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ABSTRACT. Individuals are constantly processing external information and trans-

lating it into actions. This draws on limited resources of attention and requires

economizing on attention devoted to signals related to economic behavior. A nat-

ural measure of such costs is based on Shannon’s “channel capacity”. Modeling

economic agents as constrained by Shannon capacity as they process freely avail-

able information turns out to imply that discretely distributed actions, and thus

actions that persist across repetitions of the same decision problem, are very likely

to emerge in settings that without information costs would imply continuously dis-

tributed behavior. We show how these results apply to the behavior of an investor

choosing portfolio allocations, as well as to some mathematically simpler “track-

ing” problems that illustrate the mechanism. Trying to use costs of adjustment to

explain “stickiness” of actions when interpreting the behavior in our economic ex-

amples would lead to mistaken conclusions.

We begin in section I with a discussion briefly motivating the use of Shannon’s

information measure to study the effects of limited attention on optimization under

uncertainty. More detailed motivation for the Shannon measure, and its relation to

other measures of information cost, appears later, in section VIII. In section II we
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relate this paper to some previous literature. In sections III and IV we specify the

general static, information-constrained decision problem that is our focus and some

intermediate results useful for solving it. In section V we characterize some classes

of problems where we can guarantee the solutions make the distribution of actions

discrete. In that section we also provide simple examples that may guide intuition

about the nature of the discreteness result and how it arises. In section VII we

show analytically that a problem of portfolio choice under uncertainty, with costly

information, gives rise to actions concentrated on a discrete set of portfolios and

also provide numerical solutions to a version of that problem. The results show that

an empirically observed pattern, in which investors pay attention to relative yields

in normal times, but occasionally switch to a “risk off” or “risk on” mode with less

attention to individual asset yields, can emerge from rational inattention. An online

appendix includes more numerical examples, including one that considers a non-

Shannon information cost measure and one that illustrates how Shannon’s coding

theorem applies in practice, in a context where our discreteness results apply.

Section VII, on portfolio choice, has the most interesting economic insights, and

can be read for its results, independently of the sections preceding it that use sim-

pler or more abstract models to explain how discrete behavior arises.

I. STICKINESS FROM COSTLY INFORMATION PROCESSING

Many economic variables are constant for spans of time, then jump to new val-

ues. Prices of some products and portfolio allocations of individual investors are

examples. We have simple theories that imply such behavior is optimal (explicit

menu or adjustment costs models) or that treat such behavior as a constraint (Calvo

pricing). As fine-grained microdata on individual product prices have become

available, however, we can see that in at least some markets (e.g. grocery stores)
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prices not only stay fixed for spans of time, but when they do change, they some-

times move back and forth across a finite array of values.1 These simple models

explain the fixity for spans of time, but on the face of it imply that when a price

change occurs, the change should be continuously distributed. They do not explain

why the price should change, then come back to exactly the same price as before the

change, for example.

Rational inattention is the idea that a rational person, confronted with the need

to take actions in response to a stream of randomly varying observations, must

recognize that she is a finite capacity Shannon channel. Roughly speaking, this

means she recognizes that there is a bound on how precisely she can make her

actions respond to a rapid flow of information, and that allocating some of her

information-processing “capacity” to an economic decision problem is therefore

costly. The theory examines the nature of optimal behavior subject to this cost. In

section VIII below we discuss in more detail the nature of a Shannon channel and

the associated measure of information processing costs. We also discuss how it

relates to other measures of information processing costs that have been proposed.

We show that, with rational inattention, in broad classes of cases, the action is

not a function of the underlying state, but is random instead, even conditional on

the underlying state. Furthermore, in broad classes of cases the distribution of the

action is concentrated on a set of lower dimension than would emerge without the

information costs. Where action and state are both scalars, the continuous one-

dimensional distribution of actions that would emerge without information costs

can become a zero-dimensional one, i.e. one whose support is a finite, or in some

cases countable, set of points.

The question of whether “stickiness” of actions reflects something like menu

costs, or instead optimal allocation of limited Shannon capacity, is important for

1See Eichenbaum, Jaimovich, and Rebelo (2011); Stevens (2015).
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macroeconomic policy modeling. If the stickiness has mistakenly been modeled as

being due to a stable adjustment cost in a standard rational expectations model, the

adjustment costs will appear to change as the stochastic process driving the econ-

omy changes. This implies that rational expectations models, developed to explain

how a change in policy behavior could change the non-policy part of a model, are

themselves subject to a similar critique.

Perhaps, more importantly, models that explain stickiness via adjustment costs of

some sort imply that rapid change in sticky choice variables is costly or distasteful.

Models with rational inattention, which explain stickiness as reflecting information

processing costs, do not imply that rapid change is in itself costly or distasteful —

response to incentives may be slow or damped only because agents are not fully

aware of changes in their environment. On the other hand, information process-

ing costs may be high even when decision variables are not changing, and such

costs are not captured in the behavior of direct arguments of production and utility

functions. Rational inattention therefore does not necessarily imply that cyclical

fluctuations are more or less important for welfare than they are in adjustment-cost

models, but it could imply quite different estimates of welfare costs and, in turn,

different conclusions about optimal policy.

II. RELATED PREVIOUS LITERATURE

In Sims (2003a) the effects of finite capacity on behavior were examined in dy-

namic linear models with quadratic objective functions and Gaussian disturbances,

similar to those appearing in many macroeconomic models. Several other researchers

have also worked with Gaussian prior uncertainty (Moscarini, 2004; Mackowiak

and Wiederholt, 2009; Maćkowiak and Wiederholt, 2015; Luo, 2008; Hellwig and

Veldkamp, 2009; Van Nieuwerburgh and Veldkamp, 2010; Mondria, 2010; Myatt

and Wallace, 2011). In most of these papers the objective is quadratic, for which
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Gaussian ex post uncertainty about the state is optimal. In such models the distri-

bution of actions also often emerges as continuous.

In the present paper we allow for non-Gaussian distributions of fundamental

uncertainty and non-quadratic objective functions (see also Sims (2006); Wood-

ford (2009); Tutino (2013); Matějka (2015); Yang (2015); Matějka and McKay (2015);

Caplin and Dean (2015).) Our findings are closely related to some earlier results in

rate-distortion theory in engineering (Fix, 1978; Rose, 1994). That literature2 stud-

ies a version of our static, information-constrained decision problem. Both Fix and

Rose obtained versions of our results for one-dimensional cases and quadratic util-

ity. The main technical differences between these earlier results and our work are

that our results extend to more general cases, beyond quadratic loss functions, and

to multivariate cases.

The recent paper most closely related to ours are Caplin, Dean, and Leahy (2018)

and Matějka and McKay (2015). They consider a one-period decision problem with

Shannon information costs as we do. They restrict both the state space and the

action space to be finite sets of a priori fixed points. They find that solutions fre-

quently put probability zero on many of the elements of the action space, which

corresponds to our result that with continuously distributed state and subsets of

Rn as action spaces, probability frequently concentrates on finite sets of points or

low dimensional subsets of the action space. Of course their framework has no no-

tion of the dimensionality of the support of the distribution of actions. We discuss

some further parallels and contrasts between their results and ours in section VI.

The general model we consider includes as special cases the decision problems of

rationally inattentive price-setters studied in Matějka (2016) and Stevens (2015). In

those papers, where monopolistic sellers process information about several types

of shocks (demand, input cost, etc.), numerical solutions exhibit discreteness. Our

2See Berger (1971) and Cover and Thomas (2006)
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analytical results provide the reassurance that the apparent discreteness in the com-

putational solutions in previous works was not an anomaly, and may also give

us insight into the conditions under which solutions with rational inattention are

likely to emerge as discrete. Moreover, because this paper’s setup covers multi-

variate actions, it applies to interesting economic models not considered in earlier

papers, including a portfolio choice problem that we consider in some detail.

Finally, note that other measures of information costs, or formulations of infor-

mation processing constraints, have been used in macroeconomics, for example

in Mankiw and Reis (2002); Alvarez, Lippi, and Paciello (2011). Veldkamp (2011)

provides a review). Some of our discussion in section VIII compares these other ap-

proaches to ours, and in section C.4 of the online appendix we discuss a particular

non-Shannon information measure in some detail.

III. THE GENERAL STATIC DECISION PROBLEM WITH COSTLY SHANNON CAPACITY

While many of the most interesting potential applications of rational inattention

in economics are to dynamic decision problems, in this paper we focus on static

problems. There are previous papers discussing linear-quadratic dynamic prob-

lems (Sims, 2010, 2003b), and Tutino (2009) has considered a finite state-space dy-

namic problem. Here we are interested in the emergence of discrete or reduced-

dimension behavior, and how it depends on the nature of uncertainty. To make the

analysis tractable, we stick to the static case, though it is most natural to think of

the problems here as independently repeated frequently over time, or as part of a

large collection of similar, independent problems being solved simultaneously and

drawing on a common Shannon capacity resource.

All the examples we will discuss below are versions of a general problem, which

we can state mathematically as

max E[U(X, Y)]− λI(X, Y) , (1)
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where the maximization is over the joint distribution of the random variables (or

vectors) X, Y. X is the maximizing agent’s action, and Y is the state. U( , ) is the

agent’s objective function, and I( , ) is the Shannon mutual information between

X and Y. The distribution of Y before information is collected is given: we assume

it is defined by a density g(y) over a base measure µy, which in most cases will

be ordinary Lebesgue measure. Without an information constraint, the optimal

x will simply be a function of y, so the joint distribution is singular, but with an

information cost generally x must be chosen with Y still uncertain.

To make it more explicit what is being chosen and what the information cost is,

we can rewrite this as

max
f ,µx

∫
U(x, y) f (x, y) µx(dx) µy(dy)

− λ

(∫
log( f (x, y)) f (x, y) µx(dx) µy(dy)

−
∫

log
(∫

f (x, y′) µy(dy′)
)

f (x, y) µx(dx) µy(dy)
) (2)

subject to
∫

f (x, y) µx(dx) = g(y) , a.s. µy (3)

f (x, y) ≥ 0 , all x, y , (4)

where x ∈ Rk and y ∈ Rn, µx and µy are σ-finite Borel measures, possibly but not

necessarily Lebesgue measure, f is the joint pdf of the choice x and the target y, g is

the given pdf for y, before information collection, U(x, y) is the objective function

being maximized, and λ is the the cost of information.

The first term in (2) is the expectation of U, and the second is the cost of channel

capacity. (3) requires consistency of prior and posterior beliefs, and (4) requires

non-negativity of the pdf f .

The formulation of the model as here, via the joint distribution of x and y, is

equivalent to a two-step formulation where the agent chooses a signal Z with some
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joint distribution with Y, then optimally chooses a function δ that maps Z to a deci-

sion X = δ(Z), with the information cost applied to the mutual information I(Z, Y)

rather than I(X, Y). This should be clear, because I(δ(Z), Y) ≤ I(Z, Y) for any func-

tion δ, and with the signal Z freely chosen we could always just choose the signal

to be the optimal δ(Z) itself. Choosing anything else as signal that delivers the

same δ(Z) can at best leave the information cost unchanged, and certainly leaves

the expected utility unchanged.

The objective function is concave in the measure on xy space defined by f , µy

and µx,3 and the constraints are linear, so we can be sure that a solution to the first

order conditions (FOC’s) is a solution to the problem. However the non-negativity

constraints can be binding, so that exploration of which constraints are binding

may make solution difficult.

Related problems have been studied before in the engineering literature. When

U(x, y) depends only on x− y and is maximized at x = y, the problem is the static

special case of what that literature calls rate-distortion theory. Fix (1978) obtained

for the case of univariate X and Y and U(x, y) = −(x− y)2 a version of our result

in section V, that bounded support for Y implies finitely many points of support

for X. Rose (1994) uses different methods, also for the quadratic-U case, and shows

discreteness for a somewhat broader class of specifications of the exogenous un-

certainty than Fix. We believe that our results for more general forms of objective

function and for the multivariate case are new.

