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Section A characterizes the growth-optimal policy and the resulting pattern

of wealth circulation for a special case. Section B extends this characterization

to the general setting presented in the main text.

A Special Case: Rational Inattention

In Robson et al. (2023), we showed that the rational-inattention problem is

equivalent to the planner’s problem from the main text, in the special case of

an unrestricted endowment distribution p(i) ∈ ∆(I) and a fixed return function

p(ω | i)—corresponding to Kelly’s portfolio management problem.

To state the equivalence, recall that the rational inattention problem from

Matějka and McKay (2015):

max
r(i,ω)∈∆(I×Ω)

Er(i,ω) u(i, ω)− Ir(i,ω) (i)

s.t. r(ω) = q0(ω).

In their framework, i ∈ I denotes an action, and ω represents an uncertain payoff

state. The decision-maker with utility function u(i, ω) selects a joint distribution

r(i, ω) to maximize expected utility net of the information acquisition cost,

quantified by the mutual information Ir(i,ω). The marginal distribution r(ω) is

constrained to match the prior distribution q0(ω).

Proposition A (Robson et al. (2023)). The joint distribution r∗(i, ω) solves the

rational inattention problem (i) if and only if p∗(i) =
∑

ω r∗(i, ω) is the optimal

endowment distribution, and q∗(i, ω) = r∗(i, ω) is the optimal pattern of wealth

circulation in problem (8) of the main text, where the endowment distribution

p(i) is unconstrained and the return function is fixed to be p(ω | i) = exp[u(i, ω)].

Proof. Since the endowment distribution p(i) is unconstrained, Corollary 1 im-

plies that q∗(i) = p∗(i). Consequently, the objective in Problem (8) simplifies
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to:

KL
(
q(i, ω) ∥ p(i, ω)

)
= KL

(
q(i) ∥ p(i)

)
+

∑
i

q(i)KL
(
q(ω | i) ∥ p(ω | i)

)
=

∑
i

q(i)KL
(
q(ω | i) ∥ p(ω | i)

)
= −

∑
i

q(i)
(
Eq(ω|i) u(i, ω) + H

(
q(ω | i)

))
= −

(
Eq(i,ω) u(i, ω)− Iq(i,ω)

)
−H

(
q0(ω)

)
.

The first equality follows from the chain rule. The second equality uses that

KL
(
q(i) ∥ p(i)

)
= 0 at the optimum. The third equality follows from the

definition of KL-divergence and entropy, alongside the assumption p(ω | i) =

expu(i, ω). The last equality follows from the definition of mutual information,

Iq(i,ω) = H
(
q(ω)

)
−

∑
i q(i)H

(
q(ω | i)

)
, with q(ω) = q0(ω). Therefore, the

objectives of the minimization problem (8) and the rational inattention problem

(i) differ only by a sign and the term H
(
q0(ω)

)
, which is independent of the

controls as needed.

As a result, the characterization results from the rational inattention litera-

ture are applicable to the special case considered in this section. In particular,

the optimal endowment distribution p∗(i) and the optimal pattern q∗(i, ω) must

satisfy the necessary fixed-point condition from Matějka and McKay (2015):

p∗(i) = Eq0(ω) q
∗(i | ω) (ii)

q∗(i | ω) =
p∗(i)eu(i,ω)∑
j∈I p

∗(j)eu(j,ω)
. (iii)

Furthermore, the optimal endowment distribution p∗(i) is characterized by

the necessary and sufficient conditions for the rational inattention problem (i)

from Caplin and Dean (2013):

Eq0(ω)
p(ω | i)
p∗(ω)

= 1 if p∗(i) > 0, (iv)

≤ 1 if p∗(i) = 0,
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where p∗(ω) =
∑

i p
∗(i)p(ω | i) is the aggregate return in state ω.1

B General Case

An iterative procedure generalizing the Blahut-Arimoto algorithm characterizes

the growth-optimal policy and the corresponding pattern of wealth circulation.

To initiate this process, let q0(i, ω) be an arbitrary interior joint distribution,

satisfying
∑

i q0(i, ω) = q0(ω). The procedure is then defined recursively as

follows:

pk(i, ω) ∈ argmin
p(i,ω)∈P̃

KL
(
qk(i, ω) ∥ p(i, ω)

)
(v)

qk(i, ω) ∈ argmin
q(i,ω)∈∆(I×Ω)

KL
(
q(i, ω) ∥ pk−1(i, ω)

)
(vi)

s.t. q(ω) = q0(ω).

Proposition B. Assume that P̃ is convex and includes a policy p such that

p(i, ω) > 0 for all pairs (i, ω). Then, pk(i, ω) converges to the growth-maximizing

policy p∗(i, ω), and qk(i, ω) converges to the corresponding pattern of circulation

q∗p∗(i, ω).

Proof. The result follows from Theorem 3 and the subsequent Remark in Csiszar

and Tusnady (1984). Their result requires the condition that (in their notation)

p0 ∈ P is positive for precisely those x ∈ X where there exist p ∈ P and q ∈ Q

such that p(x)q(x) > 0. This condition holds in our setting because q0(i, ω) (the

counterpart of their p0) is assumed to be interior, and P̃ is assumed to contain

an interior p(i, ω), providing the counterparts of their p and q with p(x)q(x)

also interior. Their result thus guarantees that our pk(i, ω) converges to the

growth-maximizing policy for those (i, ω) where q∗(i, ω) > 0. In our specific

setting, pk(i, ω) also converges for those (i, ω) where q∗(i, ω) = 0 because qk(i |
ω) = pk−1(i | ω), and hence pk(i | ω) converges to 0, leading to pk(i, ω) → 0 as

well.

Proposition B implies that the optimal policy and the corresponding pat-

tern of wealth circulation must form a fixed point of the system (v, vi). This

1The optimality conditions of Caplin and Dean for the rational inattention problem are
identical to those for Kelly’s portfolio management problem. See Theorem 16.2.1 in Cover
and Thomas (2006). This coincidence has motivated our interest in stochastic growth.
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generalizes the necessary conditions (ii, iii) from Matějka and McKay (2015).

Finally, the necessary and sufficient conditions from Caplin and Dean (2013)

extend as follows.

Proposition C (Sufficient and Necessary Conditions). Assume that the set P̃
of feasible policies is convex. A policy p∗(i, ω) maximizes the economy’s growth

rate if and only if

Eq0(ω)
p(ω)

p∗(ω)
≤ 1 for all p(i, ω) ∈ P̃, (vii)

where p∗(ω) =
∑

i p
∗(i, ω) and p(ω) =

∑
i p(i, ω) denote the aggregate returns

in state ω under the policies p∗ and p, respectively.

Proof. Fix an individual j and a state ω̃. The derivative of the growth rate with

respect to the policy is given by:

∂p(j,ω̃)

∑
ω

q0(ω) ln
(∑

i

p(i, ω)
)∣∣∣∣∣

p=p∗

=
q0(ω̃)∑
i p

∗(i, ω̃)

=
q0(ω̃)

p∗(ω̃)
.

Since the objective function,
∑

ω q0(ω) ln (
∑

i p(i, ω)), is concave in p, and the

feasible set P̃ is convex, the set of maximizers remains unchanged by linearizing

the objective around the optimum. Therefore, p∗(i, θ) is a growth-maximizing

policy if and only if it maximizes
∑

i,ω
q0(ω)
p∗(ω)p(i, ω) over P̃. Summing this ob-

jective across i yields (vii).
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