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Abstract

A health authority chooses a binary action for each of several individuals that differ

in their pretest probabilities of being infectious and in the additive losses associated

with two types of decision errors. The authority is endowed with a portfolio of tests

that differ in their sensitivities and specificities. We derive a simple necessary condition

for optimality of test allocation. In special cases, precision parameters of the allocated

test are monotone in the individuals’ types. We characterize the marginal benefit of a

test, provide an algorithmic solution for the test-allocation problem and consider the

benefits of confirmatory testing.

1 Introduction

During the COVID-19 pandemic, health authorities around the world make millions of de-

cisions based on whether they believe a patient is infectious or not. They do so with the

help of a diverse portfolio of tests that vary in their accuracy and availability. Consequently,

fighting the pandemic requires deciding who gets which test.

When faced with this decision, medical professionals and guidance documents usually

rely on the concepts of “positive predictive value” (PPV) and “negative predictive value”

(NPV). These express the posterior probabilities that a person is infectious (or not) after a

∗We benefited from comments of Olivier Gossner, Pavel Kocourek and Flavio Toxvaerd. This work was
supported by the ERC grant 770652 (Jann and Steiner), Experentia Foundation (Steiner), and ERC grant
724356 (Andrea Galeotti).
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positive (or negative) test result. Targeting high PPV and NPV is a natural consequence

of the desire to minimize the number of incorrect decisions based on test results. But when

tests are scarce, such as during the COVID-19 pandemic, high PPV and NPV can at most

be achieved for a small minority of individuals. Hence, obtaining precise information about

one individual has an opportunity cost, as it means that less accurate information will have

to be used on other people.

In this paper, we derive the optimal test allocation that takes into account (i) the in-

formation value of a test for a given individual and (ii) the opportunity cost of not using

the test on other individuals. We show how simple monotonicity conditions simplify the

problem in natural applications, and characterize the marginal benefit of a test expanding

the available tests’ portfolio.

To illustrate our model, consider the following problem: A public health authority has to

make decisions about 2,000 individuals, of whom half are symptomatic patients and half are

asymptomatic members of the general public. We assume that the authority ascribes a prior

infection probability of 60% and 5% to these groups, respectively. For each individual, the

authority decides whether to quarantine them or not. For the sake of simplicity, we assume

in this introduction that errors are equally costly (so that quarantine is chosen if and only

if posterior infection probability exceeds 50%). In the absence of testing, this means that

all symptomatic patients and none of the general public get quarantined, for a combined

expected number of 0.4× 1000 + 0.05× 1000 = 450 errors.

Now assume that the health authority has 1,000 each of the polymerase chain reaction

(PCR) and antigen (Ag) tests. Both these tests detect the presence of the virus but they differ

in their sensitivities - probabilities that they identify an infectious person - and specificities

- probabilities of correctly indicating that a person is not infectious. Let us assume that the

PCR test has a sensitivity of 97% and a specificity of 100%, the Ag test a sensitivity of 90%

and a specificity of 99%.1

The medical profession is well aware that screening of a low-prevalence group with

an unspecific test leads to low PPV and possible overdiagnosis; see e.g. the discussion of

mammography in Maxim et al. (2014). A decision maker who targets satisfactory PPV

(so that most positives are true positives) would use Ag tests on the symptomatic and

PCR tests on the asymptomatic group.2 Then every single positive PCR test is correct,

as are more than 99% of all positive Ag tests. This produces an expected number of

600× 0.1 + 400× 0.01 + 50× 0.03 = 65.5 errors.

1These values are illustrative. Sensitivity for PCR tests varies from 68% to 100%. For antigen tests, the
variance in sensitivity is larger (0% to 94%); average specificity is 99.5%. (Dinnes et al., 2020)

2E.g., WHO (2020): “Ag-RDTs are not recommended for routine surveillance purposes or case manage-
ment in this setting. Positive test results would likely be false positives. Molecular testing is preferred.”
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But now consider what happens if the health authority uses PCR tests on symptomatic

patients and screens the asymptomatic population with Ag tests instead. This provides a

much lower PPV for Ag tests: Almost one out of every five positive Ag tests is now wrong.

But overall, this allocation leads to a lower expected number of errors, 600 × 0.03 + 50 ×
0.1 + 950× 0.01 = 32.5.

Why is that? The desire to achieve a high PPV when testing asymptomatic people leads

to accurate decisions about them, but ignores the opportunity cost of not using the more

sensitive PCR tests on the symptomatic population. The PCR test is more accurate in both

dimensions but its comparative advantage relative to Ag test is in finding infections, and it

is therefore better used on the group where infections are more likely – even if that means

making more mistakes in dealing with the asymptomatic group.

In our general model, we start with an arbitrary finite set of individuals. Each individual

is characterized by a pretest infection probability and two costs associated with being falsely

treated as infectious or not infectious. Such “error costs” subsume economic costs (e.g., the

loss in productivity of quarantining a non-infectious individual) and health costs (e.g., the

increase in infection rate, and so an increase in both hospitalization and fatality rates, due

to non isolating an infectious individual). We take these costs as primitives of the model

possibly stemming from a larger intertemporal problem of epidemic control. The authority

assigns at most one test to each individual from a finite portfolio of tests that differ in their

sensitivities and specificities.3 The objective is to minimize the sum of the expected losses

over all individuals.

Proposition 1 provides a simple algebraic condition on test allocation under which no

pairwise test permutation is payoff-improving. We then apply the result to three particular

scenarios that are relevant in the context of COVID-19. In each of these scenarios, Proposi-

tion 1 implies a particular monotonicity property of the optimal test allocation with respect

to individuals’ characteristics.