The first order conditions (FOC’s) of the problem with respect to f imply that at

all values of x, y with f (x, y) > 0 and g(y) > 0

U(x, y) = θ(y) + λ log
(

f (x, y)∫
f (x, y) µy(dy)

)
(5)

3Expected utility is linear in this probability measure, and mutual information between two ran-

dom variables is a convex function of their joint distribution, so expected utility minus λ times the

mutual information is concave in the measure.
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∴ f (x, y) = p(x)eU/λh(y) (6)

∴
∫

eU(x,y)/λh(y) µy(dy) = 1 , all x with p(x) > 0 (7)

∴
∫

p(x)eU(x,y)/λ µx(dx) · h(y) = g(y) , (8)

where θ(y) is the Lagrange multiplier on the constraint (3), p is the density with

respect to µx of the action x and h(y) = exp(−θ(y)) is a function that is non-zero

where g is non-zero, zero otherwise. At points x where f (x, y) = 0, the FOC’s

require that the left hand side of (5) be less than or equal to the right hand side.

Note that if p(x) =
∫

f (x, y) µy(dy) > 0, the right hand side of (5) is minus infinity

wherever f (x, y) = 0, so with U(x, y) > −∞ everywhere, we can conclude that

f (x, y) = 0 for a particular x, y only if f (x, y) = 0 for all y, i.e. p(x) = 0. This

implies immediately

Lemma 1. If U(x, y) > −∞ everywhere and λ > 0, then at all points x in the action

space that have positive density p(x), the support of the conditional density of y, q( | x), is

the same as the support of the marginal density of y, g().

Of course this result means that even when the optimal distribution of x is dis-

crete, the joint distribution of y with x is never quantized. That is, it is never optimal

to partition the support of g(y) and make the information collected about y simply

which set of the partition contains y.

At points x with p(x) = 0, the right-hand side of (5) is undefined. However we

can reparameterize f (x, y) as p(x)q(y | x) and take the first order condition with

respect to p. Since at points with p(x) = 0 the value of q(· | x) makes no marginal

contribution to the objective function or the constraints, the first order condition

with respect to p at points with p(x) = 0 becomes

max
q

E[U(x, y)− λ log
(
q(y | x)

)
− θ(y) | x] ≤ 0 . (9)



DISCRETE ACTIONS IN INFORMATION-CONSTRAINED DECISION PROBLEMS 10

Since the information cost depends on q(y | x) only through its shape as a func-

tion of y, it is intuitively clear that x will always optimally maximize E[U(x, y) | x].

That is

x = argmaxx′

∫
U(x′, y)q(y | x) µy(dy) . (10)

IV. SOLVING THE STATIC INFORMATION-CONSTRAINED DECISION PROBLEM

From (6) we can see that eU(x,y)/λh(y) must be the conditional pdf of y given x,

and therefore for every x with p(x) > 0,

C(x) =
∫

eλ−1U(x,y)h(y)µy(dy) = 1 . (11)

The support of the distribution of x in the optimal solution is therefore either equal

to, or contained within, the set

B = {x | C(x) = 1} . (12)

If we can show that C() is analytic, we can use the properties of analytic functions

to determine properties of the set B, and hence of the support of x in the solution.

The following proposition states well known properties of analytic functions that

we need for our main results.

Lemma 2. An analytic function defined on on a connected open set S in Rn that is constant

on any open subset of S is constant on all of S. If n = 1, the function is constant on all of S

if it is constant on any sequence of x values with an accumulation point in x.

It follows immediately that if in the information-constrained decision problem

we can show that C() is analytic on an open set S and that C cannot be constant on

S, the support of x contains no open sets. If furthermore x is one-dimensional, the

support of x contains no accumulation points.

If U is analytic, it will often be true that we can show that C() is also analytic, but

because the definition of C(x) involves h(y), which is part of the problem solution,
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not a priori given, showing that C is analytic generally involves problem-specific

arguments.

A result4 that is useful in proving analyticity of C() in many cases is

Proposition 1. Suppose

(i) for every y, v(x, y) : Rn ×Rm → R is analytic in x over the domain (i.e., open

connected set) S ∈ Rn (with S not varying with y);

(ii) for every y v(x, y) as a function of x can be extended to the same complex domain

S∗ ⊃ S;

(iii) and v(x, y) is integrable jointly in x and y over S∗×Rm, with respect to the product

of Lebesgue measure on S∗ with a measure µy on Rm.

Then
∫

v(x, y)µy(dy) is analytic in x on S.

Corollary 1.1. If

(i) π is a probability measure on R;

(ii) γ is an integrable, positive analytic function on R;

(iii) and the radius of convergence of γ’s Taylor expansion is bounded away from zero on

R;

then the convolution π ∗ γ is analytic.

V. TRACKING

Tracking problems have U(x, y) = V(x − y), with V maximized when its argu-

ment is zero. That is they are problems in which, without an information cost, the

solution simply sets y = x. We discuss tracking separately in this section because

many economically interesting examples take this form, because we can state a sim-

ple and fairly general set of assumptions under which in these problems discretely

4The proof of this proposition, and that of several other theorems, corollaries and propositions

below, appear in appendix A.
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distributed x must arise, and because for these problems we can easily construct

examples that give insight into when discreteness does and does not arise.

Here is the theorem.

Theorem 1 (Discreteness for tracking with bounded support). Suppose

(a) V() : Rm → R is analytic on all of Rm, with the radius of convergence of the

Taylor series of eV bounded away from zero on R;

(b) V(a) is maximized at a = 0;

(c) M(a) = max‖z‖≥a V(z) satisfies M(a)→ −∞ as a→ ∞; and

(d) Y has bounded support in Rm.

Then the solution to the information-constrained decision problem in (2) with U(x, y) =

V(x − y) gives X a distribution whose support contains no open sets. When x and y are

one-dimensional, this set consists of finitely many points.

Note that when V(z) = −‖z‖2, eV has no singularities, so its radius of conver-

gence is infinite everywhere.

In tracking problems the integral equations in the first order conditions can be

studied with Fourier transforms, because they become convolutions. Using this

fact allows us to easily check whether solutions must be discrete in a large class of

problems. We can write (7) and (8) for tracking problems as∫
eV(x−y)/λh(y)µy(dy) = (eV/λ ∗ h)(x) = 1 (13)∫

p(x)eV(x−y)/λµx(dx)h(y) = (p ∗ eV/λ)(y)h(y) = g(y) . (14)

The first of these, (13) always has as one solution a constant h(y) ≡ 1/κ, where

κ =
∫

eV(z)/λdz. The only assumption needed is that eV is integrable. Furthermore,

if the Fourier transform of eV is non-zero on the whole of Rn, this is the only h that

satisfies the equation for all x ∈ Rn. But if this h is going to provide the solution

for the decision problem, it must be, from equation (14), that p ∗ eV/λ = g/κ. We
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can calculate the implied p from this equation using Fourier transforms, and if the

result is a probability distribution, it is the solution. Otherwise, the support of x

cannot be the whole of the space over which y and x are defined. In that case,

if V and g are analytic, it is likely that the solution is discrete, though additional

problem-specific arguments are generally required to prove this.

This leads us to

Proposition 2. In a tracking problem with eV/λ integrable, defined on the whole of Rn,

and having a Fourier transform everywhere non-zero,

(i) when g̃/ẽV/λ is the Fourier transform of a probability distribution, the solution

gives the conditional distribution of y | x a density proportional to eV/λ;

(ii) otherwise the support of the distribution of x does not include the whole of Rn.

Proposition 2 gives us a simple approach to tracking problems where eV/λ is ev-

erywhere nonzero, as it is when V is quadratic: Form g̃/ẽV/λ/λ, take its inverse

Fourier transform. If the result is a probability distribution (which could be dis-

crete), we have the solution’s distribution for x. The solution then makes y the sum

of x and a random variable independent of x with pdf proportional to eV/λ. If the

result is not a probability distribution, the support of x in the solution omits some

part of R.

Using this result allows us easily to get analytic results in some examples that

may help guide intuition.

V.1. The support of x need not be discrete. While there are many examples of

versions of our decision problem in which the solution gives x a continuous distri-

bution, we state two well known ones here explicitly.

With quadratic objective function and Gaussian g, the solution will make x nor-

mal, unless information costs are so high that it is optimal to make x fixed at E[y].
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Corollary 2.1. With a one-dimensional quadratic tracking V, when Y ∼ N(0, σ2), X

is normal and continuously distributed unless λ > 2σ2, in which case no information is

collected and X ≡ 0.

Another well-known result is that with multivariate quadratic-loss tracking and

y normal, we get the “water-filling” result.5

Corollary 2.2. If y ∼ N(0, Σ) and V(z) = −‖Z‖2, the solution makes x normal with

covariance matrix Σ− 2λI, so long as λ is small enough that this matrix is positive semi-

definite. With larger values of λ, x is normal, but with a singular covariance matrix whose

rank decreases as λ increases.

When the covariance matrix of x is singular, it lies in a linear space of lower

dimension than the support of y, but in this quadratic-Gaussian case, x is never

discretely distributed unless λ is so large that it is optimal to keep x fixed at the

unconditional E[y].

V.2. Boundedness of the support of y is neither necessary nor sufficient for dis-

creteness of x. Theorem 1 uses the boundedness of the support of y to argue that

C(x) can’t be constant. It could easily be extended to cover cases where instead

g(y) declines in the tails fast enough relative to eV/λ, while still having full support

on Rn.

But there also cases where discrete x emerges despite g declining much more

slowly in the tails than eV/λ. For example, suppose g takes the form of a convolution

of a discrete distribution with fat tails, say with probabilities proportional to 1/(1+

n2), with a normal distribution with variance σ2. Then if V = (x− y)2 and λ = 2σ2,

Proposition 2 tells us that the discrete distribution we used in the construction of

g is the distribution of x. It seems likely that the distribution of x remains discrete

5See Cover and Thomas (2006), p.348-9
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for higher values of λ, though we have not shown this analytically. Proposition 2

guarantees only that for higher values of λ x will not have full support on R.

V.3. Similar decision problems may lead to sharply different x distributions. In

fact, there are cases where the solution does not determine the distribution of x

uniquely, and there are both discrete x and continuous x solutions. Here is a simple

example where this happens. It may provide some intuition about how discrete-

ness in the solution arises.

Suppose y is in (0, 2π) and d(x, y) = min(|y− x| , 2π − |y− x|). We can think of

this as a problem where y is on the unit circle and d is the shortest arc between x

and y. Suppose the objective function is

U(x, y) =


0 d(x, y) < a

−∞ d(x, y) > a
.

So this is a tracking problem on the unit circle, with zero losses if x is within a

radians of y and infinite losses otherwise. Suppose g is uniform on the unit circle. A

solution is then easy to see without any computation: Make x uniformly distributed

on the circle and make q(y | x) uniform on the arc of length 2a centered at x This

makes losses zero, and has as information cost the difference in entropy between

a uniform distribution on (0, 2π) and a uniform distribution on (−a, a), which is

log(π/a). This is the solution for any λ, since any smaller information cost would

leave some probability of d(y, x) > 1, and thus infinite losses.

Suppose a = π/n for some integer n > 2. Then there is another family of so-

lutions, with the same 0 expected loss and the same information cost, but with

discretely distributed x. In these solutions, x is distributed discretely on n equally

spaced points on the circle, and as before q(y | x) is uniform on an interval of length

2π/n centered at x, for every x in the support of its distribution. Because q is the

same as in the continuous-x solution, the information cost, which is the difference
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between the entropy of the uniform initial distribution of y and the entropy of q, is

the same in the continuous-x solution and each of the possible discrete-x solutions.

From the point of view of the decision maker, these solutions are all quite similar:

She will get a signal telling her that y is in an interval of length 2π/n and choose as

x the center of that interval. It is not important whether she knows that the signal

will specify one of n a priori fixed intervals, or instead an interval of the same length

randomly positioned on the circle.

Contrast this with what happens if we cut the circle, so that d(x, y) is now simply

|x− y| Then a solution with continuously distributed x is no longer optimal. For x

values near 0 or 2π, to avoid infinite losses we would need q(y | x) to have sup-

port close to π/n in length, rather than 2π/n, and thus with greater information

cost. But one solution with discretely distributed x is still available: put the sup-

port points at π/n, 3π/n, . . . , (2− 1/n)π, with q uniform on an interval of length

2π/n centered at each of these points. This delivers the same zero loss, at the same

information cost, as the solution for the original circle problem, and this solution is

unique.

