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Abstract

We investigate the impact of wealth redistribution on economic growth,

building on Kelly’s (1956) optimal investment portfolio theory. A growth-

optimal policy redistributes wealth from ’lucky’ overperforming individu-

als to underperforming ones, minimizing the systematic component of this

redistribution in a myopic fashion. That is, the optimal policy minimizes

the discrepancy between endowments and outcomes, counterfactually tak-

ing outcomes as independent of endowments. The myopia in this result

follows from a decoupling argument that allows us to model the planner

as independently choosing a growth-maximizing policy and a pattern of

wealth circulation.
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Yuhta Ishii, Roman Kotecký, Jan Kulveit, Rava da Silveira, Ludvig Sinander, Colin Stewart,
and various seminar and workshop audiences. This work was supported by ERC grant 770652
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Growth and Redistribution: The Hedging Perspective

1 Introduction

We investigate a relatively underexplored aspect of the relationship among in-

equality, redistribution, and economic growth. Economic growth is inherently

stochastic, with some fortunate individuals experiencing rapid wealth accumula-

tion while others lag behind, even when controlling for productivity. Maximizing

the long-run economic growth rate necessitates redistribution to hedge against

these luck disparities.

To emphasize the hedging aspect of wealth redistribution, we set aside all

the conventional modeling elements of economic growth. Incentive effects, pro-

duction, technological progress, and other factors are all condensed into a black

box that determines each individual’s end-of-period wealth based on their initial

wealth and the realization of a random state. Different individuals have distinct

such return functions, reflecting persistent differences in their skills, education,

opportunities, and other factors. How should a planner, capable of periodically

redistributing wealth, optimally respond to individuals’ ex-ante differences and

varying degrees of luck?

Formally, we build upon Kelly’s (1956) classical study of optimal private

investment portfolios. Kelly’s investor repeatedly allocates wealth to assets

with uncertain returns to maximize the long-term growth rate of the portfolio’s

value. Kelly provides two main insights. First, a growth-optimal portfolio

involves hedging—it comprises a variety of assets, including those with inferior

expected returns, and is maintained by periodically redistributing wealth from

unexpectedly overperforming to underperforming assets. Second, the optimal

portfolio eliminates the systematic component of this redistribution, ensuring

that the expected wealth share of each asset remains constant before and after

rebalancing.

We view individuals as assets yielding uncertain returns. Again, the optimal

policy periodically redistributes wealth to maintain a growth-maximizing allo-

cation, akin to rebalancing a financial portfolio. To fit our economic context,

though, we extend the standard portfolio choice setting in three ways. First,

we allow the planner to control the state-contingent returns of individuals, sub-

ject to feasibility constraints, thereby capturing the effects of economic policies

on individuals’ varying productivities. Second, to address inequality concerns,
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we impose constraints on the planner’s choice of wealth allocation. Finally, we

account for the interaction between returns and wealth allocations, acknowl-

edging that redistribution can influence incentives and, consequently, individual

returns.

To a first approximation, our results align with Kelly’s insights on the

growth-optimal portfolio. The growth-optimal economic policy involves hedg-

ing, allocating wealth among a variety of individuals, including those with infe-

rior expected returns. Additionally, the growth-optimal policy routinely redis-

tributes wealth from accidental economic winners to losers, thereby maintain-

ing an optimal hedge. However, in our context, constraints may render the full

elimination of systematic redistribution infeasible. Instead, the growth-optimal

policy myopically minimizes this redistribution.

To formulate this result, we compare two types of wealth distributions. The

endowment distribution refers to the wealth distribution periodically controlled

by the planner through redistribution. The outcome distribution represents

the wealth distribution that emerges after endowments have been augmented

by returns, averaged over random states. Our main result states that the

growth-optimal endowment distribution minimizes the Kullback-Leibler diver-

gence from the induced outcome distribution, treating the latter as given.

Somewhat counterintuitively, this minimization is myopic; the optimality

condition requires the planner to treat the outcome distribution as fixed and

approximate it with an endowment distribution as closely as possible, while ne-

glecting the dependence of outcomes on endowments. Acknowledging that the

outcomes depend on the endowments could further reduce systematic redistri-

bution, but would do so at the expense of the economy’s growth.