First, we consider individuals homogenous in both losses but heterogeneous in their

pretest probabilities.We define the slope of a test to be the loss-weighted difference between

its sensitivity and specificity. Then, the slope of the test applied to an individual is non-

decreasing in her pretest probability. Second, suppose individuals are homogenous in their

pretest probabilities and losses stemming from a false-positive error, but they differ in their

false-negative losses. Then, the sensitivity of a test assigned to an individual is nondecreas-

ing in her loss from a false-negative error. Finally, if pretest probabilities and false-negative

losses are homogenous but false-positive losses are heterogeneous, then the specificity of the

3We discuss the question of sequential testing of the same individual to verify test results in section 4.2
below.
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test applied to an individual is nondecreasing in her false-positive loss.

We build on the monotonicity of the optimal allocation in Section 4 where we analyze

the marginal benefit of an additional test that expands the authority’s test portfolio, and

we provide an algorithmic solution to the test-allocation problem. We also show how to

determine when it is beneficial to carry out confirmatory testing (i.e. using a follow-up test

sequentially on the same individual) instead of using at most one test on each person. The

monotonicity of the optimal test allocation simplifies the analysis of these problems since it

reduces the set of allocations one needs to consider.

Medical diagnostic tests differ in employed screening mechanisms. By considering only

their sensitivities and specificities, we implicitly assume that the analyzed tests are identical

along other relevant dimensions; for instance, they may all test directly for the virus presence

or all test for antibodies.4 Tests for the virus presence, relevant for the diagnosis of the early-

stage of COVID-19, include precise but slow PCR tests and faster but relatively imprecise

LAMP tests and antigen tests. Larremore et al. (2020) argue that precision of testing is

secondary to its frequency for COVID-19 surveillance. To sustain high volume of testing for

the virus presence, the gold standard PCR testing may need to be massively accompanied

with less precise methods such as antigen tests, leading to substantial heterogeneity of test

precision. The family of antibody tests includes relatively precise but slow ELISA tests and

imprecise but cheap serological rapid-tests. Although serological tests are ineffective in the

diagnosis of the early stage of the disease, countries with limited budgets have been and may

continue to be dependent on these tests with notable heterogeneous precisions; see Figure 1.

We rely on the standard economic framework that measures the value of information to

the extent that it guides choice under uncertainty; see Marschak (1959), Arrow (1998) and

Radner and Stiglitz (1984) for early contributions. In the context of testing for an infection,

this approach has been applied in Boozer and Philipson (2000); Kasy and Teytelboym (2020)

adapt this approach to sequential disease testing. Galeotti et al. (2020) explain the economic

concept of information value on COVID-19 testing examples. The test-allocation problem

is akin to the rational-inattention problem of Sims (2003) of constrained optimization over

information structures, but our decision-maker faces additional constraints implied by the

discrete nature of the medical tests.

Recent contributions in epidemiology, computer science and economics investigate the

value of COVID-19 testing, typically within variants of the SIR diffusion model, e.g., Ace-

moglu et al. (2020), Grassly et al. (2020), Berger et al. (2020), Cleevely et al. (2020), Pigu-

illem and Shi (2020), Gollier and Gossner (2020), Jonnerby et al. (2020) and Brotherhood

4Toxvaerd (2020) considers the heterogeneity of tests’ ability to screen the stage of the disease but
abstracts from the heterogeneity in precision.
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Figure 1: Precision parameters of eight serological tests as validated in Adams et al. (2020).

et al. (2020). Broadly speaking, those papers analyse to what extent testing, with one ho-

mogenous test type, allows to relax social distancing for a given infection-flow target; often

testing is random across the population. Relative to this literature, our main contribution

is the formulation of the test-allocation problem for the heterogeneous tests portfolio. This

allows us to derive policy prescriptions on allocation of tests that differ in their specificities

and sensitivities.

2 Test-allocation Problem

A public-health authority, referred to here as decision-maker (DM), chooses an action ai ∈
{0, 1} for each individual i ∈ I = {1, . . . , I} and receives payoff

∑
i∈I ui(ai, θi), where each

θi ∈ {0, 1} is a private health state of the individual i unknown to the DM. The DM assigns

prior – in medical terminology pre-test – probability pi ∈ [0, 1] to θi = 1 for each i. The

states are independent across the individuals. To avoid trivialities, we assume that neither

action is dominant and label the actions so that the optimal choice in state θ is a = θ. Let

`θi = ui(θ, θ) − ui(1 − θ, θ) > 0 be the loss from the decision error in state θi = θ for the

individual i and let `i = (`0i , `
1
i ).

The DM can employ tests t from a finite set T . Each test t is a Blackwell experiment that

delivers a signal x ∈ {0, 1} with interior probability t(x | θ) when applied to an individual in

health state θ. We assume that T includes a trivial test, denoted ∅, that generates a signal

independent of θ; applying test ∅ to an individual is equivalent to not testing her. It is feasible
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for the authority to test nobody, i.e., the number of trivial tests is at least I. Without loss

of generality, we label the signals generated by each test t so that t(1 | θ)/t(0 | θ) increases

in θ, and refer to t(1 | 1) as the sensitivity and to t(0 | 0) as the specificity of the test t. The

results of the tests are conditionally independent across the individuals. The DM assigns to

each individual i a test, updates her belief about the individual based on the test applied

and the test result, and chooses an action ai ∈ {0, 1}.
We define the value of a test in the standard manner. Let

vi(q) = max
a∈{0,1}

{qui(a, 1) + (1− q)ui(a, 0)}

be the value of the DM with belief q with respect to the choice of the action ai. The value

of the test t applied to individual i with pretest probability p is

Vi(p, t) = E [vi (qt,p(x))]− vi(p),

where qt,p(x) = pt(x|1)
pt(x|1)+(1−p)t(x|0) is the posterior probaility – in medical terminology post-

test probability – formed after the test t returns result x for an individual with the pretest

probability p. The expectation is with respect to the signal x.

The test-allocation problem consists of finding a one-to-one test-allocation rule τ : I −→
T that solves

max
τ

∑
i∈I

Vi (pi, τ(i)) . (1)

Distinct costs of the two types of errors allow the authority to accommodate the trade-

off between the socioeconomic cost of isolation `0i and epidemiological cost of contagion `1i .