Though this example, with its infinite losses and non-analytic V, does not fit in

the framework of Theorem 1, the way the discrete solution arises is similar to the

mechanism operating in that theorem, with its bounded support for g. If we start

with a problem with g spread over all of R and a solution that makes x continuous

(like quadratic-Gaussian tracking), but then truncate g, we find the continuous-x

solution does not work at the boundaries. Analyticity of C then forces the solution

to be discrete.

We can illustrate this by contrasting a solution of the one-dimensional quadratic

tracking problem with a normal distribution for y with a numerical solution of the

same problem with a truncated normal distribution for y. Formally the problem is

the one-dimensional version of the tracking problem of Theorem 1, with V(z) =
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−z2 and g either a N(0, σ2
y ) density or that same density truncated at y = ±3σy. It

is well known that without the truncation in this problem it is optimal to make the

joint distribution of X, Y Gaussian6. Furthermore if ω2 is the conditional variance

of Y | X (which is of course constant for a joint normal distribution), I(X, Y) =

1
2 log(σ2

y /ω2) (where the units are bits if the log is base 2 and nats if the base is e).

It is also optimal to make E[Y | X] = X.

With no information cost and no truncation, the solution is trivially to set Y = X,

so that X and Y both have full support on R. With non-zero information cost, but

still no truncation of Y’s normal distribution, we can use the characteristics of the

solution we have laid out above to see that the problem becomes

max
ω<σy

ω
(
−1

2 ω2 − λ(log σ2
y − log ω2)

)
. (15)

Taking first-order conditions it is easy to see that the solution is ω2 = λ. This is

reasonable; it implies that with higher information costs uncertainty about y in-

creases, and that as information costs go to zero, uncertainty about Y disappears.

It makes the marginal distribution of X normal and gives it full support on the real

line. However, the solution only applies when ω2 < σ2
y . It is not possible to specify

a joint distribution for X, Y in which the conditional variance of Y | X is larger than

the unconditional variance of Y. So for λ > σ2
y , we instead have the trivial solution

X ≡ E[Y].

In this example without truncation we have just one, trivial, possible form of

discrete distribution for X: a discrete lump of probability 1 on E[Y]. Otherwise,

X is normally distributed, with variance smaller than that of Y. We can think of

this solution as implemented by the decision-maker observing a noisy measure of

Y, Y∗ = Y + ε, where ε is itself normal and independent of Y. X is then a linear

function of Y∗, and λ determines the variance of ε.

6See Sims (2003a) or Cover and Thomas (2006).
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Now consider the problem with the prior distribution of Y truncated at ±3σy.

The probability of observations in the 3σy tail of a normal distribution is .0027, so

this problem is in some sense very close to the one without truncation. We could

consider just using the previous solution as an approximation — observe Y∗ =

Y + ε and set X to be the same linear function of Y∗ as in the un-truncated problem.

And indeed this would give results very close to those of the optimal solution.

From Theorem 1 we know that whenever the support of Y is bounded in this

problem with quadratic loss, the support of X is a finite set of points. If informa-

tion costs are small, the truncated-Y solution gives the X distribution finitely many

points of support, but a large number of them. The weights in this fine-grained fi-

nite distribution have a Gaussian shape. The distribution, though discrete, is close

in the metric of convergence in distribution to the distribution for X in the untrun-

cated solution.

If information costs are moderately large, though, so that the untruncated solu-

tion is not reduced to X ≡ EY, the distribution for X can have a small number of

points of support, so that it looks quite different from the distribution of X in the

untruncated solution. For example, suppose EY = 0, σ2
y = 1 and λ = .5. Then

the untruncated solution makes ω2 = .5 and gives X a N(0, .5) distribution. If we

set X = .5(Y + ε), with ε ∼ N(0, 1) and independent of Y, we would be using the

same formulas as in the untruncated case, and would achieve almost the same re-

sult, E[(Y− X)2] = .49932 instead of .5 and information costs no higher than in the

untruncated case. X would be continuously distributed, not exactly normal, but

still with the whole of R as support.

But numerical calculation shows that the optimal solution with this truncation

and this cost of information has just four points of support for the X distribution:

-1.0880, -.1739, .1739, 1.0880. It achieves almost exactly the same E[(Y − X)2] as in
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the untruncated case7, while using about 4% less information. The naive use of the

untruncated solution wastes information capacity, because in the rare cases where

the observed noisy signal Y∗ is much above 3, it is giving us extremely precise

information in the truncated case: the true value of Y must be very near 3 if Y∗ is

much greater than 3. There is no point in achieving such low conditional variance

for this particular type of rare event, so the optimal solution uses that information

capacity elsewhere. This explains why the distribution of X has smaller support

than Y’s in the optimal solution for the truncated problem.

The conditional density functions for Y at each of the four points in the X distri-

bution, i.e. the four possible distributions of posterior beliefs about Y, are shown

in Figure 1. They are weighted by the probability of the corresponding X value,

so that at any point on the x axis the sum of the heights of these weighted pdf’s

is exactly the unconditional truncated normal density for Y. While the four densi-

ties are of course not exactly normal, they are of the same general shape as normal

densities, and have roughly the same .5 variances as do the conditionally normal

densities for the untruncated problem. We might ask what would happen if the

decision-maker mistakenly used the results of the truncated problem when in fact

the distribution of Y is not truncated. For example, we can suppose that the signal

is always one of the four points of support in the optimal truncated solution with

all cases of |y| > 3 assigned to the two extreme points among the four. This would

mean that the two ±1.0880 values of x are not in fact conditional expectations of

Y given the signal, so the solutions could be improved upon even if restricted to

four points of support. Nonetheless, the occurrence of |y| > 3 is so rare, and the

losses from setting x = ±1.0880 in these rare cases so small, that overall losses from

7These numbers are based on solving the problem numerically with a grid of one thousand points

between -3 and 3. They may not be accurate to more than about 3 decimal places as approximations

to the continuously distributed problem.
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FIGURE 1. Weighted conditional pdf’s for Y in tracking problem, λ = .5

Each pdf shown corresponds to one of the points in the discrete
support of X. They are scaled by the probability on the support
point, so that at any point on the x axis the sum of their heights
is the truncated normal marginal pdf for y.

applying the discrete solution in this way to the untruncated problem are .5118 in-

stead of .5. The information cost from this approximate discrete solution are lower

than those for the optimal solution.

These two problems are very similar in objective function and initial distribution

of uncertainty. Their solutions are very similar in terms of objective function value

and conditional distribution of the unknown Y. The solutions are also close in the

sense that either problem’s solution can be applied to the other problem with little

deterioration in objective function value. Nonetheless the solutions differ sharply

in the marginal distribution of the choice variable X. This kind of result reappears

in other settings and is inherent in the structure of these problems. In some exam-

ples we find there are no solutions with continuously distributed X, but in others

we find there is a family of densities for Y and corresponding densities for X for
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which the optimal solutions makes X continuously distributed. Where this is true,

though, small perturbations of the problem can again make the optimal distribu-

tion for X discrete.

For one more example of coexistence of solutions with very different supports

for x, consider the multivariate tracking problem, when the distribution of Y is

rotationally symmetric around some point (say 0) in Rn and the objective function

is E[−‖X−Y‖2]. The rotational symmetry implies of course that the support of

Y is itself rotationally symmetric. Suppose that there is an optimal solution that

concentrates probability on k values of X, {x1, . . . , xk} with probabilities
{

pj
}

and

corresponding conditional distributions of Y,
{

p(y | xj)
}

. Because of the rotational

symmetry, a solution that rotated each of the k values of X around the center of

symmetry through the same angle, while at the same time rotating the conditional

pdf’s of y through the same angle, would deliver the same value of the objective

function. But then so would any mixture of these two solutions. That is, we could

specify a probability π for the first solution and 1−π for the second, and the result

would give the same objective function value and (because the expected reduction

in entropy of the Y distribution is still the same) the same information cost. But then

we can also construct arbitrary continuous mixtures of such rotated solutions and

again achieve the same objective function values. A continuous mixture of rotated

versions of a solution with finitely many points of support would have support

concentrated on a finite collection of circles or (in higher dimensions) spheres. Here

is our conclusion as a proposition.

Proposition 3. In a rotationally symmetric multivariate tracking problem with quadratic

objective function, if there is any solution that gives X finitely many points of support, there

are also solutions with support a finite collection of spheres or circles.
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Of course this does not prove that solutions with finite discrete support for x

exist, but we have calculated numerical solutions for this problem in which discrete

(and hence also continuous on circles) support for x emerges.

VI. CONSIDERATION SETS

Caplin, Dean, and Leahy (2018) and Matějka and McKay (2015) find solutions

concentrated on subsets of their discrete action spaces. Caplin et all show how to

use the full set of first order conditions to solve for this support set. They interpret

the concentration of probability on a subset of the action space as explaining how

the concept of a “consideration set” can arise endogenously. Our results showing

that solutions to problems with open subsets of Rn as action spaces often concen-

trate probability on finite sets of actions can be given a similar interpretation.

Our framework may provide some fresh insight into how consideration sets be-

have. The examples in section V.3 suggest that consideration sets may be sensitive

to small variations in the specification of a decision problem. The truncated-normal

example shows that with a continuum of actions available, eliminating a subset of

the state space with prior probability less than one per cent can convert the consid-

eration set from the entire real line to a finite, and small, set of points.

The examples of rotationally symmetric two-dimensional choice show that op-

timal behavior that concentrates probability on a finite set of actions may coexist

with a pattern of behavior that is also optimal in which actions lie on a continuum

of points. In those examples, the decision-maker can be thought of as possibly

choosing a random orientation for a finite consideration set, then making a choice

from that finite set. But an observer of the behavior would see only the continu-

ously distributed (albeit on a low-dimensional set) behavior.

The coding example in C.1 shows that when coding is required to approach,

without quite attaining, the Shannon bound on capacity, the sharp discreteness of

the fully optimal solution may not arise. Instead we might see a kind of "fuzzy
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discreteness" in choices, with choices frequently very close to a finite set of points,

but not concentrating entirely on the finite set in the full solution.

The Caplin et al paper observes that in its framework, it is possible to charac-

terize the set of all priors consistent with a given consideration set. While we do

not have an exactly equivalent result in our framework, there is a similar way to

generate a large class of priors consistent with a given consideration set. Suppose

we have a solution to the standard problem, with a density p(x) over a support B

(the consideration set), posteriors q(y | x) for each x in B, and the θ(y) function that

appears in the first order conditions (5)-(8). (Note that h(y) in those equations is

eθ(y)/λ.) The set of points in the support of the action distribution is determined by

(10), in which p itself does not appear. Therefore, if we vary the density function

p(x), while keeping the support B of X, q, and θ fixed, all the first-order condi-

tions for a solution remain satisfied, except for the adding-up constraint (8). But

we can treat that equation as determining g(y). As we let p vary over all possible

densities on B, we generate a large family of priors g, all consistent with the same

consideration set B.

We already have noted one instance of this construction. In the discussion fol-

lowing proposition 2 we noted that when θ(y) is constant in the one-dimensional

tracking problem, the solution implies that g(y) defines the distribution of X plus

a random variable independent of X whose pdf is proportional to eU/λ. In fact,

in this case, B is the entire real line and the set of possible priors is that of ran-

dom variables that are the sum of an arbitrary real-valued random variable and an

independent “disturbance” with density proportional to eU/λ.

VII. PORTFOLIO CHOICE

Microdata on household portfolio rebalancing reveal significant inaction. For

example, only 8.6% of households adjust their portfolios every month and 71% ev-

ery year (Bonaparte and Cooper, 2009). While this has traditionally attributed to
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some form of adjustment cost, we show that rational inattention can also explain it.

Alvarez, Guiso, and Lippi (2012) make a similar point, but they use a fixed observa-

tion cost of perfect information. Our results go beyond the infrequent adjustment.

The optimally discrete distribution of portfolios that we find implies repeated re-

turns to the same set of portfolios. Also our results show a pattern of “normal

times” stock-picking, with occasional periods of “risk-on” or “risk-off” behavior in

which little information about relative returns of individual assets is collected. This

is similar to a finding by Kacperczyk, Van Nieuwerburgh, and Veldkamp (2016).

