Endogenous Risk Attitudes

Nick Netzer, Arthur Robson, Jakub Steiner, Pavel Kocourek

JEEA Teaching Materials

Nonlinear Measurement Scales

physical instruments often use nonlinear measurement scales

- this improves precision at some range of inputs
- at the expense of precision at other values

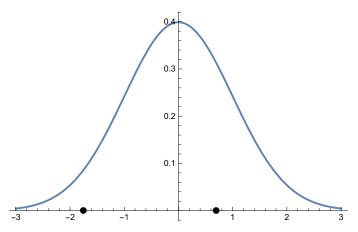
psychophysics literature extends this to human perception

Kahneman & Tversky '79 use this to justify S-shaped utility

Formalization

Robson '01, Netzer '09

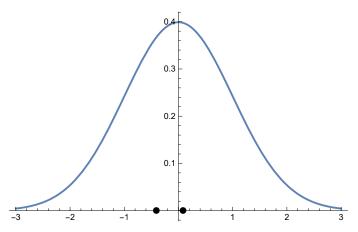
pick one of the two draws:



Formalization

Robson '01, Netzer '09

pick one of the two draws:



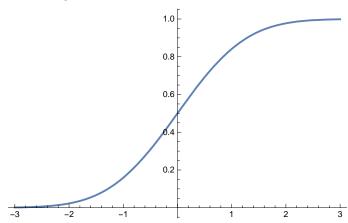
Formalization

Robson '01, Netzer '09

encode reward r_i as $m(r_i) + \varepsilon_i$

choose your encoding function m

optimal encoding function as noise vanishes



Our Contribution

Robson '01, Netzer '09:

- perception of one-dimensional inputs
- ullet encoding function \sim hedonic as opposed to Bernoulli utility
- vanishing implications for choice

this paper:

- exogenous perception ⇒ behavior
 - coarse model ⇒ perception-driven risk attitudes
 - well-specified model \Rightarrow risk-neutrality
- optimal perception of lotteries
 - microfounded objective
 - s-shaped encoding function
 - over-sampling of low-probability states

Literature

```
psychophysics:
Weber's law, Fechner 1860, Thurstone '27...
encoding of stimuli:
Attneave '54, Barlow et al. '61, Laughlin '81...
econ [riskless]:
Robson '01, Netzer '09, Rayo&Becker '07...
econ [risky, large noise]:
Friedman '89, Khaw&Li&Woodford '20, Frydman&Jin '19...
misspecification:
Berk '66, White '82, Esponda Pouzo '16, Heidhues et al. '18...
```

Table of Contents

Model

2 From Perception to Choice

3 Optimal Perception

Decision Problem

risk-neutrality: lottery optimal $\Leftrightarrow r := \sum_i p_i r_i > s$

set of states and probabilities fixed, and DM observes s frictionlessly

the DM:

- measures each reward many times
- estimates the lottery value given the collected data
- controls the encoding function and sampling frequencies

Perception

perception strategy:

- encoding function $m: [\underline{r}, \overline{r}] \longrightarrow [\underline{m}, \overline{m}];$ exogenous span
- sampling frequencies $(\pi_i)_i \in \Delta$ (set of states)

DM samples signals (i_k, \hat{m}_k) , k = 1, ..., n:

- i_k specifies the state; sampling frequencies $\pi_i \neq p_i$
- $\hat{m}_k = m(r_{i_k}) + \varepsilon_k$; iid standard normal noise

DM is sophisticated: knows conditional signal distributions

decoding: a map from perception data to the estimate of the lottery

nearly complete information: $n \to \infty$

a posteriori optimal choice

Table of Contents

Model

2 From Perception to Choice

3 Optimal Perception

Simple Decoding

fix perception strategy $m(\cdot)$ and $(\pi_i)_i$

def simple decoding: DM's estimate of lottery value $= m^{-1}(\sum_{k=1}^{n} \hat{m}_k)$

Observation

The probability that the DM chooses the lottery in problem (\mathbf{r}, \mathbf{s}) converges a.s. to 1 (0) as $n \to \infty$ if

$$\sum_{i} \pi_{i} m(r_{i}) > (<) m(s).$$

EU maximizer with Bernoulli utility $m(\cdot)$ and subjective probabilities π_i

Oprea'23

two treatments:

- genuine lottery $(p_i, r_i)_i$ vs safe option
- $oldsymbol{\circ}$ certainty equivalent of $(p_i, r_i)_i$ vs safe option

nearly identical choices across the treatments

aggregation friction rather than risk aversion

our simple procedure fits Oprea's subjects

Maximum Likelihood Estimate

the DM is endowed with a compact set $A \subseteq [\underline{r}, \overline{r}]^I$ of anticipated lotteries

forms ML estimate of the lottery

$$\mathbf{q}_{n} \in \operatorname*{arg\,max}_{\mathbf{r}' \in \mathcal{A}} \prod_{k=1}^{n} \varphi\left(\hat{m}_{k} - m\left(\mathbf{r}'_{i_{k}}\right)\right)$$

Proposition

Suppose that the DM anticipates that the lottery involves no risk:

$$A = \{ \mathbf{r} \in [\underline{r}, \overline{r}]^I : r_i = r_j \text{ for all states } i, j \}.$$

Then, she follows the simple decoding procedure.

Proof

White '82: asymptotic MLE minimizes KL-divergence from the true data-generating process, among all anticipated processes

$$\mathsf{MLE} \xrightarrow{\mathsf{a.s.}} \operatorname*{arg\,min} D_{\mathit{KL}} \left(f_{\mathsf{r}} \parallel f_{\mathsf{r}'} \right)$$

with Gaussian errors & no anticipated risk

$$D_{KL}(f_{\mathbf{r}} \parallel f_{\mathbf{r}'}) = \sum_{i=1}^{I} \pi_{i} (m(r_{i}) - m(r'_{i}))^{2}$$

hence MLE of $m(r) \rightarrow \sum_{i=1}^{I} \pi_i m(r_i)$

Proof

White '82: asymptotic MLE minimizes KL-divergence from the true data-generating process, among all anticipated processes

$$\mathsf{MLE} \xrightarrow{\mathsf{a.s.}} \argmin_{r' \in \mathcal{A}} D_{\mathsf{KL}} \left(f_{\mathsf{r}} \parallel f_{\mathsf{r}'} \right)$$

With Gaussian errors & no anticipated risk

$$D_{KL}(f_{\mathbf{r}} \parallel f_{\mathbf{r}'}) = \sum_{i=1}^{I} \pi_{i} (m(r_{i}) - m(r'))^{2}$$

hence MLE of $m(r) \rightarrow \sum_{i=1}^{I} \pi_i m(r_i)$

Coarse Anticipation of Risk

DM anticipates lotteries to be measurable w.r.t. a partition of arms ${\cal K}$

Proposition

Prob that DM chooses the lottery in problem (\mathbf{r}, s) converges to 1 [0] if

$$\sum_{J\in\mathcal{K}}p_Jr_J^*>[<]\ s,$$

where, for each $J \in \mathcal{K}$,

- r_J^* is the certainty equivalent $m(r_J^*) = \sum_{i \in J} \frac{\pi_i}{\sum_{i \in J} \pi_j} m(r_i)$
- $p_J = \sum_{i \in J} p_i$ is the true probability of J

- anticipated risk: risk neutrality
- unanticipated risk: risk attitudes

Impact of Prior Information

let's bridge the gap between anticipated and unanticipated lotteries

joint limit of

- number of signals
- precision of prior density of Bayesian DM

effects of

- time pressure
- level of anticipated risk

Prior Belief and Sampling

prior
$$\propto \exp\left(-\frac{n}{\Delta}\sigma^2(\mathbf{r})\right)$$
 on $[\underline{r},\overline{r}]^I$, where $\sigma^2(\mathbf{r})=\sum_i p_i(r_i-r)^2$

DM samples $a \times n$ perturbed messages

- △ degree of the a priori anticipated risk
- a attention span, sample size increases with a
- as n grows
 - sample size grows
 - risk becomes a priori unlikely

Lottery Perception

Proposition

The Bayesian estimate of lottery r converges to

$$\mathbf{q}^{*}(\mathbf{r}) = \underset{\mathbf{r}' \in [\underline{r}, \overline{r}]^{I}}{\arg\min} \left\{ \frac{1}{a\Delta} \sigma^{2}(\mathbf{r}') + \sum_{i} \pi_{i} \left(m\left(r_{i}\right) - m\left(r'_{i}\right) \right)^{2} \right\}.$$

limiting cases

- a△ large: close to risk-neutrality
- $a\Delta$ small: close to the simple procedure

unstable risk attitudes

- $a \to 0$ vs. $a \to \infty$: Kahneman's thinking fast/slow
- $\Delta \to 0$ vs. $\Delta \to \infty$: Rabin's paradox