Our analytical approach is novel. We express the economy’s growth rate as

a function of economic policy and the resulting pattern of wealth circulation,

which we define to describe the flow of wealth among individuals via redistri-

bution. Although wealth circulation depends on policy, our proof construction

decouples them, enabling us to treat policy and the pattern of wealth circulation

as separate controls determining the growth rate. The source of the myopia in

our main result is then clear: maximizing the growth rate requires each control

to be individually optimal when the other is fixed at its respective optimum. We

finalize the result by linking the pattern of wealth circulation to the outcome

distribution.

This decoupling admits an economic interpretation: we divide aggregate

wealth into infinitesimal fractions, each of which stochastically circulates within
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the economy, moving randomly among individuals through redistribution. These

wealth fractions grow at different rates, depending on their distinct realized

patterns of circulation. The fastest-growing fractions ultimately prevail and

determine the economy’s overall growth rate. Consequently, maximizing the

economy’s growth rate involves a joint optimization over two decoupled con-

trols: the endowment distribution and the pattern of wealth circulation.

The following section reviews the literature. Section 3 subsequently sets

up the model and presents the main result. Section 4 outlines our analytical

approach, which traces the circulation of wealth driven by policies and achieves

a decoupling between the policy control and wealth circulation. Example 5

in this section sketches an extension of the model, incorporating state inertia

and practical redistribution policies. The online appendix provides additional

results characterizing optimal policies and highlights connections between the

planner’s problem and the rational inattention problem, enabling the application

of established solution methods from the rational inattention literature.

2 Literature

The theoretical literature identifies multiple channels through which inequal-

ity and redistribution can either promote or hinder growth, primarily explored

within deterministic models that emphasize effects on productivity via incen-

tives, resource allocation, and technological advancement. Aghion et al. (1999)

and Mdingi and Ho (2021) provide surveys. The empirical literature also reports

mixed results, as surveyed by Forbes (2000) and once more by Mdingi and Ho

(2021). We abstract from most of the considerations appearing in the literature

to focus on optimal hedging. We view our analysis as complementary, highlight-

ing that the inherently stochastic nature of growth brings forth considerations

related to inequality, redistribution, and growth that are often absent from the

existing literature.

Mirrlees (1971) (see also the exposition in Mirrlees, 1986) is the foundational

work for a substantial body of research on optimal redistribution. Mirrlees’

framework maximizes utilitarian welfare within a static model, constrained by

incentive compatibility due to agents’ private information about their produc-

tivities.

Farhi and Werning (2013), Kapička (2013), and Golosov et al. (2016) extend

the Mirrlees model to dynamic models, aligning it more closely with our tem-
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poral framework. See Stantcheva (2020) for a comprehensive survey. In these

models, the agent’s private information evolves according to a Markov process,

necessitating compensation for both the immediate and future implications of

revealing this information.

We maximize the growth rate rather than utilitarian welfare, and simplify

the interaction between redistribution and output by imposing an exogenous fea-

sibility constraint and assuming all information is public. We employ a dynamic

model but abstract from serial correlations, except in the extension outlined in

Example 5.

Our focus on hedging implies a close link between our work and the portfolio

choice literature. Kelly (1956) provides the foundational analysis of portfolio

choice, introducing the ’Kelly criterion’ to maximize the long-run growth rate

of private wealth. Analogously, we maximize the growth rate, replacing assets

with individuals. Our model extends the standard portfolio choice framework

in three aspects: it incorporates constraints on wealth distributions, enables the

planner to influence returns as well as wealth shares, and allows for interactions

between wealth shares and returns.

Most of the portfolio choice models maximize lifetime expected utility (e.g.,

Merton, 1973; Merton and Samuelson, 1974). Related to our constrained plan-

ner, Campbell and Sigalov (2022) restrict the investor in Merton’s framework by

requiring continual consumption of the expected return of her portfolio. Given

our emphasis on economic growth rather than individual investment strategies,

we maximize the long-run aggregate growth rate instead of utility and abstract

from explicit consumption modeling. Similarly to Campbell and Sigalo, we

can capture a requirement for the economy to consume a fraction of aggregate

wealth each period—perhaps for entitlement spending—by formally allocating

a proportion of wealth each period to an additional ’government’ individual who

generates zero return.

Our extensions of Kelly’s framework necessitate the derivation of new op-

timality conditions, which we accomplish by leveraging a novel connection be-

tween stochastic growth and variational inference. This literature, originating

with Jordan et al. (1999) and Kingma and Welling (2013), characterizes the

maximum likelihood estimation of statistical models involving both observable

and latent variables and highlights a link between estimation and the updating

of beliefs about latent variables. We establish a formal equivalence between the

variational inference problem and growth maximization with redistribution. Un-

der this newly established analogy, policy is analogous to an estimate, whereas
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the induced pattern of wealth circulation parallels the updates.