The problem we consider is maximization of expected constant absolute risk

aversion (CARA) utility by choosing portfolio weights on two risky, and one risk-

less, security. The returns on the risky securities have two components: one, Z,

that is inherently uncertain; another, Y, that is uncertain only because of limited

information-processing capacity. There are no restrictions on short sales, and, be-

cause CARA utility is defined on the whole real line, no limits, other than risk

aversion, on how leveraged the portfolio can be.

This problem differs from those discussed in section V in that it is not a tracking

problem and has a multivariate choice vector.

Formally, the problem is

max E[− exp(−αθ′(Y + Z))]− λI(θ, Y) (16)

subject to

θ′1 = 1 , (17)

where θ is a vector of portfolio weights summing to one, and Y + Z is the vector of

random yields, of the same dimension as θ. Before information collection, the dis-

tribution of Y has pdf g(y), which we assume has bounded support. Z ∼ N(0, Σz),

with Y and Z independent, both before and after information collection. I(θ, Y) is

the mutual information between Y and θ. Because there is no restriction on short
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sales or borrowing, the elements of θ can be positive or negative. This framework

might describe an individual investor who does not respond to every available

increment of information about available investments, or at a very different time

scale, describe a professional high-frequency trader receiving market information

over a costly data connection billed in bits per second.

We show in appendix A that the solution necessarily gives X support containing

no open sets, but have not been able to rule out solutions that are continuously

distributed on lower-dimensional sets. We display numerical solutions that turn

out to give X support on a finite set of points.

Our numerical solutions are for the case of three available securities, with the

first security risk free and returning 1.03, with somewhat higher mean return 1.04

on each of the two risky assets. The prior distribution of the stochastic part of Y

is N(1.04 · 1, .022 I), truncated to the square region within 3 standard deviations

of the mean along each axis. We set the stochastic part of Z to have a N(0, σ2
z I)

distribution, independent of Y.

Results for several settings of λ (information cost), α (risk aversion parameter)

and σz are displayed in Table 1. With these parameter values, the support of the

distribution for the portfolio weights θ is just three or four portfolios.

The first three of these cases, A through C, are arranged in order of increasing

leverage. Case A has a higher risk aversion parameter (α = 2 instead of α = 1) and

generates no short selling of either risky security. However, the sums of weights

on the two risky securities are in all three portfolios far above one, implying that

there is borrowing at a level 14 to 40 times the investor’s net worth. The investor

with over 90 per cent probability puts most of the portfolio in one or the other of

the two risky assets, and with 7 per cent probability increases leverage even further

to invest equally in the two risky assets.
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p θ1 θ2

A) α = 2, λ = .05, σz = .0173

0.067 20.727 20.727

0.467 14.418 1.429

0.467 1.429 14.418

B) α = 1, λ = .1, σz = .0173

0.185 -23.006 -23.006

0.408 55.214 10.431

0.408 10.431 55.214

C) α = 1, λ = .05, σz = .0173

0.024 -77.975 -77.975

0.488 -0.091 45.748

0.488 45.748 -0.091

D) α = 1, λ = .05, σz = .03

0.361 19.328 19.328

0.248 19.890 -5.666

0.248 -5.666 19.890

0.142 -8.737 -8.737

TABLE 1. Portfolio weight distributions, CARA utility.

Note: The first column is the probability on each of the port-
folios. The second and third are the portfolio weights on the
two risky assets. Since the total value of the portolio is one, the
amount invested in the riskless asset is minus the sum of the
second and third columns, plus 1.

With lower risk aversion, in cases B and C, the investor again most frequently

leverages investments mainly in just one of the two risky assets, but now the other

portfolio shorts both risky assets, particularly strongly in case C, with both lower

risk aversion and lower information cost. The conditional densities for returns in
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cases B and C are shown as contour plots in Figures 2 and 3. The lower information

cost in case C leads to the investor choosing sharper boundaries between the condi-

tional distributions, thereby limiting the risks of leveraging and leading to greater

leveraging.

In Figures 4 and 5 we see that either higher risk aversion (case A) or higher ir-

reducible risk from z (case D) makes leverage less attractive and thus reduces the

incentive to collect information so that the conditional densities have little overlap.

In case D we see the solution going to four, instead of three portfolios in the sup-

port of θ. The low information cost is used there to better separate the centers of the

conditional distributions, with less emphasis on reducing overlap because leverage

is going to be lower.

In all of these cases, if the investor is thought of as repeatedly applying the so-

lution to this problem over time, he or she would be seen as often leaving their

portfolio unchanged, and when changing most of the time switching between be-

ing long in one or the other of the two risky rates. Then relatively rarely (though

not that rarely in case D) the investor would move to a “risk on” or “risk off” port-

folio that weights the risky assets equally (either long or short). Episodes like this,

in which investors occasionally buy or sell risky assets as a class, without paying as

much attention as usual to differences among securities, are easily explained within

this rational inattention framework.

VIII. COMPARISON TO OTHER MODELS OF COSTLY INFORMATION

VIII.1. People as Shannon Channels. A Shannon channel is defined by an input

“alphabet” and a mapping from that alphabet to a distribution on its output al-

phabet. The alphabets can be finite lists of discrete characters, the set of all real

numbers, functions of discrete or continuous time — anything that can be given

a probability distribution can be the input or output alphabet. Shannon showed

that once we know the input alphabet and the mapping from it to distributions on
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FIGURE 2. Conditional densities of y for case B of Table 1

Note: Each line type displays the contours of the joint pdf of the
returns of the two risky assets for one of the three portfolios in
the support of the optimal distribution of portfolios shown in
the table. The continuous lines, for example, show the distri-
bution of risky yields when the optimal portfolio heavily shorts
both risky assets; most of the probability, in this case, is on the
region where the risky yields are both below the 1.03 yield on
the riskless asset.

the output alphabet, we can calculate the distribution on the input alphabet that

maximizes what he defined as the “mutual information” between the input and

the output. This maximized mutual information is a real number that he called the

“capacity” of the channel. Furthermore, whatever we may wish to send through

the channel — music, stock prices, pictures — there is a way to “code” it, i.e. create

a mapping from what we wish to send into the input alphabet of the channel, so

that information is transmitted at arbitrarily close to the capacity rate.

It is the underlying idea of a Shannon channel that gives Shannon mutual in-

formation its unique appeal. To the extent that this paper’s results apply to ob-

served human behavior, they depend on the idea that this static decision prob-

lem recurs over time, or can be grouped with multiple other such problems being
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FIGURE 3. Conditional densities of y for case C of Table 1

Note: See note to Figure 2. Here, with lower information cost
than case B, the investor still uses three portfolios, but has
less overlap in conditional distributions, making leveraging less
risky and thereby allowing more leverage.

solved simultaneously. We are assuming that people, as optimizing agents, man-

age to “code” the states they are observing optimally for the physical characteris-

tics of their human information-processing apparatus, so that the limiting behavior

characterized by Shannon’s theorems is a good approximation to their behavior, re-

gardless of the psychological or biological details of their information processing.

VIII.2. Non-Shannon information processing costs. One can think of the model

in section III as a special case of a more general setup, in which the Shannon mutual

information between X and Y is replaced by any reasonable measure of “informa-

tion cost” and constraints on the joint distribution of X and Y beyond (3) are pos-

sibly imposed.8 For example, a manager might be contemplating investment in a

new product and have the option of commissioning a survey to estimate demand.

The cost of the survey might be linear in the number N of respondents, with the

8Caplin and Dean (2015) consider an extended class of measures of information cost that might

apply to a decision problem.
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FIGURE 4. Conditional densities of y for case A of Table 1

Note: See note to Figure 2. With higher risk aversion than
case B, the investor in this case will use less leverage, making
the payoff from sharply separating the conditional distributions
lower.

results (if the number of respondents is large) well approximated as Gaussian with

error variance inversely proportional to N.9 The cost of the survey is certainly a

kind of cost of information, and this problem, if costs are linear in N, and expected

profits quadratic in the error of the demand estimate, has a well defined solution

for any given prior distribution the manager might have for the demand (which for

the example’s sake we treat as an unknown real number). The cost of information

here is not Shannon mutual information, and the results of this paper do not ap-

ply. In this problem, unlike the same problem with Shannon mutual information

as the information cost, with quadratic loss the manager’s action is continuously

9Pomatto, Strack, and Tamuz (2018) develops a notion of information cost that takes it as ax-

iomatic that in repeated i.i.d. sampling information cost is linear in the size of the sample.
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FIGURE 5. Conditional densities of y for case D of Table 1

Note: See note to Figure 2. Irreducible uncertainty from Z is
higher than case C, though risk aversion and information cost
are the same. Here the investor has four portfolios as points
of support, with more overlap in the conditional distributions
than in case C.

distributed for continuously distributed priors, even if the prior has bounded sup-

port. This is true even if we make the cost proportional to log(N), which makes

it coincide with Shannon mutual information in the special case where the prior is

Gaussian (and hence has unbounded support).

While this example is a reasonable instance of decision-making under uncer-

tainty, with an information cost and endogenous choice of posterior distribution,

it cannot be interpreted as reflecting the information-processing constraints of the

manager herself. The example is one where the costs of information are external

to the decision maker, and there is no good argument for giving Shannon mutual

information special emphasis in such a framework. Shannon mutual information is
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a useful measure of costs of information processing, turning information into action,

when there is no other cost to obtaining the information.

Shannon mutual information depends only on the joint distribution of the un-

known state and the action or observation; it does not depend on how the states

are “labeled”. For example, we might expect that people asked to identify white

and black disks flashed on a screen at a certain rate could do so with negligible er-

ror, while if the disks are instead two very similar shades of gray they would make

frequent errors. If the white and black, or light and dark gray, disks are presented

as an i.i.d. sequence with .5 probability on each, the mapping from signal (white or

black, light gray or dark gray) to action (the person’s identification of what she has

seen) is transmitting one bit of information per transmission if there are no errors,

but less, maybe much less, if there are a lot of errors. Shannon mutual information

between signal and action is greater when there is no error, which suggests that the

“information cost” of tracking the light-gray/dark-gray sequence is higher than

that of tracking the white-black sequence. This is sometimes taken as a criticism

of the Shannon measure, since it implies that capacity, or the cost of information,

could depend on the labeling. That is, there can be "hard to distinguish" and "easy

to distinguish" states, and it may be claimed that a good measure of information

costs must, unlike Shannon mutual information, recognize this distinction.

But rational inattention is based on the idea that rational agents, faced with a

repeated problem of using information to guide decisions, will optimally code the

states they are responding to, recognizing their own strengths and weaknesses as

Shannon channels. The white-black-gray example describes a simple channel. A

white input produces a white output without error; a black input produces a black

output without error, a light gray or dark gray input produces either a light gray or

dark gray output, but never white or black. If the person actually needs to react to

a sequence of light and dark gray disks, with none white or black, she can simply
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map light gray to white and dark gray to black (or vice versa), and transmission will

be without error. If instead black, white, light gray and dark gray transmissions oc-

cur in the input stream with equal probability, the person could for example map

black to black, white to white, and light or dark gray to a gray signal that means the

next transmission will be white if the input was light gray, black if the input was

dark gray. Even if the person has no ability at all to distinguish light and dark gray,

so that seeing a gray disk of either shade leaves her with equal probabilities on

light or dark gray for the signal, this coding scheme will transmit the white-black-

light-gray-dark-gray sequence without error. Of course this is at the cost of taking,

on average, 1.5 transmissions for each disk observation in the sequence of states.

The Shannon capacity of this channel, assuming white and black inputs transmit

without error and any gray input resolves no uncertainty about whether it is light

or dark, is log2(3) = 1.58 bits per period. A channel in which all four states trans-

mitted without error would have 2 bits per period capacity. The coding scheme

we have described here, using a gray observation as a prefix, announcing that the

state is gray and the next signal will be white or black and resolve the uncertainty

about whether the gray is light or dark, achieves a transmission rate of 3/2 bits per

period. Shannon’s coding theorem then tells us that we could somewhat improve

on this simple coding scheme, but could not increase the transmission rate by more

than 1.58− 3/2 = .08 bit per period. We discuss coding in a bit more detail in the

online appendix.