Individual heterogeneity across these costs may reflect distinct degrees of socioeconomic dis-

ruptions and varying connectedness and hence various spreading potential across individuals.

Although these costs are exogenous, our model can be embedded into a broader optimization.

The authority’s broader dynamic problem may consist of minimizing the flow of economic

destruction under a constraint of keeping the effective reproduction factor of the disease

under a chosen threshold. Since the constraint requires the prevention of a sufficient number

of infections at any given time, the damage −ui(0, 1) from failing to isolate an infectious

individual i would then be proportional to the product of the expected number of infections

caused by i and the shadow price of the epidemiological constraint; see Appendix A.

We assume that if a test t 6= ∅ has no value for individual i, Vi(pi, t) = 0, then it

is not assigned to i and, instead, the trivial test ∅ is assigned to i. Note that the test-

allocation problem, combined with the a posteriori optimal action choice, is equivalent to

the maximization of the DM’s payoff.
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Figure 2: Modified values W (p, `, t) for a population with individual-independent losses
`i = ` = (`0, `1). The two full lines correspond to the trivial tests ∅0 and ∅1. Dashed and
dotted lines correspond to non-trivial tests.

We proceed with a useful transformation of the test-allocation problem. Instead of the

trivial test ∅, we introduce two trivial tests ∅0 and ∅1. The trivial test ∅x always returns the

signal x, for x = 0, 1. There is a non-binding supply of both ∅x, and all the other tests are

in the same supply as before. That is, we let T ′ to contain all non trivial tests tests t 6= ∅
from T , I copies of ∅0 and ∅1, and we remove all trivial tests ∅. This is useful because when

the DM allocate tests in T ′, we can assume, without loss of generality, that the DM chooses

for each individual i an action ai equal to the result of the test applied to i. That is, each

test t is equivalent to the stochastic choice rule t(a | θ).
We define the modified value of the test t ∈ T ′ applied to an individual i with pretest

probability p to be sum of the test’s sensitivity and specificity weighted by the loss values

and pretest probabilities of both health states. Formally,

W (p, `, t) = p`1t(1 | 1) + (1− p)`0t(0 | 0).

Figure 2 plots the modified values of tests for a special case in which losses `i are the same

for all individuals i. The modified test-allocation problem consists of finding a one-to-one

test-allocation rule τ : I −→ T ′ that solves

max
τ

∑
i∈I

W (pi, `i, τ(i)) . (2)

The allocation problem (1) and the modified allocation problem (2) are equivalent. Let

p∗i given by p∗i `
1
i = (1−p∗i )`0i denote the belief at which the DM is indifferent between actions

ai = 0 and ai = 1.
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Lemma 1. Suppose that τ solves problem (1) and τ ′ solves problem (2).

1. For a nontrivial test t 6= ∅, τ(i) = t if, and only if, τ ′(i) = t.

2. When pi < p∗i , then τ(i) = ∅ if, and only if, τ ′(i) = ∅0. When pi > p∗i , then τ(i) = ∅ if

and only if τ ′(i) = ∅1.

Proof of Lemma 1. For any p and t such that Vi(p, t) > 0, the DM who applies t to an

individual i with pretest probability p chooses ai according to the stochastic choice function

t(ai | θi). Hence,

Vi(p, t) = p(t(1 | 1)ui(1, 1) + t(0 | 1)ui(0, 1)) + (1− p)(t(0 | 0)ui(0, 0) + t(1 | 0)ui(1, 0))− vi(p)

= W (p, `i, t) + pui(0, 1) + (1− p)ui(1, 0)− vi(p).

Similarly, when p ≤ p∗i then Vi(p, ∅) = W (p, `i, ∅0) + pui(0, 1) + (1 − p)ui(1, 0) − vi(p) and

when p ≥ p∗i then Vi(p, ∅) = W (p, `i, ∅1) + pui(0, 1) + (1 − p)ui(1, 0) − vi(p). Thus, when

τ : I → T and τ ′ : I → T ′ are such that τ(i) = t = τ ′(i) for all t 6= ∅, ∅0, ∅1, and if τ(i) = ∅
and τ ′(i) optimally allocates ∅0 or ∅1, then the objectives achieved by τ and τ ′ in problems

(1) and (2), respectively, differ only by a term independent of the tests’ allocations.

From now on, we always refer to the modified test-allocation problem, cease to refer to

the modification and write T instead of T ′.
The next result provides a simple necessary condition for optimality of allocation. Let

w = (w0, w1) = ((1− p)`0, p`1) and let t stand for the vector (t(0 | 0), t(1 | 1)). Let “·”
stand for the scalar product.

Proposition 1. If τ solves the test-allocation problem, then

0 ≤ (wi −wj) · (τττ(i)− τττ(j)) for all i, j ∈ I.

Proof of Proposition 1. Optimality of τ implies that for all i, j ∈ I,

0 ≤ W (pi, `i, τ(i)) +W (pj, `j, τ(j))−W (pi, `i, τ(j))−W (pj, `j, τ(i))

= wi · τττ(i) + wj · τττ(j)−wi · τττ(j)−wj · τττ(i)

= (wi −wj) · (τττ(i)− τττ(j)).
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3 Applications

In what follows, we apply Proposition 1 to three particular populations, each heterogeneous

only along one dimension. In these scenarios, Proposition 1 implies simple monotonicity

properties of the optimal allocations. To illustrate the economic content of the results, we

refer to individual i with θi = 1 as infectious, to action ai = 1 as to quarantining i and to

action 0 as not quarantining the individual.

We start with the DM who has no individual-specific information on either of the two

losses but possesses individual-level information on individuals’ health statuses. For instance,

individuals may have or lack symptoms or may have reported different contact histories, and

the DM maps these pieces of information to heterogeneous pretest probabilities pi. Assuming

homogenous losses `0 and `1, let the slope of the test t be defined as

σt = t(1 | 1)`1 − t(0 | 0)`0.

