costs
and increased driving pleasure at higher speeds.29 Further, given that
truck speed limits hardly changed (see footnote 5), I assume no benefi-
cial effects on freight transport time and associated economic benefits
such as inventory reduction (Shirley and Winston, 2004).30

8.1.1. Quantifying effects on fuel consumption and adult health
First, I quantify the increase in fuel consumption and associated

greenhouse gases. Using engineering estimates for the fuel economy
of vehicles of different vintages as a function of speed (Davis et al.,
2010), I translate the estimated increase in travel speed into additional
gallons of gasoline and tons of carbon emissions using the distribution
of estimated speed increases (see Fig. C.1).

Second, I quantify the effect of increased pollution on several adult
health outcomes. For that purpose, I rely on evidence from the health
economics and epidemiology literature that the EPA uses to construct
“concentration–response functions” to quantify health effects from
changes in CO, NO2 and O3 concentrations (Environmental Protection
Agency, 2011b). Specifically, I focus on premature adult mortality,
which has accounted for a large majority of total health costs/benefits
in previous cost–benefit analyses of air pollution regulations
(Environmental Protection Agency, 2002, 2011b). In addition, I quantify
the effect of increased pollution on respiratory related hospitalizations,
emergency roomvisits for asthma, and productivity of outdoorworkers.
I then multiply these effects by the relevant affected population, com-
puted using geocoded population data at the census block level. Appen-
dix D describes the construction and sources of the concentration–
response functions. Since several of the adult health estimates are high-
ly uncertain and subject to methodological debate, I also present results
without including them.

8.1.2. Private versus social cost–benefit classification
Time savings fully accrue to the vehicle occupants as private bene-

fits. Increased fuel use is a private cost, while increased pollution and as-
sociated adverse health effects are external costs not taken into account
by the driver. A driver need not be driving faster himself to experience
higher accident costs of being on a road with a higher speed limit. A ra-
tional driver will consider his own increased risk of accidents and prop-
erty damage, but ignore the risk imposed on others. I therefore split the
effect on various types of accidents into private and external compo-
nents. Fatalities from single-vehicle accidents (representing 52% of
fatal accidents on highways) are treated as purely private if the driver
29 Private benefits such as the lattermake raising speed limitsmore attractive, but donot
affect themain conclusion that there is a large gap between the private and social costs of
driving faster.
30 One cannot rule out the possibility that the average truck speed increased somewhat
as a result of faster-driving s. Unfortunately, the data does not allow me to test this.
or his passengers die in the crash. If a pedestrian (typically, someone
standing in the shoulder of the road) dies, this effect is treated as purely
external. For n-vehicle accidents not involving pedestrians, each driver
bears a 1/n share of the total accident costs on average.31

8.1.3. Valuing costs and benefits
The twomost important valuation parameters are the value of a sta-

tistical human life (VSL), and the value of travel time (VOT). I use broad-
ly accepted values that are used in actual policy evaluation. For the VSL, I
use the EPA's currently prescribed value of $6.3 million (2000 USD) as
the central case estimate, but also perform sensitivity analysis. This
value is based on a large literature in economics. An authoritative source
is themeta-analysis by Viscusi and Aldy (2003), who report amean VSL
of about $7 million and a standard deviation of $5.6 million based on 49
studies. More recent papers find similar mean estimates for the VSL
(Aldy and Viscusi, 2008; Kniesner et al., 2012).

The second key input is the value of travel time. I use the after-tax
average wage as the central case value, supported by the economics lit-
erature (Small et al., 2005; Deacon and Sonstelie, 1985), and compute
the value of time savingswhile adjusting for average vehicle occupancy.
Small et al. (2005), who use combined revealed and stated preference
data on people's choices whether or not to pay a toll for travel in a
congestion-free express lane: note that their central estimate of 93% of
the average wage may be an upper bound of the average VOT since
their study area is affluent. In earlier work, Small (1992) reported a
VOT of 20–100% of the averagewage. In a recent study,Wolff (2014) es-
timates the effect of gasoline prices on unconstrained driving speeds,
and finds that the implied VOT is 54% of the averagewage rate. A further
complication is the notion that the VOT should vary by trip purpose and
by age, but convincing estimates are hard to find. I therefore also show
results using the U.S. Department of Transportation's current VOT
guidelines: valuing business travel at 100% of the averagewage and per-
sonal travel at 60%. Finally, I value time by trip purpose using a recent
proposal by the Victoria Transport Policy Institute (Victoria Transport
Policy Institute, 2011), and apply age discount factors for children and
the elderly.32 The report proposes to value business travel at 150% of
the average wage, commuting at 50%, personal travel at 25%, and lei-
sure/vacation travel at 0% (Victoria Transport Policy Institute, 2011).