Of course there are decision problems in which options for coding signals are

limited, or where the problem is isolated, not repeating, so that investing in im-

proved coding is not necessarily optimal. In such problems Shannon capacity and

mutual information may not be the best approach to modeling information pro-

cessing costs, even those internal to the decision maker. But as also should be clear

from this example, there will not be an obvious, unique alternative to the Shannon
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measures. Modeling information processing costs will depend on details of the

specific problem in these cases.

There are a number of ways to frame sets of axioms that imply the Shannon mea-

sure, as laid out in Csiszár (2008). Suppose H(Y) is a measure of uncertainty in the

random variable Y and that it depends only on the distribution of Y, not on labels.

In the case of a finite state space, this means it depends on the set {p1, . . . , pn} of

probabilities on the points in the state space and is invariant to permutations of

the pi’s in the set. Let H(Y | X) be the expectation, over the distribution of X,

of H applied to the conditional distribution of Y given X. If H has the property

that H(Y, X) = H(X) + H(Y | X), then, subject to some regularity conditions, it

is Shannon entropy. This is the property, called Strong Additivity by Csiszar, that

the information in observing X, plus the information in observing Y after updating

our distribution for Y based on observing X, is the same as the information in see-

ing X and Y simultaneously. When modeling a flow of information over time, or

across many simultaneous observations, this additivity property is essential to the

measure’s usefulness, as it is required to support Shannon’s coding theorem.

Nonetheless, one can consider other plausible measures of information flow in

a static decision problem. One might wonder whether any such measure, based

on the joint distribution of x and y and invariant to monotone transformations of

x and y, might lead to results like our main ones in this paper. In section C.4 of

the online appendix we consider what emerges if we measure information flow

by the expected total variation distance between the prior density g and the pos-

terior densities q(y | x). We find that in this case, at least, neither our Lemma 1

nor our Theorem 1 result holds. We have carried out some numerical calculations

with other measures of information flow based on the joint distribution, and have

in some cases found apparent discrete support for x. But the result we find with

Shannon mutual infomation, that bounded support for y and analytic U implies
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discrete support for x, regardless of λ, is clearly not generic with other static mea-

sures of quantity of information.

IX. CONCLUSION

The kind of model explored here, in which a decision-maker reacts to external

information subject to a tight information constraint, seems a natural one to apply

to the behavior of individuals reacting to fairly frequent and/or numerous eco-

nomic signals for which the consequences of imprecise responses are modest. This

might be true, for example, of price-setters in retail establishments that must set

hundreds of prices every day in response to fluctuations in demand and costs for

all the items. It might also be true of day-to-day or month-to-month savings and

spending decisions of individuals, facing a potentially vast array of information

about asset markets.

We show that reduced dimensionality of the support of the decision variable

emerges in a large class of problems. Lemma 2 and Proposition 1 provide gen-

eral tools for assessing it, and we apply these tools in our examples. Proposition

1 shows reduced dimensionality in a broad class of cases where exogenous uncer-

tainty has bounded support and the objective is to keep a decision vector close to

the exogenous random vector. The reduced dimensionality results imply discrete

distributions in models with one-dimensional decision variables, and our numeri-

cal examples show that discreteness also commonly emerges in multivariate exam-

ples.

These models suggest that it is a mistake to identify times at which decision mak-

ers’ choices change as times at which they fully optimize in reaction to the current

state. Rationally inattentive decision makers as modeled here may change their

choices randomly, even when the state of the world (the draw from the g distribu-

tion) is unchanged. As modeled here, they acquire information about the true state
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every period, but may nonetheless not change their behavior, even though the true

state is changing.

Rationally inattentive decision makers as in our portfolio allocation example may

go for long periods making no change or small changes in their behavior, then

make a large and temporary change. Long periods of unchanged behavior are not

an indication that changing behavior is “costly”; frequent small changes are not an

indication that big changes are costly; and the large, rare changes are not an indi-

cation that changing behavior is not costly. There is no cost of change at all in these

models. Apparent inertia in the face of changing circumstances simply reflects the

fact that with information flows valuable, it can make sense to concentrate atten-

tion on the rare extreme draws of y, reacting little or not at all to the usual small

fluctuations about the central value.

If behavior like this explains even part of observed inertia and stickiness in eco-

nomic behavior, conclusions from models that use adjustment costs, menu costs,

or an ad hoc assumption of infrequent but complete information updates, could

give misleading conclusions. Formal solution of optimization problems with an in-

formation constraint is challenging, even in the most manageable linear-quadratic,

Gaussian uncertainty case, and extending the solution methods this paper has used

for non-quadratic, non-Gaussian settings to dynamic models is even more challeng-

ing. Furthermore, as our examples have shown, the nature of solutions to these

problems is in some dimensions sensitive to small changes in the problem.

It is therefore not realistic to expect that formal models incorporating rational

inattention can soon simply replace standard rational expectations models. On the

other hand, that rational inattention leads to muted, and sometimes to “sticky” re-

sponses to changes in the state of the world is a robust result. We should recognize,

therefore, that structural models of rational behavior under uncertainty that ignore

information processing costs, need to be taken with a grain of salt. Their implied
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“costs of adjustment” may not correspond to actual components of technology or

utility functions.
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APPENDIX A. PROOFS

A.1. Proof of Proposition 1.

Proof. Functions on a complex domain in C that integrate to zero around circles are

the analytic functions, and this extends coordinate by coordinate to multivariate

analytic functions on domains in Cn. (See Krantz (1992, definition IV, p.5). So in our

case v(x, y) integrates to zero, around circles in S∗, for each x-co-ordinate for each

value of y. Fubini’s theorem lets us interchange orders of integration for integrable

functions, so
∫

v(x, y)µy(dy)dy is analytic on S∗, and an analytic function on S∗ is

real analytic when restricted to S. �

A.2. Proof of Corollary 1.1.

Proof. In this case the role of v(x, y) is played by γ(y− x), which is clearly analytic

in x over the same domain (the whole real line) for every y. A real analytic function

is always extensible to a complex analytic function over some domain, and since

here the real analytic function is the same except for a location shift for every y,

the domain is the same except for a location shift for all y. Since the radius of
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convergence of γ is bounded below by some δ > 0, all the location-shifted versions

of γ are extensible to the open and connected

{z ∈ C | Im(z) < δ} ,

and the fact that p and γ are both integrable means their convolution is integrable,

so the result follows from the proposition. �

A.3. Proof of Theorem 1.

Proof. g, as a probability density, must be integrable.
∫

p(x)eV(x−y)/λµx(dx) is pos-

itive and by Corollary 1.1 analytic in y and therefore bounded below away from

zero on the bounded support of Y. From 8, therefore, we can conclude that h is

integrable. Therefore C(x) =
(
eV/λ ∗ h

)
(x) is analytic, again by Corollary 1.1, be-

cause h, being integrable and of bounded support, is a scaled probability density.

For large enough values of x we have from the convolution formula and the bound-

edness of the support of h that C(x) is a weighted average of values of V(z) with

‖z‖ arbitrarily large. C(x) therefore goes to zero as x → ∞ and thus cannot be con-

stant. Thus the support of the distribution of x contains no open sets, and if x and

y are one-dimensional, the support consists of a finite number of points. �

A.4. The portfolio problem of section VII. The problem is

max
q,p,µθ

(∫
− e−αθ′(Y+Z)q(y | θ)φ(z, Σ)dy µθ(dθ)dz

+
∫

log(g(y | θ)q(y | θ)p(θ)µθθ(dθ)−
∫

log(g(y))g(y)dy
) (18)

subject to: ∀(x)
∫

q(y | θ)dy = 1) (19)

∀(y)
∫

p(θ)q(y | θ)µθ(dθ) = g(y) (20)

∀(y, θ) f (y, θ) ≥ 0 , θ′1 = 1 . (21)

Here φ(z, Σ) is the density of a normal distribution with covariance matrix Σ and

mean zero. θ is the vector giving proportions of total wealth 1 invested in each
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security. Total yields of the securities are Y + Z, with uncertainty about Y being

reducible by paying an information cost, while Z is irreducible uncertainty.

Proposition 4. Suppose

(i) the prior density g of Y has mean vector µy;

(ii) µyµ′y + Σ is positive definite; and

(iii) g has bounded support.

Then the solution to the portfolio choice problem above gives X a distribution whose support

contains no open sets.

Proof. To get this into the notation of our general decision problem (which had no

z), we first integrate with respect to z, which makes the objective function

E[−e−αθ′Y+α2 1
2 θ′Σθ] . (22)

The problem is then in our standard form, so we can apply the FOC’s (7) and (8).

The FOC’s imply that

h(y) =
g(y)∫

p(θ) exp
(
−e−(α/λ)θ′y+(α2/λ) 1

2 θ′Σθ
)

µθ(dθ)
. (23)

The denominator is an integral whose integrand is everywhere positive, and thus

positive for every y and continuous in y. Since y has bounded support, the denom-

inator is bounded away from zero on the support of y, and the ratio is therefore

integrable. h(y), being integrable, is proportional to a probability density. Thus

C(θ) =
∫

h(y) exp
(
−e−(α/λ)θ′y+(α2/λ) 1

2 θ′Σθ
)

dy (24)

fits the assumptions of our Proposition 1. The integrand is integrable in y because

of the bounded support. If Σ is positive definite, so there is no riskless asset, the

integrand is integrable in θ for every fixed y because the quadratic term in θ dom-

inates, making the integrand drop rapidly to zero as ‖θ‖ increases. It is for each

y analytic in θ on the whole of Cn plane (where n is the dimension of θ), so the
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regularity conditions in the proposition about the domain of analyticity are auto-

matically satisfied. Thus C(θ) is analytic in θ. It cannot be constant, because it is

positive, yet as ‖θ‖ → ∞, C(θ) clearly goes to zero.

If one of the assets is riskless, we need to interpret y and z as determining the

yields on only the risky assets, remove the θ′1 = 1 constraint, and add the term

−α(1− θ′1)ρ to the exponent in the objective function, where ρ is the return on the

riskless asset. This makes the algebra a little messier, but the argument remains

essentially the same. �

APPENDIX B. NUMERICAL METHODS

There is a well-known algorithm in the rate-distortion literature, known as the

Blahut algorithm (Blahut, 1972), for calculating the optimal distribution of inputs

in a completely discrete version of the problem. In the notation of our (2)-(4), the

Blahut algorithm works with the case where Y has a given discrete distribution and

the points of support of the X distribution are given. The U(x, y) function can then

be characterized as a fixed matrix, and the first-order conditions (7) and (8) are used

to generate a fixed-point algorithm that solves the optimization problem.

For the problems that interest us in this paper, though, both X and Y are best

thought of as having arbitrary distributions in finite-dimensional Euclidean spaces.

Even if the solution for X gives it finitely many points of support, as in many of our

examples, the location of those points of support is not known a priori. One possi-

bility is to choose a fine grid in both X and Y spaces. One can then either solve the

problem as a constrained maximization (constrained because of the requirement

that p(X) > 0) or use the Blahut fixed point algorithm. With either approach, the

need for a fine grid makes the problem high-dimensional (or inaccurately approxi-

mated). Furthermore, when the true solution has support on a fairly small number

of points, the solution with this grid approach is unlikely to make the discreteness
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of the support cleanly apparent, as the points of support in the underlying contin-

uous problem will not usually lie exactly on the grid.

When Y is given a dense grid, to approximate a continuous distribution, but X

emerges as having a modest number (say 2-20) points of support, we have found

it efficient to solve by initially fixing the number of points of support of X and

iterating to a fixed point by methods analogous to the Blahut algorithm, but with an

added step of optimizing the location of the points of support at each round of the

iteration. The solution to the optimization problem, subject to the given bound on

the number of points of support, is a fixed point of this algorithm. Experimenting

with different numbers of points of support can lead us to be fairly confident that

we have found the optimum number.

One could also take an optimization approach, optimizing jointly over the prob-

abilities on the points of support and their locations, and we experimented with

this approach. However, in this problem when the number of points of support is

larger than required, the objective function is flat in some dimensions. Even when

the number of points of support is correctly chosen, the objective function can be

close to flat in some dimensions, which makes gradient-based optimization slow,

erratic, and often inaccurate.