That is, the slope of test t is the loss-weighted difference between its sensitivity and speci-

ficity.5

Corollary 1. Suppose `0i = `0j and `1i = `1j for all i, j ∈ I.

1. Slopes of the optimally allocated tests are nondecreasing in the individuals’ pretest prob-

abilities. That is, if pi > pj, then στ(i) ≥ στ(j).

2. Individuals with sufficiently low or high pretest probabilities are not tested. That is,

there exists p < p such that, if pi < p, then the DM chooses ai = 0 without testing

individual i. If pi > p, then the DM chooses ai = 1 without testing i. If p < pi < p,

then the DM applies a non-trivial test to i and chooses ai equal to the test’s result.

The latter statement follows from the fact that the two trivial tests, ∅0 and ∅1, have the

extreme slopes −`0 and `1, respectively, across all the tests in T . Intuitively, opportunity

cost of a test exceeds the value of information for individuals with pretest probabilities close

to 0 or 1, and thus near certain types are left untested.

Next, we consider a population for which the DM does not have individual-specific in-

formation on the health statuses, and thus she attaches a same pretest infection probability

5Bergemann et al. (2018) introduce the slope of the test (in their terminology “differential informative-
ness”) in a related context. They consider a seller who offers a menu of tests to a buyer with private
information. They show in a binary action - binary state setting that incentive-compatibility requires the
slope of the test to be nondecreasing in the pretest probability of the type whom the test is allocated to.
The intuition for their result can be gleaned from our Figure 2: Incentive compatibility implies that the test
allocated to each type pi must be on the upper envelope of the modified test values (net of prices).
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pi = p to all individuals. The considered group of individuals is also homogenous in their

meeting rates (e.g., they all work in the same location/plants and live in the same city).

Hence, the loss from leaving infectious individuals unquarantined is homogenous within the

population, i.e., `1i = `1j for all i, j ∈ I. However, quarantine costs are heterogeneous across

individuals. For example, for those individuals who can work from home the cost of being

quarantined is lower than for those who cannot work from home. The DM is aware of this

heterogeneity, i.e, the DM knows individual-specific losses `0i stemming from the false-positive

errors.

Corollary 2. Suppose pi = pj and `1i = `1j for all i, j ∈ I.

1. Specificities of the optimally allocated tests are nondecreasing in the individuals’ false-

positive losses. That is, if `0i > `0j , then τ(i)(0 | 0) ≥ τ(j)(0 | 0).

2. Individuals with sufficiently low or high false-positive losses are not tested. That is,

there exists ` < ` such that, if `0i < `, then the DM chooses ai = 1 without testing

individual i. If `0i > `, then the DM chooses ai = 0 without testing i. If ` < `0i < `,

then the DM applies a non-trivial test to i and chooses ai equal to the test’s result.

The second part of the corollary follows from the fact that the two trivial tests, ∅0 and

∅1, have the extreme specificities 1 and 0, respectively, across all the tests in T .

Finally, we assume that the DM has no individual-specific information on the health

statuses nor on the quarantine costs. However, the DM has information on the social con-

nectivity/meeting rates of the individuals. Those with high meeting rates spread the virus

to many others when they are infectious and not quarantined, hence they generate large

losses. In this case, p and `0 are homogenous across the population and `1i differ across i.6

Corollary 3. Suppose pi = pj and `0i = `0j for all i, j ∈ I.

1. Sensitivities of the optimally allocated tests are nondecreasing in the individuals’ false-

negative losses. That is, if `1i > `1j , then τ(i)(1 | 1) ≥ τ(j)(1 | 1).

2. Individuals with sufficiently low or high false-negative losses are not tested. That is,

there exists ` < ` such that, if `1i < `, then the DM chooses ai = 0 without testing

individual i. If `1i > `, then the DM chooses ai = 1 without testing i. If ` < `1i < `,

then the DM applies a non-trivial test to i and chooses ai equal to the test’s result.
6The UK government has recently announced a pilot for family members to get regular testing for safe

care home visits. Relatives of those living in care homes will be tested before reuniting with their loved ones
in care homes (see https://www.gov.uk/government/news/pilot-for-family-members-to-get-regular-testing-
for-safer-care-home-visits for the official press release). Visitors will be offered either a PCR or Ag test.
Since a false-positive error is relatively costly in the context of the care home visit, our result suggests that
the visitors should be prioritized in the access to the PCR testing.
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The three corollaries are not exhaustive of practical circumstances in which Proposition 1

implies monotonicity of the optimal test allocation. Suppose for instance that all the tests in

the portfolio have a same specificity and differ only in their sensitivities.7 Let the population

differ in all three parameters l0i , l
1
i , and pi. Then, sensitivity of the test assigned to individual

i is non-decreasing in l1i pi.

4 Marginal Benefit of a Test

We now characterize the marginal benefit of a test that becomes newly available relative

to the current optimized test allocation. This benefit has two parts: First, the direct im-

provement achieved by the new test relative to the test it replaces. Second, the indirect

benefit from second-best use of the replaced test, i.e. the opportunity cost of the replaced

test. We provide a recursive characterization of the opportunity cost accounting for the

further replacements induced by the new application of the first replaced test. The char-

acterizations of the marginal benefit and of the opportunity cost are greatly simplified by

the monotonicity of the optimal allocation since the monotonicity reduces the number of

all possible reoptimizations we need to consider. To that end, we proceed here with one of

the three applications from the previous section that possess the monotonicity structure of

their solutions. Though the method below applies to all these three settings, we formulate

it for the first setting in which both loss values `0 and `1 are homogenous and the pretest

probabilities pi differ across individuals. We then use the characterization of the opportunity

cost in an algorithmic solution for the optimal test allocation. We conclude the section with

two illustrative examples. Subsection 4.1 computes marginal benefits of particular tests for

a specific portfolio of serological tests. Subsection 4.2 analyzes whether it is worthwhile

to verify the results of relatively imprecise antigen tests by relatively precise PCR tests,

accounting for the opportunity cost of the verification test.

