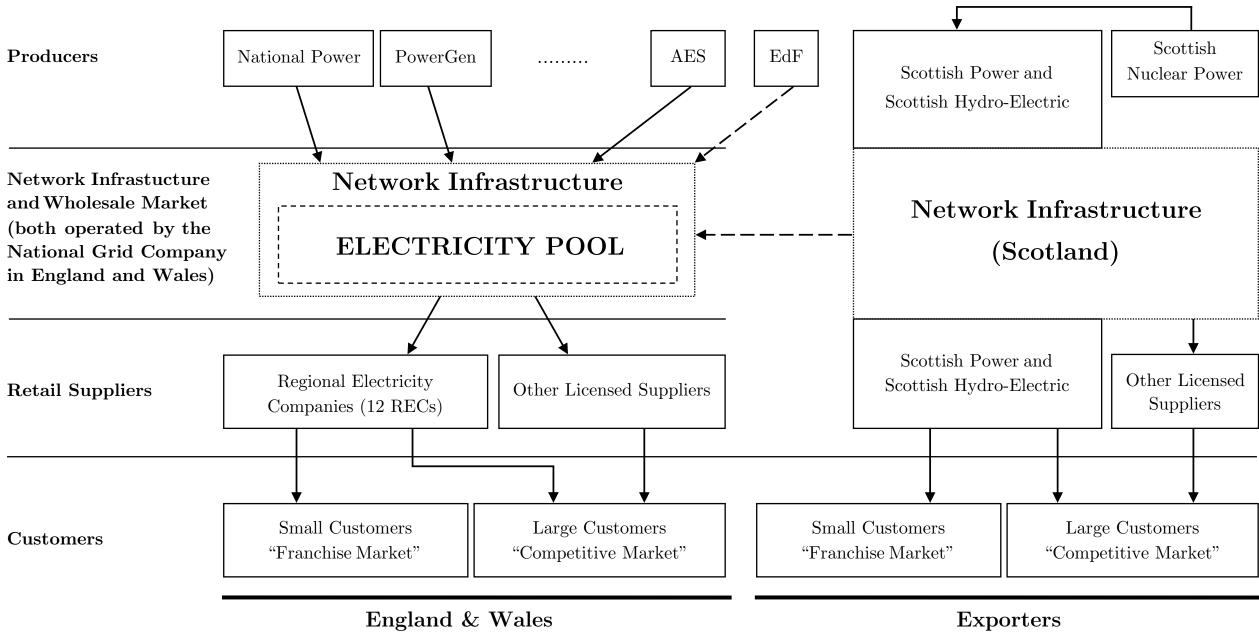

Estimating the Volatility of Electricity Prices: The Case of the England and Wales Wholesale Electricity Market


Structure of a Network Industry before and after Liberalization

(a) Vertically Integrated Case

(b) Vertically Separated Case

Electricity Industry in Great Britain in the late 1990s

Motivation for the Volatility Analysis

Why do price fluctuations matter?

- uncertainty about revenues and costs
- higher electricity prices for consumers

Key Questions to Analyze Liberalization

• Do liberalized markets drive price volatility? • How did the institutional changes and regulatory reforms affect the dynamics of electricity prices during the liberalization process?

Sherzod N. Tashpulatov **CERGE-EI**

Research Approach

- Stationarity: ADF test
- Seasonality: Correlogram and Periodogram based on ACF, PACF, Fourier Transform
- Model Specification: AR-ARCH dynamic model with a smoothly time-varying intercept term

Literature Review

- Crespo *et al.* (2004) Hourly prices from the Leipzig Power Exchange (Jun 16, 2000–Oct 15, 2001) AR, ARMA models: separate studies of each hour yielded better forecasts
- Guthrie and Videbeck (2007) 30-min prices from the New Zealand Electricity Market (Nov 1, 1996–Apr 30, 2005) Half-hourly trading periods naturally fall into 5 groups, which can be studied separately using a periodic AR model
- Conejo *et al.* (2005) PJM interconnection data for the year 2002 Dynamic modeling is preferred to seasonal differencing
- Garcia *et al.* (2005) Spanish and California electricity markets (Sept 1, 1999–Nov 30, 2000; Jan 1, 2000–Dec 31, 2000) GARCH model outperforms a general ARIMA model when volatility and price spikes are present
- Bosco et al. (2007) Daily prices from the Italian wholesale electricity market Periodic AR-GARCH methodology

Model Specification

$$price_{t} = a_{0} + \sum_{i=1}^{P} a_{i} \, price_{t-i} + z'_{t} \cdot \gamma + \varepsilon_{t}$$
(1)
$$h_{t} = \alpha_{0} + \sum_{i=1}^{p} \alpha_{i} \, \varepsilon_{t-i}^{2} + z'_{t} \cdot \delta$$
(2)
$$\nu_{t} = \frac{\varepsilon_{t}}{\sqrt{h_{t}}} \sim \text{GED},$$
(3)

where z_t is a vector of additional explanatory variable (sine/cosine periodic functions and regime dummy variables).

$+ z'_t \cdot \gamma + \varepsilon_t$	(1)

Methodological Findings

- better modeling weekly seasonality
- asymmetrically affect volatility

- price level and volatility
- During the last regime period was it possible to simultaneously decrease prices and volatility

References

Bosco, B. P., Parisio, L. P., Pelagatti, M. M., 2007. Deregulated wholesale electricity prices in Italy: an empirical analysis. International Advances in Economic Research 13 (4), 415–432.

Conejo, A. J., Contreras, J., Espínola, R., Plazas, M. A., 2005. Forecasting electricity prices for a day-ahead pool-based electric energy market. International Journal of Forecasting 21 (3), 435– 462.

Crespo, J. C., Hlouskova, J., Kossmeier, S., Obersteiner, M., 2004. Forecasting electricity spot-prices using linear univariate time-series models. Applied Energy 77 (1), 87–106.

Garcia, R. C., Contreras, J., van Akkeren, M., Garcia, J. B. C., 2005. A GARCH forecasting model to predict day-ahead electricity prices. IEEE Transactions on Power Systems 20 (2), 867-874.

Guthrie, G., Videbeck, S., 2007. Electricity spot price dynamics: beyond financial models. Energy Policy 35 (11), 5614–5621. Tashpulatov, S. N., 2013. Estimating the volatility of electricity prices: the case of the England and Wales wholesale electricity market. Energy Policy 60, 81–90 (earlier version is available as CERGE-EI working paper series no. 439).

Tashpulatov, S. N., 2010. Analysis of electricity industry liberalization in Great Britain: How did the bidding behavior of electricity producers change? CERGE-EI working paper series no. 415.

• Application of the sine and cosine periodic functions allow \bullet + and – shocks from the previous week are found to

Policy Conclusions

• The price-cap regulation and first series of divestments are found to result in opposite directions for the movement in the