Our fixed-point algorithm can also be slow in terms of iteration count, but each

iteration is quick. When the number of points of support is larger than necessary,

the algorithm converges either with p(xi) = 0 on some points of support or with

some points of support showing the same values of xi and the same conditional

distributions for Y | X = xi, possibly with non-zero probabilities on several of the

equivalent xi’s. The probabilities from these repeated values of x in the solution are

then added up to obtain the implied solution with fewer points of support.

Like the Blahut algorithm, our algorithm does not guarantee a global solution.

Suppose we solve to find the optimum distribution of X over N0 points, but then
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expand the model by adding extra points of support up to N > N0. If we start any

of these algorithms from the solution for N0 points, either by putting 0 probability

initially on the added points, or by giving them positive probability but repeating

them, none of these algorithms will leave the starting value. Furthermore, they

can converge to a solution with fewer points of support than the optimum. We

therefore always check apparently converged solutions by randomizing starting

values.

Our algorithm is implemented in four R functions, two of which are specific to

the particular problem being solved. One of the problem-specific functions takes a

vector of x values and a vector of y values and computes the corresponding value of

U(x, y). The other takes as one argument an nx× ny matrix of conditional probabil-

ities for y | x, where nx is the number of points of support of x (generally 2-20) and

ny is the number of points of support of y (usually on the order of 1000-2000 in our

examples). Its second argument is the ny× my matrix giving the my-dimensional

vector of y values at each point of support in the distribution of y. This function

returns the optimal values of x at its nx points of support. It may be easiest to

understand what these functions do by looking at them in the simplest case, our

multivariate tracking problem, where they take easily understood form:

U2drec <- function(x,y) {

-.5 * sum((x-y)^2)

}

xfcn2drec <- function(ygivenx, y) {

return(ygivenx %*% y)

}

The first of these returns the squared Euclidean distance between y and x, and

the second returns the conditional expectation of Y at each of the points of support
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of the X distribution, which is the optimal choice for these values with the given

conditional distributions.

These two functions, one giving the value of U, the other giving the optimal

choices of x for given conditional distributions on Y, are passed as arguments to

DiscFP(), which monitors the iterations, and in turn to DiscPObjXmv(), which does

the computation for each iteration.

All the examples we consider are ones where there is a closed form solution to the

problem of choosing the optimal x value given the conditional distribution of y | x,

or else the solution is a well-behaved one-dimensional zero-finding problem. If

this optimization itself required a time-consuming iterative solution, our approach

would require modification.

The full set of programs to compute the solutions in our examples is available

with the on-line appendix.

APPENDIX C. ONLINE APPENDIX: MORE EXAMPLES

C.1. Example of coding. It may help in understanding the nature and practical

importance of Shannon’s result to consider two simple, but very different channels

with the same capacity. One is a “telegraph key”: Its input alphabet is the set {0, 1},

its output alphabet is the same, and its output is simply equal to its input. This

channel has capacity one “bit” per time period or per transmission. Another chan-

nel with the same capacity is one whose input alphabet is real numbers, with the

restriction that the variance of the distribution from which the numbers are drawn

must be less than or equal to one. (In electronic communication, such a restriction

arises from limits on the power of the input sequence.) For this channel the output

from an input value y is an output value z = y+ ε, where ε is a normally distributed

“noise” of variance 1/3 that is independent of y. The telegraph key channel attains

its capacity rate of transmission when its input makes the probability 1 or 0 both the
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same, i.e. .5 each. The normal-error channel attains its capacity rate of transmission

when the input has a N(0, 1) distribution.

It might seem that if we have a message to send that consists of zeros and ones,

e.g. a digital computer file or a Morse code message, the telegraph-key channel

would be useful, as it could send the message without error. The normal-errors

channel might seem far less useful, as our discretely distributed input could not

match the channel’s optimal distribution of inputs, and its output would always

be contaminated by the channel’s inherent noise. Similarly, if we wished to send a

message drawn from an i.i.d. sequence of N(0, 1) random variables and were satis-

fied with a standard deviation of 1/
√
(3) on the output signal’s error, the normal-

error channel would work easily. The telegraph key, which might seem to have

no way to trade off accuracy for speed of transmission, would apparently be much

worse. Shannon’s coding theorem, and its generalization to what is called rate-

distortion theory, shows that these two channels can each approximate the other’s

behavior arbitrarily well.10 More generally, given any sequence of random vari-

ables (not necessarily defined on the channel’s alphabet) as inputs and any objective

function or measure of accuracy that is a function of the joint distribution of input

and output, the accuracy we can achieve is defined by the channel capacity. Coding

maps the message to be sent into sequences or sets of values of the channel’s input

alphabet. Transmission at a rate arbitrarily close to the capacity rate is achieved by

optimally coding the message to be sent. None of the details of the channel’s al-

phabets, internal noise, or mapping from input alphabet to output alphabet matter

to the accuracy that can be achieved.

This generality is appealing as a basis for modeling the effects of limits on infor-

mation processing by human beings. People process all kinds of information, all

the time. Understanding how the five senses, brain structure, and nervous system

10For more discussion of Shannon’s theory, and of these two example channels, see Cover and

Thomas (2006).
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map external signals to effects on human behavior, i.e. the details of the human

information channel, is prohibitively complicated. But if we postulate that individ-

uals have finite Shannon capacity, and that they use this capacity optimally, we can

derive some conclusions about the effects of their finite capacity without knowing

the details of their channel structure.

There are many other notions of a “cost of information” that have a legitimate

claim to that label. In the paper’s section VIII and appendix section C.4 we compare

Shannon’s measure to some others and discuss the degree to which our discrete-

ness result generalizes to other measures of information cost. Shannon’s measure is

unique, though, in its connection to the ideas of coding and channel capacity, and

thereby to the separation of information processing costs from biological and psy-

chological details. We think this justfies our focus on this measure of information

cost.

In order to understand the coding theorem and its implications, we can look

further at our telegraph key and noisy Gaussian channels, aiming to make concrete

the notion of coding to achieve transmission at close to the capacity rate. Consider

the problem of matching x to y, where y is distributed as N(0, 1) and our losses

are E[1
2(y − x)2]. We can transmit information about y only via a channel with

capacity one bit per time period — in one case, the telegraph-key channel, in the

other the Gaussian channel we described above. If we consider one channel and

one period in isolation, the best we can do with the Gaussian channel is to transmit

y, observing it as the channel output y + ε. One bit of information is transferred,

and by setting our decision variable as x = .75 · (y + ε) we achieve an expected

loss of .125. It can be shown that this level of expected loss is the best that can be

achieved with any 1-bit channel.

But what if we have only the telegraph key? If we consider this channel and a

single transmission in isolation, the best we can do is code y > 0 as 1 and y < 0 as 0.
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We would then set x = E[y | y > 0] if we observe the output 1 and x = E[y | y < 0]

if we observe the output zero. This produces expected loss of .5 · (1− 2/π) = .182,

almost 50% greater than the optimum. But Shannon’s theory tells us that any 1-bit-

per-period channel can get arbitrarily close to the ideal value of the loss function

attained by the Gaussian channel. How can this be achieved?

The ideal transmission rate can be approximated with the discrete telegraph-key

channel by grouping transmissions, either across time or, if multiple such prob-

lems are being solved at once, across multiple similar channels. The naive solution

that considers the channel and period in isolation is the crudest version of quanti-

zation, that is, a mapping of the continuously distributed y into the discrete, finite

set {0, 1}. If we had, say, six channels like this running simultaneously, mapping

six values of y into six zeros and ones, we could just assign each element of the six-

dimensional y vector to a channel and reproduce the single-channel, single-period

loss of .182 for each channel. But we can do better than that. With six channels,

there are 64 possible sequences of six zeros and ones. The best solution with six

channels treated jointly will quantize the 6-dimensional y vectors, but it will do so

more efficiently than the naive solution. It will partition R6 into 64 sets and map

each one into a distinct sequence of six zeros and ones. It is possible to choose these

sets so that they deliver smaller variance of y− x than the naive solution. Indeed

as the number of periods or channels considered jointly increases, the performance

of the grouped telegraph-key channels comes arbitrarily close to that of the Gauss-

ian channel. In order to do so, the joint distribution of y and x for each individual

channel approaches the joint Gaussian distribution that characterizes the optimal,

Gaussian channel.

The main result of this paper11 implies that if instead of a N(0, 1) distribution for

y we had a truncated normal distribution, say truncated at±3, the optimal solution

11For this univariate, quadratic objective function case, the result was known in the information

theory literature, see Fix (1977) andRose (1994).
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would not be exactly attained with the Gaussian channel and would indeed make

the marginal distribution of the optimal x concentrate on a finite set of points.

Of course the telegraph-key channel, even if grouped into 6 joint transmissions,

would be transmitting only 64 distinct possible messages each period, and thus

the xi values for each individual channel i would have finite support on 64 points.

There would be finite suppport no matter how many channels or periods we group,

though the number of points of support would grow exponentially with the num-

ber of channels or periods grouped. Because the solution would always be quan-

tized (i.e. involve a deterministic mapping from y to sequences of zeros and ones,

and hence to x values), it would be expected to distribute x values over 2n possible

points of support, where n is the number of channels or periods grouped. Our re-

sult about discreteness of the x distribution in the optimal solution implies that, as

n increases the distribution of xi values for a given individual channel i collapses

on a finite set of points, with that limiting set of support points not increasing with

n. It does not imply that at any given value of n the limiting finite support set is the

full support of x in the approximate solution.

Figure 6 shows the distribution of one element of the six-dimensional x vector

when a set of y values drawn from a N(0, 1) distribution truncated at ±2 is quan-

tized with 6 bit discrete code (i.e. with a partition of R6 into 64 sets). The tendency

toward a discrete distribution with two points of support is apparent, but the distri-

bution is not completely concentrated on those two points. This coding succeeds in

getting the loss function value to a value almost as low as what would be achieved

with a continuous channel by naively using the linear mapping from the noisy ob-

served data to x that would be optimal with untruncated data (0.118 vs 0.115). The

naive variable-by-variable quantization would produce expected loss 0.131. This

quantization was calculated by applying the k-means algorithm (using R’s cclust

function) to 3.3 million draws from a truncated N(0, 1) distribution, arranged as a
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FIGURE 6. Histogram of one element of x, 6-bit code, N(0,1) truncated

at 2

550,000 by 6 array. Clearer discreteness would show up with grouping over more

dimensions.

Note that when we group n channels or periods what is quantized is the map-

ping from 2n subsets of Rn to 2n sequences of n zeros and ones. Therefore the

conditional distribution of the n-dimensional y vector given the n-dimensional x

vector is concentrated entirely on one set in the partition of Rn, with zero condi-

tional density outside that set. But the conditional density of an individual element

yi given the corresponding element xi of x is not quantized. That is, the support

of yi conditional on a given value of xi generally overlaps the support of yi given

other possible values of xi. In the ideal limiting joint distribution, so long as the cost

of information is positive and losses are finite, the support of the yi | xi distribution
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is the same as the support of the marginal distribution of yi itself, for all values of

xi.12

C.2. A risk-averse monopolist. This example has interesting economic content

and is outside the range of cases considered in the engineering rate-distortion liter-

ature.

Suppose a risk-averse monopolist faces a demand curve Q = q(X) and a constant

returns production technology with unit cost W, where W is a random variable. We

use X instead of P as notation for price, to avoid confusion with probabilities and

probability densities. Suppose the monopolist has logarithmic utility for profits.

With a utility cost λ per nat (the unit of measurement for mutual information when

log base e is used in defining it) of transmitting the information in w to a choice of

X, the problem becomes

max E
[
log
(
(X−W)q(X)

)]
− λI(X, W) , (25)

where the maximization is over the joint distribution of X and W. We assume W

is non-negative and continuously distributed with pdf g. This is a special case

of our generic decision problem with information cost as described in section III.

12See Lemma 1.