Arrow-Pratt Measure

Proposition

Consider a lottery with small risk σ^2 . The Bayesian estimate of the lottery value converges a.s. to

$$r + \frac{1}{2} \frac{m''(r)}{m'(r)} \cdot \sigma^2 \cdot \frac{1 + 4a\Delta m'^2(r)}{[1 + a\Delta m'^2(r)]^2} + o(\sigma^2).$$

- $a\Delta \to 0$: the usual Arrow-Pratt measure for $u(\cdot) = m(\cdot)$
- $a\Delta \to \infty$: risk-neutrality

Table of Contents

Model

2 From Perception to Choice

Optimal Perception

Objective

ex ante distribution of the decision problems (\mathbf{r}, s)

- all r_i iid from continuously differentiable density h
- s independently from continuously differentiable density h_s

ex ante minimization of

$$L(n) = E[\max\{r, s\} - \mathbb{1}_{q_n > s}r - \mathbb{1}_{q_n \le s}s]$$

equivalent to maximization of the expected chosen reward

loss becomes tractable as n diverges

Proposition

If the encoding function m is continuously differentiable, then

$$L(n) = \text{const. E}\left[\sum_{i} \frac{p_i^2}{\pi_i m'^2\left(r_i\right)} \mid r = s\right] \frac{1}{n} + O\left(\frac{1}{n^2}\right).$$

Proposition

If the encoding function m is continuously differentiable, then

$$L(n) \propto E$$
 [MSE conditional on tie].

choice is distorted if s falls between r and value estimate q_n

condition on ties: small perception error distorts choice only if $r \approx s$

loss

MSE

Proposition

If the encoding function m is continuously differentiable, then

$$L(n) \propto \mathsf{E}\left[\sum_{i} p_{i}^{2}\mathsf{MSE}(r_{i}) \text{ conditional on tie}\right].$$

MSE is a weighted sum of MSEs for each r_i

Proposition

If the encoding function m is continuously differentiable, then

$$L(n) \propto E \left[\sum_{i} p_i^2 \mathsf{MSE}(r_i) \text{ conditional on tie} \right].$$

 $\mathsf{MSE}(r_i)$ is mitigated by high π_i and $m'\left(r_i\right)$

Information-Processing Problem

$$\min_{m'(\cdot),(\pi_i)_i>0} \mathbb{E}\left[\sum_i \frac{p_i^2}{\pi_i m'^2(r_i)} \mid r=s\right]$$
s.t.:
$$\int_{\underline{r}}^{\overline{r}} m'(r) dr \leq \overline{m} - \underline{m}$$

$$\sum_i \pi_i = 1$$

attention allocation:

- high $m'(\tilde{r})$ focuses on the neighborhood of \tilde{r}
- high π_i focuses on the state i

constraints:

- $m(\cdot)$ is bounded your scale can't be fine everywhere
- $\sum_i \pi_i = 1$ you can't sample all the states frequently

Optimal Perception

suppose h and h_s are unimodal with a same mode and symmetric

Proposition

- Optimal encoding function is s-shaped: $m(\cdot)$ is convex below and concave above the modal reward
- ② Over-sampling of low-probability states: $\frac{\pi_J}{\pi_{J'}} > \frac{p_J}{p_{J'}}$ when $p_J < p_{J'}$

intuition:

- focus on reward values that you're likely to encounter at ties
- over-sample states that you expect to be poorly informed on
 - you measure tail rewards poorly
 - conditional on tie, low-probability state has more spread-out rewards since $\sum_{J'} p_{J'} r_{J'} = s$ isn't too informative about r_J when p_J is small

Optimal Perception

suppose h and h_s are unimodal with a same mode and symmetric

Proposition

- Optimal encoding function is s-shaped: $m(\cdot)$ is convex below and concave above the modal reward
- ② Over-sampling of low-probability states: $\frac{\pi_J}{\pi_{J'}} > \frac{p_J}{p_{J'}}$ when $p_J < p_{J'}$

intuition:

- focus on reward values that you're likely to encounter at ties
- over-sample states that you expect to be poorly informed on
 - you measure tail rewards poorly
 - conditional on tie, low-probability state has more spread-out rewards since $\sum_{J'} p_{J'} r_{J'} = s$ isn't too informative about r_J when p_J is small

Conclusion

link between perception and risk attitudes arises when decoding is coarse

• informed comparative statics on perception predicts choice

optimality arguments get some stylized facts about perception right

we introduce marginal reasoning to psychophsysics