As described above, I use a single (statewide) value of the average
wage aswell as a single (nationwide) value of the VSL. This follows cur-
rent government guidelines. An ideal cost–benefit analysis would use
individualized VOT and VSL values, but such data is unavailable. This is
especially important if driver characteristics on rural interstates are sub-
stantially different from the average. However, the average wage and
family income in treatment areas is similar to control areas, suggesting
that the aggregate values are a reasonable approximation.33

Table 7 lists the key valuation parameters. In addition to the param-
eters discussed above, I use broadly accepted estimates for non-fatal
health costs. The EPA's numbers for hospitalization and emergency
room visit costs only include medical expenditures and opportunity
for younger children by 25%. Note that if highway travel is more likely to be business-
related, the NPTS will understate time savings.
33 The average hourly after-tax wage in OR &WA counties with affected interstates was
only 5.7% below the statewide average in 2001 (source: Quarterly Census of Employment
andWages). Themedian family income in the 5-mile buffer zone around the treated high-
ways was 6.4% lower (source: 1990 U.S. Census).

http://www.dot.gov/sites/dot.dev/files/docs/vot_guidance_092811c_0.pdf
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Table 7
Cost–benefit valuation parameters (Oregon & Washington combined— 1987).

Parameter Value Source

Travel time valuation
Average hourly after-tax wage $15.37 Current Population

Survey (CPS); NBER
Average vehicle occupancy rate 1.695 National Personal

Transportation Survey, 1995

Fatal accidents and health impact valuation
Value of a statistical human life $7,375,305 Environmental Protection

Agency (EPA, 2011b)
Cost of a respiratory hospitalization $27,496 Environmental Protection

Agency (EPA, 2011b)
Cost of asthma emergency room visit $438 Environmental Protection

Agency (EPA, 2011b)

Non-fatal accidents valuation
Cost of an incapacitating injury $319,272 National Safety

Council (NSC)
Cost of a non-incapacitating injury $77,866 National Safety

Council (NSC)
Cost of a property damage accident $7705 National Safety

Council (NSC)

Gasoline cost valuation
Gasoline price incl. taxes $1.70/gal Energy Information

Administration (EIA)
Gasoline price excl. taxes $1.32/gal Energy Information

Administration (EIA)
Social cost of CO2 $21/t Greenstone et al. (2013)

Notes: All values are expressed in 2006 USD. CPS: wage data obtained from http://
cps.ipums.org/cps/. The hourly wage is inferred from annual income and hours worked
per year. Observations with an hourly wage below $2.50 or above $100.00 per hour are
dropped. NBER: average federal and state tax rate data obtained fromhttp://www.nber.org/
taxsim/allyup/. NSC: valuations obtained from http://www.nsc.org/news_resources/
injury_and_death_statistics/Pages/EstimatingtheCostsofUnintentionalInjuries.aspx. The
non-economic (QALY) part of the costs for incapacitating and non-incapacitating injuries
is scaled by the ratio between the EPA's VSL and the NSC's VSL ($4,300,000). EIA: gasoline
price data available at http://www.eia.gov/petroleum/data.cfm#prices.

Table 8
The difference between the social and private trade-off of faster driving.