We could also have considered as an example of coding the reverse problem: Desiring to send

a sequence of zeros and ones without error, as is possible with the telegraph-key channel, how do

we do so, at the same rate, with the Gaussian channel? Shannon’s theory tells us that by grouping

across time or channels, the Gaussian channel can transmit at the same rate as the telegraph key,

and with arbitrarily low error. Coding schemes that can accomplish this are more subtle than the n-

dimensional quantization of our simple example. Our example is meant only to give initial insight

into how the Shannon theory allows abstraction from the details of channel specification. Readers

who want to pursue a deeper understanding of coding should start with Cover and Thomas (2006).
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To proceed further we need to assume an explicit form for the demand curve q().

Consider q(x) = x−θ for x > 0.13

In section C.2.1 below we provide an analysis of this problem and show that there

is a class of continuously distributed solutions for X when the density g(·) of W is a

certain mixture of scaled beta distributions. This lets us reach some general conclu-

sions that can be summarized as asserting that any kind of distribution for X can

emerge if we can freely vary the distribution of W, but distributions for X whose

support contains intervals of the form (0, T) can emerge only with a restricted class

of cost distributions. More specifically:

(i) For any combination of distribution of price X on R+, demand elasticity

θ > 0, and information cost λ > 0, there is a density function g(·) for the

exogenous cost variable W that makes the given X-distribution the optimal

distribution for that combination of θ, λ, and g. In other words, every kind

of distribution of X is possible as a solution to the problem, as we vary the

distribution of W over all continuous distributions on R+.

(ii) For any given g(·) and θ, even if the problem admits a solution with con-

tinuously distributed X for some value of λ, as λ → ∞ eventually the so-

lution does not have full support on any interval of the form (0, T), for any

0 < T ≤ ∞.

(iii) When there is an a priori known upper bound w̄ on cost W, any solution

in which X is continuously distributed over some interval of the form (0, x̄)

must have x̄ = w̄. This might seem counterintuitive, since with λ = 0 we

know that the solution is x ≡ θw/(θ − 1) > w, and indeed solutions often

make P[X > w̄] > 0, but when they do so the support of X never contains

an interval of the form (0, w̄).

13Matějka (2016) studies this problem with a risk neutral monopolist and the same demand curve.

The mathematics of this example with the logarithmic utility is close to that of the two-period sav-

ings problem in Sims (2006).
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(iv) If there is a known upper bound w̄ on W and E[W] > w̄(θ − 1)/θ, there is

no solution in which the support of X contains (0, w̄).

We have not been able to show that when X is not continuously distributed,

it must necessarily have countable discrete support, but in Proposition 6 we do

show that the support must be discrete and finite when the support of the cost

distribution is contained within an interval of the form (w∗, θw∗/(θ − 1). With

such a tight bound, the support of the X distribution lies outside the support of the

W distribution, and it turns out this implies discreteness.

We solve this problem numerically with the distribution of W a Beta(4,4) distri-

bution scaled to cover the interval (0,10). The prior distribution for costs is thus

symmetric around w = 5. It is in the family of distributions shown in section C.2.1

to be consistent with continuously distributed optimal X, but only for λ = 1/3,

θ = 7/3, and the distribution of X concentrated on the single point x = 10, which

obviously itself has a discrete distribution for X. When θ = 1.5, and λ = .05, full

support on a (0, T) interval is impossible because the mean of the B(4, 4) distribu-

tion scaled to (0, 10) is 5. Since this exceeds 10 · (θ− 1)/θ = 31
3 , a solution with full

support on (0, 10) is impossible by iv above.

We find numerically that X is distributed on a support of 6 points: 0.845, 1.790,

3.254, 5.648, 9.796, and 17.061, with probabilities .000028, .000385, ,00334, .025203

.170879, and .800163. The weighted and unweighted conditional densities for W

given these 6 values for the decision variables are shown in Figure 7. When the

densities are weighted by the probabilities of the corresponding X values, two of

the four are essentially invisible because weights on them are so small. But they

imply very precise knowledge that w is small and in each case certainty that W

does not exceed the corresponding value of X.

Because we necessarily approximate the Beta(4,4) distribution with a discrete

grid, it is possible, even likely, that the fully optimal solution for the continuous
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version of the problem has a countable infinity of points of support with a limit

point at x = 0 and probabilities converging rapidly to zero as the support point

approaches zero, but because these additional support points would have very low

probability, our six point solution (which is indeed optimal for our grid of 1000

equi-spaced points of support for approximating the Beta(4,4)) will be very close to

optimal even in the truly continuous case.

This pattern of results emerges because profits are unbounded above as costs ap-

proach zero, while utility is minus infinity if profits become negative. Very precise

information about W, including an upper bound on it, is therefore extremely valu-

able when W is in fact very low. The information-constrained monopolist simply

sets a high price, enough to ensure a profit even if W is at its maximum possible

level, 80% of the time, with his beliefs about W in this case spread broadly over

the interval 3 to 10. But on the rare occasions when W is low, he collects precise

information about it, including a firm upper bound. Observing his behavior over

time, we would see extended periods of constant prices, with occasional isolated

instances of sharply lower prices. Of course since without information costs price

would be θW/(θ − 1), it would in that case have a distribution that mimicked the

form of the cost distribution, a density centered centered at 15 and spread sym-

metrically between zero and 30. Someone observing the information-constrained

behavior of the monopolist would, not accounting for the effects of information

costs, draw mistaken conclusions about the distribution of costs or the elasticity of

demand, as well of course about the size of “menu costs” of changing prices.

C.2.1. Analytic results. Adapting the first order conditions for the general decision

problem discussed in section above to this case gives us

p(c | x) = ((x− c)q(x))1/λ h(c) (26)

∴
∫ x

0
((x− c)q(x))1/λ h(c) dc = 1 for any x such that p(x) > 0 (27)
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FIGURE 7. Conditional pdf’s for Y in the risk-averse monopolist problem.

Note: λ = .05, θ = 1.5. On the left the pdf’s are weighted by probabili-
ties of the corresponding actions (so they sum to the prior); on the right,
unweighted, so each integrates to one.

∫
p(x) ((x− c)q(x))1/λ h(c) dµx(x) = g(c) all c , (28)

where h is some non-negative function and we are using the convention that p() is

a pdf, with its arguments showing what it is the pdf for.

With this pair of functional forms for utility and demand, it turns out to be pos-

sible to find a function h(c) that satisfies (27) for all positive prices x. If we guess

h(c) = Kcγ, we find

∫ x

0

(
(x− c)x−θ

)1/λ
Kcγ dc = Kx

1−θ
λ +γ+1B

(
γ + 1,

1
λ
+ 1
)

, (29)

where B(·, ·) is the beta function. Thus by choosing K = 1/B
(

γ + 1, 1
λ + 1

)
and

γ = (θ − 1)/λ − 1, we can make the integral 1 for all values of x > 0. For the

beta function to be well defined, we require γ > −1, but this is guaranteed by the

condition θ > 1, which is required in any case for the monopolist’s problem to have

a non-trivial solution. We show in proposition 5 that this h(c) function is unique;

no other h(c) can satisfy (29) over any interval of the form (0, c̄) with 0 < c̄ ≤ ∞.
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This implies that for any distribution of x on x > 0, defined by a density function

π() and a measure µx, we can construct a function

g(c) =

∫ ∞
c π(x)

(
(x− c)x−θcθ−1−λ

)1/λ
µx(dx)

B
(

θ−1
λ , 1

λ + 1
) , (30)

and this distribution defined by π, µx will be the marginal distribution of x in the

monopolist’s problem if this g(c) is taken as the given marginal distribution on

costs c. So, as we vary the choice of g, every kind of marginal distribution for x

can emerge as solution to the problem — purely discrete with finite support, mixed

continuous/discrete, purely continuous, bounded support or unbounded support.

The result and its proof is in the following proposition.

Proposition 5. In the risk-averse monopolist problem of section C.2 where the utility of

profits is log
(
x−θ(x− c)

)
, if g(y) > 0 on an interval (0, T) with T > 0, and the marginal

density p(x) of X is positive on an interval (0, S) with 0 < S ≤ ∞, the h() function

that solves (27) for all x in (0, S) is h(c) = Kcγ, with γ = (θ − 1)/λ − 1 and K =

1/ Beta(γ + 1, 1 + λ−1). This solution is unique.

Proof. That this form of h does solve the equation is directly verifiable by substi-

tuting it into the equation and evaluating integrals. That it is unique follows be-

cause if there were another function h∗() that also solved the equation, we could

set h̃ = h− h∗ and use (27) to derive the conclusion

x−θ/λ
∫ x

0
(x− c)1/λh̃(c)µc(dc) = 0 all x ∈ (0, S). (31)

Denote by α the least positive real number such that 1/λ + α = m, where m is an

integer. Then we have

0 =
∫ y

0
(y− x)α

∫ x

0
(x− c)1/λh̃(c)µc(dc)dx

=
∫ y

0

∫ y

c
(y− x)α(x− c)1/λdxh̃(c)µc(dc)
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0

∫ y−c

0
(y− c− x)αx1/λdxh̃(c)µc(dc)

=
∫ y

0
(y− c)mh̃(c)µc(dc)

∫ 1

0
(1− x)αx1/λdx

= Beta(α + 1, 1/λ + 1)
∫ y

0
(y− c)mh̃(c)µc(dc) , (32)

for all y ∈ (0, S), and by taking the mth derivative, we conclude that

0 =
∫ y

0
h̃(c)µc(dc) (33)

for all y ∈ (0, S), which implies that h̃(c) = 0 except on a set of µc-measure zero. �

However, (30) shows us that any solution corresponding to this choice of Kcγ

as the form for h(c) must be a weighted average of scaled beta densities. For each

price x, the conditional distribution of costs has the shape of a beta density, scaled to

the interval (0, x), but with the same shape parameters for each x. This means, for

example, that no density g for C with g(c) = 0 in some neighborhood of zero (i.e.

no density that implies a known lower bound on C) has this form. If C has support

with upper limit c̄, an X distribution that satisfies (30) must have the same upper

limit to its support. This might seem surprising, since without information costs it

is always optimal to make x = θc/(θ − 1), which is larger than c. And indeed it

often will be optimal to make P[X > c̄] > 0 — but in this case , because (30) cannot

hold, X cannot have full support from zero to its upper limit. A distribution for C

that admits a solution in the family described by (30) and has an upper bound c̄ to

its support must imply that C has a finite, but positive, expectation. For any given

θ, E[C/X | X]→ 0 as λ→ ∞. Therefore even if g does have the form (30) for some

θ and λ, with upper limit to its support c̄, the optimal distribution of X must cease

to have full support on 0, c̄ for large enough λ.

Whenever the solution fails to fall in the mixture-of-scaled-betas class, it will

necessarily not have full support on a single interval. It may be that it always has

discrete support, but the strongest result we have obtained is that the solution gives
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X support on a finite number of points whenever the support of the distribution

of C is contained in an interval (c1, c2) with c2 < θc1/(θ − 1), as shown in this

proposition.

Proposition 6. In the risk-averse monopolist problem of section C.2, if cost C has a distri-

bution whose support is contained within an interval (c1, c2) with θc1/(θ − 1) > c2, the

distribution of the optimal X is concentrated on a finite set of points.

Proof. The optimal choice of X if C were known would be θc/(θ − 1). With an

a priori known lower bound c1 on C, it can never be optimal to let X go below

θc1/(θ − 1). So if there is an upper bound c2 on C with c2 < θc1/(θ − 1) the sup-

port of the distribution of X will necessarily lie entirely above the support of C, and

in fact within the interval θc1/(θ− 1), θc2/(θ− 1). Because in this case X always ex-

ceeds C, the conditions i and ii of Proposition 1 are satisfied, with the role of v(x, y)

in that proposition played by x−θ/λ · (x− c)1/λ. The h(y) from that proposition is,

from the first-order conditions, the function

h(c) =
g(c)∫

p(x)x−θ/λ(x− c)1/λµx(dx)
. (34)

The numerator of this expression is a probability density, hence integrable, and the

denominator is bounded away from zero for c ∈ (c1, c2) , because the support of

X lies above that interval. The v(x, y) function is itself bounded and the domain of

integration over c is bounded, so v(x, y)h(y) is indeed jointly integrable as required

in iii. Therefore

∫ x

0
x−θ/λ · (x− c)1/λh(c)dc =

∫ c2

c1

x−θ/λ · (x− c)1/λh(c)dc (35)

is an analytic function of x on the interval containing the support of X. Note that

the interval over which this function is analytic is (c2, ∞), even though X has sup-

port bounded by a smaller interval. But this function must take the value 1 at every
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point of support of X. If the support of X contains any of its limit points, the func-

tion would have to be one over the whole (c2, ∞) interval. But since θ > 1, it is also

clear that the function goes to zero as x → ∞ and is therefore not constant. Since

the support of X is inside a finite interval and contains no limit points, it must be a

finite set of points. �

C.3. Multivariate linear-quadratic tracking. This again is a classic problem from

the engineering rate-distortion literature. We consider it here because it is the sim-

plest case where in a multivariate problem, the support of the marginal distribu-

tion of the decision variable becomes measure-zero for some range of information

costs, while not being a countable set of points. It is also close to models with an

economic interpretation. For example, a consumer trying to choose a consumption

bundle close to an optimal bundle, when the optimal bundle is varying because of

changing prices and incomes. Or a monopoly price setter producing multiple prod-

ucts with stochastically varying costs, trying to keep the prices close to an optimal

target defined by the costs and demand.