We fix the sequence of the pretest probabilities, p1, . . . , pI and assume without loss of

generality that it is nondecreasing. Let J be a subset of the set of individuals I = {1, . . . , I}
and T be the set of available tests. We write (J , T ) for the test-allocation problem that

assigns tests from T to individuals in J , let τJ ,T denote the optimal test allocation and let

V(J , T ) be the value in this problem induced by τJ ,T . In what follows we omit the upper

index and write τ whenever we refer to τI,T .

Suppose that the set of the available tests T is expanded by a test t∗. We define the

7This is a realistic approximation for PCR and Ag tests for SARS-COV-2 that have approximately 100%
specificity and differ in sensitivities. See https://www.fda.gov/news-events/press-announcements/

coronavirus-covid-19-update-fda-authorizes-first-antigen-test-help-rapid-detection-virus-causes.
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marginal benefit of test t∗ in the test allocation problem (J , T ) to be

B (t∗,J , T ) = V (J , T ∪ {t∗})− V(J , T ).

To characterise the marginal benefit B (t∗, I, T ) of test t∗ in the problem (I, T ), we let

πi = B (τ(i), I \ {i}, T \ {τ(i)}) , (3)

and refer to it as to the opportunity cost of the test τ(i) allocated to the individual i in the

solution to the problem (I, T ). It captures the marginal benefit that the test allocated to i

could provide if it is removed from i and it is made available to the residual individuals in

I \ {i}.
The additivity of the payoffs implies that the marginal benefit of the test t∗ is

B (t∗, I, T ) = max

{
max
i∈I
{W (pi, t

∗)−W (pi, τ(i)) + πi}, 0
}
, (4)

where we omit ` from the argument ofW (p, `, t). That is, the welfare effect of the replacement

of the test τ(i) by t∗ is the sum of (a) the direct increase of value obtained for the individual

i, i.e., W (pi, t
∗) −W (pi, τ(i)) and (b) the marginal benefit of the test τ(i) in the residual

allocation problem over individuals in I \ {i}, i.e., the opportunity cost πi. The marginal

benefit of the test t∗ is obtained by finding the individual for whom this welfare effect is

largest (if non-negative, otherwise the test is disposed of).

We provide a recursive characterisation of πi that relies on the monotonicity result from

Corollary 1. Finding the best alternative use of the test τ(i) among the individuals in I \{i}
is, without additional structure, a hard problem.8 We show though that monotonicity greatly

reduces the set of possible re-optimizations of the allocation over the residual agents I \ {i},
when test τ(i) is removed from the individual i. In particular, this re-optimization consists

either of a sequence of adjacent individuals on the right of i each passing their originally

allocated test to their right-adjacent neighbour or of a sequence of adjacent individuals on

the left of i each passing their originally allocated test to their left-adjacent neighbour.

Accordingly, we recursively define the left-hand and right-hand opportunity costs λi and ρi

of the test τ(i) allocated to i to be the the values of the test τ(i) when the test reallocation

8The opportunity cost is similar to a Vickrey-Clarke-Groves tax. In a general problem, calculating all of
the VCG taxes is an intractable combinatorial problem. Here, the monotonicity of optimal allocation allows
for tractable characterization.
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is restricted to a sequence of tests’ shifts all in one direction: λ1 = 0 and ρI = 0, and

λi = max {0,W (pi−1, τ(i))−W (pi−1, τ(i− 1)) + λi−1} for i > 1, (5)

ρi = max {0,W (pi+1, τ(i))−W (pi+1, τ(i+ 1)) + ρi+1} for i < I.

Thus, λi is the benefit of replacing the test τ(i − 1) allocated to i − 1 by the test τ(i)

accounting for the fact that the test τ(i − 1) becomes available for i − 2, etc; ρi is the

analogous maximal benefit attainable in a series of one-step rightward tests’ replacements.

Lemma 2. The opportunity cost of the test τ(i) allocated to the individual i is

πi = max{λi, ρi}. (6)

If two individuals i and j are allocated a test with a same specificity and sensitivity, τ(i) =

τ(j), then πi = πj.

Proof of Lemma 2. Let us start with observing the following no-recall property of the opti-

mal allocation: If a test t ∈ T has not been allocated to an individual in the optimal alloca-

tion of (J , T ), then this test t will not be allocated in the problem (J , T ∪ {t∗}). That is,

we denote (with some abuse of notation) the set of tests employed in the optimal allocation

of (J , T ) to individuals in J ′ ⊆ J by τJ ,T (J ′) =
{
t ∈ T : ∃i ∈ J ′ such that τJ ,T (i) = t

}
.

We claim that the following no-recall property holds

V(J , T ∪ {t∗}) = V
(
J , τJ ,T (J ) ∪ {t∗}

)
.

The property holds if |J | = 1. Suppose that the no-recall property holds for all sets of

individuals with size |J | − 1. If t∗ is not allocated in the problem (J , T ∪ {t∗}), then the

property holds. Now suppose that t∗ is allocated to an individual i ∈ J in the problem

(J , T ∪{t∗}). Then the allocation to J \{i} solves problem (J \{i}, T ) and only tests from

τJ ,T (J ) are allocated in this problem by the induction hypothesis, as needed.

The no-recall property allows to rewrite the expression in (3) for the opportunity cost of

test τ(i) allocated to individual i as follows

πi = V (I \ {i}, τ(I))− V (I \ {i}, τ(I \ {i})) .

The monotonicity of the optimal allocation in the problem (I \ {i}, τ(I)) implies that τ(i)

will be either disposed of with or allocated only to i − 1 or i + 1 (when several individuals

in the left or right neighborhoods have a same pretest probability then restriction to this

one-step reallocation is without loss).