Social trade-off Private
trade-off

Value of a statistical life
below which

Higher speed limits are
justified

Driving faster
is justified

(1) (2) (3) (4) (5) (6)

5.08 3.70 2.78 1.96 0.87 6.02

Using the following costs
Fatal accidents (private) ✓ ✓ ✓ ✓ ✓ ✓

Fatal accidents (external) ✓ ✓ ✓ ✓ ✓ ✓

Non-fatal accidents (private) ✓ ✓ ✓ ✓ ✓

Non-fatal accidents (external) ✓ ✓ ✓ ✓

Fuel costs (private) ✓ ✓ ✓

Climate damages (external) ✓ ✓ ✓

Infant and fetal health (external) ✓ ✓

Adult health (external) ✓

Notes: The upper bound VSL (the VSL that equates expected costs and benefits) is
expressed in million 2006 USD. Fuel costs are valued at the tax-exclusive gasoline price
in the social trade-off, but at the tax-inclusive gasoline price in the private trade-off.
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costs (lost wages), but not lost quality of life. The National Safety
Council's non-fatal accident costs do include the cost of reduced quality
of life. The social cost of carbon is taken from Greenstone et al. (2013). I
perform sensitivity analysis on the non-fatal health valuation parame-
ters by specifying three health impact scenarios that reflect uncertainty
in the parameters of the corresponding concentration–response func-
tions (Appendix D). To be conservative, the central health impact sce-
nario uses estimated treatment effects for fetal deaths using a 3-mile
buffer distance only (Table 6), and values only third trimester fetal
deaths (at the VSL).
34 The reported spread between private and social net benefits is conservative. I count all
single-vehicle non-pedestrian crashes as fully internalized. In reality, other “phantom” ve-
hicleswere involved inmany of these crashes, but the police had noway to verify this and
correctly report the accident as a multi-vehicle crash (National Institute for Safety Re-
search, personal communication, 30 September 2011). For example, if this applied to
50% of the single-vehicle accidents, the private upper bound VSL increases to
$7.04 million.
8.2. Results

8.2.1. Private versus social cost–benefit results
I now show the cost–benefit calculations evaluated at the central

case parameter values from Table 7. Annual net social benefits are esti-
mated at−$189million excluding adult health impacts,with a standard
deviation of $94million. The social costs ($345million) exceed the ben-
efits ($156 million) by a factor of 2.2. Using the adult health impacts
from the central health impact scenario, which are admittedly uncer-
tain, the net benefits decrease to−$390 million, with a standard devia-
tion of $102million (see Appendix D for details). The social costs exceed
the benefits 3.5 times.

A useful relatedmetric is theVSL that equates the expected costs and
benefits of the speed limit changes. This number could be interpreted as
the upper bound of the social planner's VSL, if the realized social costs
and benefits were in line with ex-ante expectations. To justify higher
speed limits, the social planner's VSL has to be below this upper
bound. Likewise, private VSLs below the private VSL upper bound justify
driving faster as a result of the higher limit. Table 8 reports these upper
bound VSLs.

Columns (1)–(5) in Table 8 show the upper bound VSL for a govern-
ment that takes into account various subsets of social costs. If, in line
with previous literature, governments take into account (private and
external) fatal accident costs only, the upper bound VSL is $5.08million.
This is close to the middle of the range of estimated VSLs. However,
when the set of costs taken into consideration gets more complete,
the upper bound VSL decreases substantially to $1.96 million. When
adult health effects are included, the VSL goes down evenmore dramat-
ically to $0.87million. I therefore conclude that raising speed limits was
justified only when VSLs are in the $0.87–$1.96 million range, well
below any VSLs considered in real-world policy making. Raising the
1987 speed limits was therefore not a good decision ex-post from a
societal perspective. Moreover, columns (1)–(5) demonstrate that esti-
mating the effects on outcome variables beyond fatal accidents has the
potential to significantly change the conclusions drawn from a cost–
benefit analysis.

The trade-off is quite different from a private perspective. For indi-
vidual drivers, VSLs of $6.02 million or less (column (6)) justify driving
faster as a result of the speed limit increase. This value is close to the
EPA's central value. Given that drivers are heterogeneous in their assess-
ment of the VSL, accident risks and fuel costs, many drivers may value
theVSL below$6.02million. I therefore conclude that, for the states con-
sidered in this study, there is a large difference between the social and
private optimal speed choices: driving faster appears a rational choice
for many drivers but a poor outcome for society as a whole.34