The problem is to choose the joint distribution of X, Y to maximize

− 1
2 E[‖X−Y‖2]− λI(X, Y) , (36)

where X and Y are n-dimensional vectors and Y has a given N(0, Σ) distribution.

Of course again here the solution when λ = 0 simply sets X ≡ Y and the distri-

bution of X is also N(0, Σ) and thus has full support on Rn. If Σ is a scalar matrix

σ2 I, the solution is just to apply the solution for the one-dimensional problem of

section V, one dimension at a time, allocating information capacity equally to all

components of Y.

But if Σ is diagonal, but with unequal variances on the diagonal, the support of X

becomes measure-zero in Rn for a certain range of values of λ, and does so without

being reduced to a point. This result is the simplest form of what is known in the
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engineering literature as the “water-filling” result. Using σ2
i to denote the variance

of the marginal distribution of Yi and ω2
i to denote the conditional variance of Yi

given information, the objective function is

− 1
2 E

[
n

∑
i=1

ω2
i − λ(log(σ2

i /ω2
i )

]
. (37)

The interior solution would make ω2
i constant across i, and for low information

costs this is indeed the solution, with low values of ω2
i corresponding to low value

of information costs λ. But as in the one-dimensional case, ω2
i > σ2

i is impossible.

If this constraint is binding for all i, we are back to the trivial solution with no

information collected and X ≡ E[Y]. But for intermediate values of λ the solution

will set ω2
i equal to a constant ω̄2 for those values of i with σ2

i > ω̄2, and leave ω2
i =

σ2
i where ω̄2 > σ2

i . In other words, it is optimal to collect information in these cases

only about the Yi variables with the largest variance. For very high λ, the support of

X is the single point X = E[Y]. As λ falls, initially information capacity is used only

to reduce uncertainty about the Yi with the largest variance. For such a solution,

the support of X is on a one-dimensional subspace of Rn. As λ drops further,

information is collected about additional dimensions of Y, giving the distribution of

X higher dimension, but still measure-zero, support, until finally λ falls far enough

that information is collected about all dimensions and the distribution of X has full

support.

Low-dimensional support for X can take other forms. If Σ is scalar, and we alter

the problem by making Y truncated normal rather than normal, the solution must

give X support that contains no open sets, as was the case in the one-dimensional

version of this problem. But in this case the nature of the support of X depends on

the shape of the truncation boundary.

If Y is bivariate N(0, I), truncated at ‖Y‖ ≤ 3, the support of X is likely to be one

or more circles in R2. We show in proposition 3 that if there are any solutions to
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the problem that concentrate on a countable collection of points, then there are also

solutions for which the support of X is a countable collection of circles centered at

the origin. On the other hand, this result depends on the fact that the truncation

is itself at a circle around the origin, so the problem is rotationally symmetric. If

instead the N(0, I) distribution for Y is truncated at a rectangle, numerical calcula-

tions show that the solution for X is likely to be supported at a finite set of isolated

points in R2.

A numerical solution for the optimal X, Y joint distribution constrained to finitely

many points of support cannot of course deliver the continuously distributed so-

lution we know exists in the case of a symmetric truncation. But we can see the

nature of the solution by calculating, for the case λ = 2/3, a solution with 10 points

of support. All the X values in this solution turn out to lie on the circle of radius

.7604 about the origin, and the points are equally spaced around that circle and

have equal probabilities. Figure 8 shows the 10 conditional densities for θ | X,

the angle in the polar coordinates for Y | X = x, for the 10 optimal X values. A

solution allowing 12 points of support concentrated X on the same circle, and pro-

duced the same value of the objective function to 12 digits.14 The conditional pdf of

the length of the X vector (the first polar coordinate) is identical over all 10 points

of support, and thus also equal to the unconditional pdf for the vector length. In

other words, it is optimal here to collect information only about the relative size

of the two components of Y, not on their absolute size. Furthermore, the fact that

the 10 and 12 point solutions produce the same objective function value strongly

suggests that here the solution with X continuously distributed would simply be a

mixture of the solutions with 10 or 12 points of support, with the same conditional

distribution of Y | X for every value of X in its support.

14Details about the numerical methods are in appendix B.
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FIGURE 8. Conditional pdf’s of polar angle, 2d tracking with sym-

metric truncation

With the same objective function and the same value of λ, but with the truncation

at the square bounded by ±3 for both components of Y, the solution concentrates

on 9 points, arranged in an equally space grid on a square centered at zero and

with side 1.59, with probability .25 at the center, .125 at the centers of the four sides,

and .0625 at the four corners. Figure 9 shows the points of support for the two

truncations. The dark squares are the points of support when the truncation is to

the square, and their areas are proportional to the probability weights. The small

circles are the 10 equi-probable points of support with the circular truncation. Note

that the truncations boundaries, −3 < x < 3, −3 < y < 3 for the rectangular case

and ‖x‖ < 3 in the circular case, lie far outside the boundaries of the graph in both

cases.
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FIGURE 9. Support of x for 2-D tracking with square and circle truncation

Note: The squares show the points of support with truncation at ±3 in both directions. Their areas
are proportional to the probability weights on the points. The circles are the 10 equal-weighted
points of support for the solution with truncation at ‖x‖ < 3. In both cases information cost λ is set
at 2/3 and the exogenous uncertainty to be tracked is N(0, I).

In this problem, arising from just a slight truncation applied to a problem that we

know has a solution with continuously distributed X, there is, as might be expected,

only a fairly narrow range of values of λ that produce neither a trivial solution with

all probability concentrated at X = EY = 0 nor a solution with very many points

of support that is close in distribution to the solution of the untruncated problem.

With λ = 1, the solution to either form of truncated problem reduces to X ≡ 0.

As λ decreases to .5 or less the number of points of support in the solution rapidly

increases.
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C.4. L1 information costs. This information cost formulation, as was noted in the

text of the paper, sets the cost as

∫
p(x) |(q(y | x)− g(y)| dy dx . (38)

We do not have an economic example where this has a clear grounding in psychol-

ogy or optimality, but this is a metric on probability distributions that is widely

applied in mathematics. It, like the Shannon measure, has the property that mono-

tone transformations of x and y leave it unchanged — an important property when

we are modeling optimizing agents. Like essentially every information cost mea-

sure other than the Shannon measure, it does not have what Csiszár (2008) calls the

strong additivity property — the information in observing a random variable X1,

plus the information in observing X2 after updating the prior based on the obser-

vation of X1, is not the same as the information in observing the pair X1, X2.

On the other hand, it delivers results that are quite different in some respects

from what emerges from the Shannon measure. For the L1 measure there is no

result like Lemma 1; optimal q(y | x) can, and generally does, have q(y | x) =

0 for intervals of y values for a given x. By the L1 measure, the information in

observing a continuously distributed random variable without error is finite, in

fact always equal to 2.0, whereas with the Shannon measure the information in

such an observation is infinite. Thus while with the Shannon measure any non-zero

level of information costs will imply non-degenerate q(y | x), with the L1 measure

a low enough information cost will make it optimal to observe y without error.

Even when information costs are higher, solutions with the L1 cost often imply a

mixed continuous-discrete distribution for y | x. And finally, our main result, finite

support for optimal x distributions when U is analytic on R and y has bounded

support, does not hold with L1 information cost.
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The first order condition with respect to q(y | x), in the L1 cost version of the

model is

p(x)U(x, y) = p(x)λ sign
(
q(y | x)− g(y)

)
+ p(x)θ(y) + φ(x) . (39)

This has to hold only where q(y | x) > 0. Generally, and certainly in the case of

quadratic U, U(x, y) as a function of y cannot match the variation in the single θ(y)

function on the right hand side of this FOC for multiple x values. Thus q in the

solution is likely to take the form of a function that is zero for some y’s, equal to

g(y) for other y’s, and neither zero nor g(y) on a set of y values that is unique to

the particular value of x.

The nature of the result is perhaps easiest to see if g(y) has the unit circle as

support and is uniform on it, and U is minus the squared distance between x and

y along the circle. Then the L1 solution gives q(y | x) the form of a discrete lump

of probability a on x, together with a uniform density on an interval (x− b, x + b)

centered on x. a and b must satisfy

b
π

= 1− a

in order that the height of the density on (−b, b) match 1/(2π), the uniform density

on the unit circle. As information costs decrease, b shrinks to zero. As they increase,

b increases up to the point at which it is better to collect no information and set

q(y | x) = g(y) for all x. Of course if x is uniformly distributed on the unit circle,

these conditional densities do satisfy the constraint that g is the weighted sum of

the conditional densities.

With the Shannon information cost on this same unit-circle, quadratic tracking

problem, the optimal form of q(y | x) is proportional to exp(−(y− x)2/λ), where

“y− x” is interpreted as distance between y and x along the circle. It also leads to

continuously distributed x arond the circle.
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Now consider, though, what happens when we cut the circle, making g uniform

on an interval (0, 2π). Now there are end effects. With quadratic loss, we will

never want to choose an x right at the boundary of the interval, unless we had

exact knowledge that this was the value of y. With Shannon costs, it never pays to

have such precise knowledge. As a result, with Shannon costs the distribution of x

puts zero probability in the neighborhood of the ends of the intervals, and once we

know this, the analyticity of C(x) delivers us the result that the distribution of x is

discrete.

With L1 costs, though, it is possible that the q(y | x) grows more concentrated

around x at the ends of the interval, and even becomes entirely discrete at the

boundary. Even if not, the presence of an interval with zero p(x) density at the

boundaries does not propagate into a requirement for discreteness with L1 costs.

We do not have an analytic proof of this, but numerical calculations seem to support

this conclusion. When x and y are discretized, with 10 points in the x distribution

and 100 in the y distribution, the solution maintains 10 distinct q(y | x) shapes, all

showing a region of y’s where q(y | x) = 0, a region where q(y | x) = g(y) = .01,

and an interval where q(y | x) is larger. There are ten non-overlapping regions

where q(y | x) is larger than g, one such interval for each x. When λ is small

enough that we do not end up with the no-information, q ≡ g solution, increasing

the number of points of support always seems to increase the objective function

value. Figures 10 and 11 show numerical solutions for λ = 4 and λ = 8. The λ = 8

solution is close to the value at which the solution reverts to no-information, and

in fact delivers almost exactly the same value of the objective function as the no-

information solution, despite having non-trivial probability weight on each of the

10 points of support.

Note that in both figures the posterior densities are either .01 (the value of the

uniform pdf under the prior), zero, or above .01. Each conditional density puts the
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FIGURE 10. Conditional densities for y with 10-point x distribution,

L1 information cost, λ = 4. See text for interpretation of this and

Figure 11.

posterior density above .01 on a unique interval, with these intervals not overlap-

ping across the 10 x values. The lower information cost in Figure 10 is reflected in

more x values ruled out, with posterior pdf zero. In these figures the computations

were done with 10 points of support. Expanding the number of points of support

to 15 still left all 15 distinct and with positive probabilities, unless the information

cost was pushed above a critical level, in which case the solution collapsed to a

single point of support.
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FIGURE 11. Conditional densities for y with 10-point x distrbiution,

L1 information cost, λ = 8.
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