This paper is one of our three projects that highlight the role of large

deviations—atypical sequences of draws—in stochastic growth processes. In

Robson et al. (2023), we noted that the wealth concentration resulting from

stochastic growth without redistribution can be analyzed through an equiva-

lence to a rational-inattention problem. This paper examines the impact of

redistribution on growth and exploits the equivalence between growth with re-

distribution and the variational inference problem. In Samuelson and Steiner

(2024), we focus on inference, utilizing the growth connection to provide a micro-

founded interpretation of the variational inference problem.

3 Economic Growth

3.1 Growth Maximization

The population consists of a finite set I of individuals i, and there is a finite

set Ω of states ω. The economy begins in period 1 with an initial aggregate

endowment W1 = 1 of perfectly divisible wealth. We consider wealth to encom-

pass physical, financial, human, and social capital, which are aggregated into a

single, malleable quantity at this level of abstraction.

A time-invariant endowment distribution p ∈ ∆(I) allocates a share p(i) of

the current aggregate wealth to each individual i ∈ I at the beginning of every

period t = 1, 2, . . .. Afterwards, in each period, nature independently draws a

state ωt according to an interior distribution q0 ∈ ∆(Ω). Subsequently, each

individual i earns a nonnegative gross return per unit of her endowment. The

individual return depends on the current state ωt and the individual i; we denote

the time-invariant return function as r(i, ωt). The resulting aggregate wealth is

then redistributed at the beginning of the next period according to p, and so

on, generating aggregate wealth

Wt = Wt−1

(∑
i

p(i)r(i, ωt)

)
=

t∏
s=1

(∑
i

p(i)r(i, ωs)

)

at the end of each period t. Taking the logarithm and applying the law of

large numbers to the realized sequence of states yields the expectation in the

following expression. Consequently, the growth rate of the economy, lnWt/t,
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almost surely converges, with

lim
t→∞

lnWt

t
= Eq0(ω) ln

(∑
i

p(i)r(i, ω)
)
. (1)

A planner selects a policy pair (p(i), r(i, ω)) from a set P ⊆ ∆(I)×RI×Ω
+ of

feasible policy pairs in order to maximize the growth rate (1).1

The set P is compact and includes at least one policy pair that yields a

finite growth rate. The existence of an optimizer is then ensured.2 The growth-

maximizing policy pair is denoted by p∗(i) and r∗(i, ω).

Example 1 (Expected Return vs. Growth Rate). Maximizing the long-run

growth rate of aggregate wealth, given in (1), differs from maximizing the ex-

pected aggregate return Eq0(ω)

∑
i p(i)r(i, ω). For a stark illustration of the

difference, consider two individuals and two states, I = Ω = {1, 2}. The exoge-

nous returns are specified as r(i, ω) = 2 × 1i=ω, implying that each individual

i becomes bankrupt whenever her unfavourable state ωt ̸= i occurs. Maximiza-

tion of the expected return would dictate allocating all wealth to the individual

i∗ with higher probability q0(i∗) of being productive, but such policy ensures the

loss of all aggregate capital (and zero wealth thereafter) as soon as ωt ̸= i∗. By

contrast, the growth-maximizing policy allocates wealth in proportion to each

individual’s probability of avoiding bankruptcy, p∗(i) = q0(i), thereby ensuring

a non-negative long-run growth rate. ▲

Naturally, societies face constraints in both elements of the policy pair. Eq-

uity constraints may restrict feasible endowments p(i), while technological con-

straints on capital formation may restrict the returns r(i, ω). The feasibility of

endowments and returns is typically interconnected. The choice of the redistri-

bution scheme may affect incentives and, consequently, the feasibility of return

1Under our leading interpretation of the model, i ∈ I indexes an individual’s identity.
However, the setting and results are also compatible with an alternative interpretation where
i represents an ascending person’s rank in the beginning-of-period wealth distribution. In this
case, the feasible set P ensures the monotonicity of p(i), and the return function depends on
a person’s wealth rank rather than identity. Under this alternative interpretation, the policy
maintains a stationary wealth distribution but does not necessarily ensure a stationary wealth
share for each individual. We thank a referee who suggested this interpretation. Yet another
reinterpretation of the model incorporates consumption. Let individual i consume a share
c(i, ω) ∈ [0, 1] of her endowment in state ω and generate a gross return r(i, ω) on her residual
wealth. Then our analysis applies with return function r′(i, ω) = (1− c(i, ω))r(i, ω).