13



Assume that τ(i) is allocated to i − 1 in the problem (I \ {i}, τ(I)). Then, by the

monotonicity again, τ(i− 1) can be disposed of with or allocated only to i− 2. In the latter

case, i− 2 can be disposed of with or allocated only to i− 3, etc. The chain of replacements

terminates when the last replaced test is disposed of. Simple optimization over the length of

this leftward chain of replacements secures payoff V (I \ {i}, τ(I \ {i})) + λi in the problem

(I \ {i}, τ(I)). An analogous argument applies if τ(i) is allocated to i + 1 in the problem

(I \ {i}, τ(I)). Then, optimization over the length of the rightward chain of replacements

secures payoff V(I \ {i}, τ(I \ {i})) + ρi. Optimal choice over the leftward and rightward

chains of replacements or disposal of the test τ(i) implies (6).

For the other statement in the proposition, note that the monotonicity of allocation and

the definitions of λi and ρi imply that if τ(i) = τ(j), then λi = λj and ρi = ρj.

The next result summarizes.

Proposition 2. The marginal benefit B(t∗, I, T ) of the test t∗ is given by (4), where the

opportunity costs πi are given by (5) and (6).

Let us now turn to the characterization of the optimal test allocation. The test-allocation

problem is a special case of a complete-information allocation problem solved in Koopmans

and Beckmann (1957) by linear-programming techniques. Here, we exploit additional sim-

plicity stemming from the monotonicity of solution that is not assumed in the general setting

of Koopmans and Beckmann. Our solution highlights the role of the opportunity cost of a

test and features simple replacement chains induced by gradual expansion of the test port-

folio.

The monotonicity result and the characterization of the opportunity costs allow for a

simple algorithmic solution of the test-allocation problem. We label the tests in the set

T = {t1, . . . , tT} monotonically so that slope σk of the test tk is nondecreasing in k. The

trivial non-informative tests that have extreme slopes are at the beginning and the end

of the sequence while the informative tests are in its middle. The algorithm starts with

allocating the first I (trivial) tests from the sequence to the individuals, and then it expands

the test portfolio by adding one additional test from the sequence in each further step and

reoptimizes the allocation. In each step, if the newly available test is not disposed of, then

it must be applied to the individual i = I with the highest pretest probability since this test

has a higher slope than all the previously allocated tests. The newly added test should be

applied to the individual I if it improves upon the previously allocated test to I accounting

for its opportunity cost.

That is, in step 1 of the algorithm, we allocate the first I tests from the sequence mono-

tonically according to τ 1(i) = ti. In step l = 2, . . . , T − I+1, we compute the left-hand costs

14



λl−1i of the test allocated to individuals i ∈ I under the test allocation τ l−1 from the step

l− 1. Let us consider the test tI+l−1; this test has not been considered in the l− 1 previous

steps and hence it has a weakly higher slope than all tests assigned in the allocation τ l−1. If

W
(
pI , τ

l−1(I)
)
− λl−1I > W (pI , tI+l−1), then we dispose of the test tI+l−1, set τ l to τ l−1 and

terminate the step l. Otherwise, if W
(
pI , τ

l−1(I)
)
− λl−1I ≤ W (pI , tI+l−1), then we (a) set

τ l(I) = tI+l−1, (b) find maximal i∗ such that λl−1i∗ = 0, (c) dispose of the test τ l−1(i∗), set

τ l(i) = τ l−1(i+ 1) for all i ≥ i∗, (d) set τ l(i) = τ l−1(i) for all i < i∗, and terminate the step

l.

4.1 Example

This section illustrates our marginal-benefit characterization in a simple example that con-

siders four rapid serology tests from Table 1. Two of them, manufactured by Guangzhou

Wondfo Biotech and Zhuhai Livzon Diagnostics, were purchased by the Indian government

in April 2020.9 The other two tests are particular test brands validated in Adams et al.

(2020) (who do not reveal the brands) that we dub as the “sensitive” and “specific” tests

highlighting their comparative advantages.

We suppose that the DM faces two subpopulations of 1000 individuals each with pretest

probabilities 5% and 10%, respectively, and is endowed with 750 Wondfo tests and 750 Livzon

tests. Such antibody tests can be used for several purposes such as establishing immunity

(cf. Grassly et al., 2020) or contact tracing and linking clusters retrospectively (Winter and

Hegde, 2020). We assume here that they are used for the latter and that hence false negatives

are more costly than false positives; in particular we assume that `0 = 1 and `1 = 4. The

optimal test allocation assigns all Livzon tests to the high-probability subpopulation, tests

the residual 250 high-probability individuals with the Wondfo test, assigns the remaining

Wondfo tests to 500 low-probability individuals, and leaves the last 500 low-probability

individuals untested; see Figure 3.

Let us verify that this indeed is the optimal test allocation. Let tw and tl denote the

Wondfo and Livzon test types and p1 = 0.05 and p2 = 0.1 be the two pretest probabilities. All

tests must be allocated at optimum since the test value V (p, t) > 0 for all four combinations

of (p, t) ∈ {p1, p2}×{tw, tl}. The monotonicity result of Corollary 1 implies that we only need

to optimize over the number of the untested individuals in, say, the high-probability group.

That is, we need to verify unprofitability of only one particular deviation that removes the

9See New York Times report on the purchase of the two tests; https://www.nytimes.com/reuters/

2020/04/27/world/asia/27reuters-health-coronavirus-india-kits.html. We retrieved the parame-
ters values for the Wondfo test from a validation study at https://www.finddx.org/covid-19/dx-data/

and the parameters for the Livzon test from the validation study at https://pellecome.com/wp-content/
uploads/2020/04/4-Evaluation-Report-Livzon-Dx-rapid-test.pdf on May 11, 2020.
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Sensitivity Specificity Marginal benefit
Wondfo 69% 99.1% 0.13
Livzon 78.7% 99.7% 0.174
“sensitive” test 70% 95% 0.097
“specific” test 61% 99% 0.11

Table 1: Four serological tests. See footnote 9 for the validation studies for the first two
tests and Adams et al. (2020) for validation of the last two tests. Since we are unable to
verify the details of the validation studies, these tests’ precision parameters are illustrative.

p1 = 0.05 p2 = 0.1

LivzonWondfono test

0 20001000

500 1250

tn

Figure 3: Optimal allocation and optimal replacement chain caused by replacement of one
Livzon test with the “sensitive” test tn. Individuals are placed on the line according to
pretest probability p, which weakly increases from left to right.