Fig. 8 shows this stark contrast between private and social costs as
well as the relative importance of the various costs. Fatal accidents ac-
count for a substantial share of total costs, but other cost components
omitted in previous work play an important role as well. Adult health
costs evaluated at the central case estimates are as large a cost compo-
nent (35%) as fatal accidents (35%), although there is considerable
uncertainty about concentration–response function parameters. Non-
fatal accidents (8%), gasoline and climate costs (6%) and infant/fetal
health (15%) also cannot be ignored in a cost–benefit analysis. Fig. 8 un-
derscores that only including fatal accidents oversimplifies the cost–
benefit analysis, potentially leading to incorrect conclusions. As an

http://www.eia.gov/petroleum/data.cfm#prices
http://www.eia.gov/petroleum/data.cfm#prices
http://www.eia.gov/petroleum/data.cfm#prices
http://www.eia.gov/petroleum/data.cfm#prices
http://www.eia.gov/petroleum/data.cfm#prices
http://www.eia.gov/petroleum/data.cfm#prices
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Fig. 8. Private versus social costs of the speed limit changes in 1987. Health impacts are evaluated at the central case scenario. Gasoline costs are valued at the tax-inclusive gasoline price in
the private cost calculation, but at the tax-exclusive gasoline price in the social cost calculation.
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illustration of this, Appendix Table D.2 compares my findings with
the results from Ashenfelter and Greenstone (2004). While AG's full
sample upper bound VSL estimate ($3.28 million; adjusted for inflation
and vehicle occupancy) is on the lower end of conventional VSL esti-
mates, their estimates for California and Oregon would lead to the con-
clusion that the speed limit increases in 1987 were beneficial from a
societal perspective. This paper's upper bound VSL range of $0.87–
$1.96 million rejects that conclusion. However, when I only include
fatal accident costs, the social trade-off is similar to the results obtained
by AG.

8.2.2. Sensitivity analysis of net benefits
The implied VSL upper bound of $0.87million indicates that the con-

clusion would not change when the EPA's low and high VSL values are
used ($3.7 and $8.9 million, respectively). Different health impact as-
sumptions also do not affect the main findings. Even under the low im-
pact scenario, social costs are 2.5 times as high as private costs and the
upper bound VSL equals just $1.31 million. Under the high impact sce-
nario, social costs exceed private costs 5.2 times, and the upper bound
VSL equals $0.55million. Different valuations of travel time are especial-
ly interesting to consider. Valuing timeusing theU.S. DOT or VTPI guide-
lines would reduce annual net benefits by $57–109 million. The costs,
excluding adult health impacts, now exceed the benefits by a factor of
3.5 and 7.3, respectively. Using the U.S. DOT guidelines rather than the
after-tax average wage, the upper bound VSL approaches zero ($0.08
million). In that case, the non-fatal social costs alone (non-fatal
accidents, fuel costs, climate damages and non-fatal health costs)
almost outweigh the benefits. The private upper bound VSL decreases
to $2.36 million.

9. Discussion

This paper finds that 55 mph was a better speed limit than 65 mph
and that there was a large difference in private and social net benefits.
What, then, was the optimal speed limit?While I cannot directly calcu-
late the optimal speed limit because I estimate a “slope” of the net ben-
efits curve at 55 mph but no “curvature”, it was probably not much
below 55mph. The relationship between speed, pollution and fuel con-
sumption becomes quite flat below 55 mph. Therefore, driving slower
will yield few pollution related health benefits or save gasoline costs.
Without suchbenefits, the cost/benefit ratio at 55mph falls to 1.5— fair-
ly close to parity. The ratio will further approach 1 for speeds below
55 mph as the effect on accidents is likely to be non-linear in speed as
well.

I reach my conclusions using speed limit changes between 55 and
70 mph for mostly rural freeways in the western United States in
1987 and 1996. Whenever comparing across time, state and urban/
rural roads was possible, the estimates appeared stable. However, it is
reasonable to ask how these findings can be relevant for speed limit
changes today, in different countries, and for a different speed range.
Various countries and states are currently debating speed limit changes
anywhere in the 55–90 mph range. I discuss two questions. First, how
would the various effects of speed limit changes be different today? Sec-
ond, how would the difference between private and social net benefits
change?