Livzon test from a high-probability individual and leaves this individual untested. The gain

from this deviation, −V (p2, tl) + πl = −0.64, is negative, as needed, where πl is (with some

abuse of notation) the opportunity cost of the Livzon test computed according to Lemma 2.

Let us expand the test portfolio with one piece of the “sensitive” test from Table 1,

denoted by tn. To compute its marginal benefit, we need to derive first the opportunity costs

of both Wondfo and Livzon tests and, then, compute the replacement benefit W (pi, tn) −
W (pi, τ(i)) + πi for each of the four groups of individuals.10

We illustrate the case in which the new test tn replaces the Livzon test assigned to an

individual with high pretest probability. The direct payoff effect is W (p2, tn) −W (p2, tl) =

−0.077. Additionally, one copy of the Livzon test becomes available and the resulting optimal

reallocation of the tests within the set of individuals I \ {i} increases the DM’s payoff by

an amount equal to the opportunity cost of the Livzon test, πl = 0.174. This reallocation

involves two replacement steps: first, the newly available Livzon test is applied to a high-

probability individual who was previously assigned a Wondfo test, and, second, her Wondfo

test is reallocated to a low-probability individual who has not been previously tested; see

10The optimal allocation partitions the population into (i) those with pretest probability 0.05 who are
not being tested, (ii) those with a pretest probability 0.05 tested with Wondfo test, (iii) those with pretest
probability of 0.1 tested with Wondfo, and (iv) those with a pretest probability of 0.1 tested with Livzon.
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Figure 3 for this chain of reallocations.11 The total benefit of these two replacement steps

is summarized by πl and recursively defined by (5) and (6). The marginal benefit, 0.097 =

−0.077 + 0.174, of the test tn is the maximum of the net replacement values across the four

groups.

Similarly, the marginal benefit of the “specific” test from Table 1, denoted t̂n, is 0.11.

Hence, in this example, the “specific” test t̂n is a more valuable addition to the DM’s test

portfolio than the “sensitive” test tn. Intuitively, since the prevalence among tested indi-

viduals is rather low, the DM prefers to expand her portfolio with a test that accurately

screens healthy individuals. The DM should purchase t̂n as long as its cost does not exceed

(roughly) 11% of the cost of falsely “detecting” a previous infection. The comparison of the

marginal benefits of the two tests, tn and t̂n, reverses in favour of the “sensitive” test when

the prevalence rates are high. In the same setting but with the prevalence rates of the two

subpopulations being 30% and 40%, the marginal benefits of the tests tn and t̂n are 0.12 and

0.04, respectively.

4.2 Confirmatory testing

If a test result is inconclusive, a health authority can verify it with a follow-up test. While

such a confirmatory test decreases uncertainty for a given patient, it also has an opportunity

cost. For COVID-19, such confirmatory testing is advised by many national and international

health agencies. Our characterization of the marginal benefit of a test can be used to establish

whether such testing is fruitful enough to justify its opportunity cost.

We can think of the whole procedure of first-round testing with possible confirmatory

testing as a compound test with sensitivity and specificity equal to the correct results of the

compound testing procedure conditional on the infected and healthy status, respectively.

Use of such a compound test consumes the constituent tests in a proportion that depends

on the pretest probability of the tested individual and the sensitivity and specificity of the

first used test. For example, confirmatory PCR testing after a positive antigen test result

consumes as many PCR tests as we expect (true and false) positive antigen test results.

Once the sensitivity and specificity of the compound test are derived, we can then use the

results of the preceding sections to compare the marginal benefit of the compound test with

the sum of the marginal benefits of the constituent tests.

Consider a health authority that faces individuals that are either symptomatic but have

no known contact (pretest probability 40%) or who are contacts of confirmed cases but

asymptomatic (pretest probability 5%). To avoid uncertainty over the number of the con-

11These two reallocation steps can be implemented as a chain of many one-step replacements.
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firmatory tests, we assume here that there is a continuum of individuals, half of whom are

in each group. As in the introduction, the health authority has PCR tests (97% sensitivity

and 100% specificity) and Ag tests (90% sensitivity and 99% specificity). However, there are

only PCR tests for 25% of the overall population, and antigen tests for another 50%. We

continue to assume, illustratively, that a false negative decision is four times as costly as a

false positive.

The optimal test allocation in absence of confirmatory testing is that all PCR tests are

used on the symptomatic group, the remainder of that group gets tested with the Ag tests,

and the remaining Ag tests are randomly distributed among the asymptomatic contacts.

Can it be beneficial to use some of the available PCR tests to confirm results of the antigen

testing instead? Two such methods are discussed for the case of COVID-19:

Confirming positive Ag tests from low-pretest-probability individuals with PCR

Positive Ag test results of the low-pretest-probability individuals are often incorrect. Con-

firming such positive test results with highly specific PCR tests is hence recommended,

among others, by the WHO, the US CDC and Health Canada.12 In our example, such confir-

matory testing consumes an average of 0.05tAg (1 | 1)+0.95tAg (1 | 0) = 0.0545 PCR tests for

every antigen test.13 Furthermore, the compound sensitivity is tcp(1 | 1) = tAg(1 | 1)tPCR(1 |
1) = 0.873 and the compound specificity is tcp(0 | 0) = tAg(0 | 0) + tAg(1 | 0)tPCR(0 | 0) = 1.

Since the compound test has a low slope, it is applied to the low-pretest types and one ad-

ditional such compound test brings a marginal benefit of 0.1746 . Instead of this compound

test, the health authority could use an additional Ag test on an asymptomatic individual as

well as an additional 0.0545 PCR tests on symptomatic individuals, where the latter frees up

another 0.0545 Ag tests for use on asymptomatic individuals. Reallocating optimally these

additional tests lead to a marginal benefit of 0.1862 = 0.1705+0.0545×0.2885, where 0.1705

and 0.2885 are marginal benefits of the Ag and PCR test, respectively. Confirming positive

Ag tests is hence not beneficial in this situation.

This conclusion changes, however, if prevalence in the asymptomatic group is lower.

For example, if the prevalence is only 1%, as could be the case with screening the general

population, then the compound test provides marginal benefit 0.035, which is higher than

the total marginal benefit 0.029 obtained when the constituent tests are deployed separately.

Confirming positive antigen tests with PCR becomes more attractive for two reasons: First,

the highly specific compound test becomes relatively more attractive compared to a simple

antigen test, whereas its lower sensitivity matters less. Second, it consumes fewer PCR tests,

12E.g., CDC (2020): ”When the pretest probability is low, those persons who receive a positive antigen
test should isolate until they can be confirmed by RT-PCR.”

13This is under the assumption that tests’ results are conditionally independent.
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since there are fewer positive Ag results to confirm.

Confirming negative antigen tests from high-pretest-probability individuals with

PCR This is recommended by, among others, the CDC and WHO.14 In our example,

we can calculate the compound test parameters analogously to above to find that such

a compound test provides a marginal benefit of 0.3257, whereas the constituent tests, if

optimally allocated, have a combined marginal benefit of 0.3534. Again, confirmatory testing

does not justify its opportunity costs.

This changes for a high enough pretest probability of the symptomatic group. If it is

at 60%, then the compound test has a marginal benefit of 0.4033, compared to the total of

0.3267 for the constituent tests. Similarly to above, there are two effects at work that make

confirmatory testing more attractive: As the pretest probability among symptomatic people

increases, the highly sensitive compound test becomes more valuable relative to the other

tests, and it also consumes fewer PCR tests.

Considering the marginal benefits does not in itself tell us what the optimal allocation

allowing for confirmatory testing is. But for a given allocation, checking the marginal benefits

of creating or disassembling compound tests will reveal whether the given allocation is indeed

optimal or can be improved by confirmatory testing. As we have seen, this depends crucially

on the pretest probabilities of the tested individuals, but in a more subtle way than existing

guidelines suggest.

5 Discussion

Our analysis can be extended in various directions. First, we assume that individuals’ health

statuses are independent. Our results continue to hold when the correlations are weak so

that the optimal decision for each one individual is not affected by the tests’ results of the

others. Furthermore, our results hold in the presence of correlations if the DM is constrained

to individual action choices that do not depend on others’ tests results. This latter condition

may be relevant in practice due to logistical constraints. In general, however, the presence of

correlations in health statuses may revert our results. As an example, consider a case in which

all individuals have the same losses and differ in pretest probabilities. Two individuals with

nearly median pretest probabilities get tested in the optimal allocation when health statuses

are independent by Corollary 1, but if their health statuses are perfectly correlated, then

14E.g., WHO (2020): ”A negative Ag-RDT result cannot completely exclude an active COVID-19 infec-
tion, and, therefore, repeat testing or preferably confirmatory [PCR] testing should be performed whenever
possible ..., particularly in symptomatic patients.”
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testing both is suboptimal.

Second, we abstract from individuals’ incentives to get tested and to reveal private in-

formation about their infection probabilities. Since individual and social benefits of testing

and isolation may differ, incentive compatibility may be a substantial part of the practical

test-allocation problem. Bergemann et al. (2018) study incentive compatibility in a market

for information. Atkeson et al. (2020) point out in the context of COVID-19 testing that

the precision of the post-test posterior information enhances compliance with quarantine

measures.

A Appendix

We sketch here a problem of the public health authority (the decision maker, DM) who wishes

to minimize economic costs of quarantines keeping the number of new infections sufficiently

low. The first-order conditions of this problem coincide with our main model.

There is a continuum of individuals i ∈ [0, 1], where each individual has a pre-test

probability pi ∈ (0, 1) of being infected.15 The DM decides whether to quarantine each

individual. Quarantining i, infectious or not, has an economic cost ci; falsely releasing i if

infected means i will infect si others. The DM has a continuous portfolio of tests tj(x | θ),
indexed by j ∈ [0, T ], which includes the two trivial tests. The DM’s test allocation is a

one-to-one mapping j(i) : [0, 1] → [0, T ]. The test result is always implemented (this is

without loss of generality, since the two trivial tests are available).

The total number of infections in an allocation j is
∫ 1

0
pitj(i)(0 | 1)sidi. We assume that

the DM wants to keep this spreading below some maximum level L̄ (where the value L̄ may

be time dependent and an outcome of intertemporal optimization that we do not model).

The DM’s optimization problem is hence:

min
j

∫ 1

0

(
pitj(i)(1 | 1) + (1− pi)tj(i)(1 | 0)

)
cidi (7)

s.t.:

∫ 1

0

pitj(i)(0 | 1)sidi ≤ L̄. (8)

That is, unlike in our main model, the DM’s problem exhibits interdependency across in-

dividuals since feasibility of allocation of the tests to a subpopulation depends on the test

allocation for the residual population.

Let us assume that the epidemiological constraint (8) is tight enough to be binding, and

15The assumption of the continuous population instead of the discrete one eliminates uncertainty over the
infection rate caused by imprecise testing.
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let µ be its positive shadow price. Then, the first order condition of the problem (7) subject

to (8) is the same as that of our main model with the payoff functions ui(ai, θi) equal to

ui(0, 0) = 0, ui(1, 0) = −ci, ui(0, 1) = −µsi and ui(1, 1) = −ci.
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