Regarding the first question, it is possible to extrapolate the pollu-
tion estimates using past and current speed-emission profiles. Such in-
formation is available. Cars have become less polluting over the past
two decades. The EPA MOVES model's most recent estimates for the
current vehicle fleet show that the U-shaped relationship in Fig. 5 is
still present but less steep. It starts curving upwards sharply around
65mph insteadof 55mph for the 1990 vehiclefleet (EPA, personal com-
munication, 4May 2011). The relationship between speed and fuel con-
sumption is still increasing but shifted to the right by approximately
10 mph. This information, combined with up-to-date epidemiological
and health economics studies, makes extrapolation of pollution and
health effects possible. A 55 to 65 mph speed limit increase would
lead to small pollution and adverse health effects today. These costs
would rise again for the currently proposed 65–75 mph and 75–
85 mph increases, for which the upward relationship between speed
and pollution remains even for today's vehicles.

Extrapolating the effect on accidents is more difficult. The relation-
ship between speed limits and accidents is likely non-linear. Also, base
accident rates at 55 mph are lower than in the 1980s due to enhanced
vehicle safety. This improved safety record has been used to argue for
higher speed limits up to 90 mph. At these speeds, accidents and pollu-
tion are likely to be substantial costs even for today's vehicle fleet. The
trade-off between travel time and the costs of accidents, pollution and
health will therefore remain relevant for future generations. Given the
recent speed limit changes and detailed data availability, it may eventu-
ally be possible to re-estimate the relationship between speed limits,
speed and accidents at today's higher speeds.

Because the net benefits from raising speed limits vary across or
even within states, my results do not imply that the optimal speed
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limit is the same everywhere. Net benefits depend on observable factors
such as population density around freeways, pregnancy rates and traffic
flows. Such extrapolation across locations is a straightforward extension
of the cost–benefit analysis, although of course the estimated treatment
effects remain local to the quasi-experiment in this paper.

The discussion about extrapolation implies that today's gap between
private and social net benefits will be smaller for a 55 to 65 mph speed
limit increase. For higher speed limits, the gap is likely to remain sub-
stantial because of the steeper speed-emission profile in that range
and the external cost component of accidents. Several factors influence
the ratio of private and social costs. Fuel costs are higher than in 1987.
This increases private costs relative to external costs. Changing speed
limits on urban rather than rural highways achieves the opposite,
because the density of the surrounding population that gets exposed
to higher pollution levels is higher.

10. Conclusion

In this paper I estimate the private and external costs and benefits of
driving faster on freeways. I find that private and social net benefits
differ substantially: many individual drivers rationally chose to drive
faster when they could, but – at least ex-post – society should not
have opted for the higher speed limits. The implied social upper
bound VSL ($0.9–$2.0 million) is well below the implied private upper
bound VSL ($6.0 million). I conclude that the optimal speed limit was
lower than 55 mph, but not much lower because of the highly non-
linear relationship between speed, pollution damages and gasoline
consumption.

This raises the question why governments decided to raise speed
limits. One potential explanation is that they did not behave as benevo-
lent social planners, and responded to the private desires of their con-
stituents, who may have wanted to drive faster. This is especially
likely if the costs and benefits of driving faster are not evenly distributed
across regions: urban drivers benefit from driving faster on rural free-
ways, but do not suffer from local pollution. Another possibility is that
a lack of information explains the decision to raise freeway speed limits.
Non-fatal accidents, pollution and health impacts were hardly or
never mentioned in any official documents. The scientific evidence
on the effect of pollution on health was largely unavailable in 1987
(see Appendix Table D.1). This leads to a potentially serious underesti-
mation of the total costs.

This paper's conclusions do not rule out that other instruments could
deal with speed externalities more effectively than speed limits. An
ideal Pigovian tax on speedwould consist of a combination of a gasoline
tax for climate damages, emissions taxes for local air pollutants in ex-
haust gas (which varywith speed), plus a speed-dependent tax to inter-
nalize accident risk imposed on others (which is also a function of traffic
conditions). A gasoline tax exists, real-time emissions taxes could con-
ceivably be implemented using sophisticated on-board computers, but
a speed tax on accidents would face enormous informational require-
ments and technical challenges. Therefore, speed limits are likely to re-
main the dominant policy instrument for the foreseeable future.

Flexible speed limits that vary by time-of-day and road conditions
could move us closer to optimal speed taxation. Several freeways
near places such as Amsterdam, Atlanta, London and Munich have
implemented or are planning to use variable speed limits. This provides
an interesting avenue for future research, especially because data
from a network of real-time speed, congestion and accident monitoring
on thousands of highway locations are becoming more readily
available.

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.jpubeco.2015.02.001.
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