2If there exists a policy pair yielding a finite growth rate g, then the subset of P of policy
pairs that produce growth rates of at least g is nonempty and compact. The objective function
in equation (1) is continuous on this set, ensuring the existence.
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functions, resulting in a constraint set P that is not a product set. Unlike much

of the economic research that derives the set P from microfoundations, we treat

P as a primitive and develop results applicable across all such sets.

The restriction to stationary policy pairs is without loss of optimality in

settings with iid payoff states because the optimal stationary policy achieves

at least as high a growth rate as any history-dependent policy. Let a feasible

history-dependent policy map every history (ω1, . . . , ωt−1) to a policy pair from

P. Applying Theorem 16.3.1 of Cover and Thomas (2006) to the current setting

establishes:

Proposition 1 (Cover and Thomas (2006)). Let the random variable Wt denote

the aggregate wealth accumulated under a feasible history-dependent policy over

the first t periods. Let W ∗
t denote the aggregate wealth accumulated under the

growth-maximizing stationary policy pair. Then, almost surely,

lim sup
t→∞

(
lnWt

t
− lnW ∗

t

t

)
≤ 0.

3.2 Wealth Distributions

Our main result contrasts two wealth distributions. First, the endowment dis-

tribution p(i), as introduced above and controlled by the planner, specifies the

wealth shares at the beginning of each period. Second, we denote the wealth

distribution at the end of each period as

op,r(i | ω) =
p(i)r(i, ω)∑
j∈I p(j)r(j, ω)

, (2)

which specifies the wealth shares of individuals i at the end of each period in

which the state ωt = ω. Furthermore,

op,r(i) = Eq0(ω) op,r(i | ω) (3)

denotes the long-run end-of-period wealth distribution, representing the proba-

bility that a dollar, randomly selected from the aggregate wealth at the end of

a random period, belongs to individual i. We refer to op,r(i | ω) and op,r(i) as

the (state-contingent) outcome distributions.

Our main result provides a necessary condition for the growth-maximizing

policy pair. It must minimize a measure of systematic redistribution, while

taking the outcome distribution as given. To formulate this, we recall that
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the Kullback-Leibler divergence between two probability distributions, o(i) and

p(i), is defined as:

KL
(
o(i) ∥ p(i)

)
:=
∑
i∈I

o(i) ln
o(i)

p(i)
,

which quantifies the discrepancy between the two distributions.3

3.3 Main Result

The optimal policy pair must satisfy a fixed-point condition. To state this condi-

tion, let E∗ = {p(i) : (p(i), r∗(i, ω)) ∈ P} be the set of endowment distributions

to which the planner can deviate, starting from the optimal policy pair, without

altering the optimized return function r∗(i, ω). Section 4 proves:

Proposition 2 (Myopically Minimal Systematic Redistribution). If the en-

dowment distribution p∗(i) and the return function r∗(i, ω) jointly maximize the

aggregate growth rate, then p∗(i) minimizes the KL-divergence from the induced

outcome distribution:

p∗(i) ∈ argmin
p(i)∈E∗

KL
(
op∗,r∗(i) ∥ p(i)

)
. (4)

In other words, the planner myopically minimizes the systematic redistri-

bution of wealth. Among endowment distributions that are feasible in com-

bination with the optimized return function, the planner selects the one most

closely aligned with the outcome distribution. This optimization is myopic,

meaning the planner proceeds as if the outcome distribution op,r∗(i) is fixed at

op∗,r∗(i) and independent of the control p(i). As a result, the planner generally

does not choose the endowments p(i) that minimize KL
(
op,r∗(i) ∥ p(i)

)
. Such

minimization would further decrease this measure of systematic redistribution

by exploiting the link between the endowment distribution and the induced

outcome distribution. However, this would generally decrease the growth rate.

A simple case arises when the planner is unconstrained in her choice of an

endowment distribution. Then, the growth-optimal policy pair fully eliminates

systematic redistribution.4

3We use the standard convention 0 ln 0 = 0.
4Recalling that op∗,r∗ (i) = Eq0(ω)

p∗(i)r∗(i,ω)∑
j p∗(j)r∗(j,ω)

, the corollary implies that when p(i)

is unconstrained, the expected relative return Eq0(ω)
r∗(i,ω)∑

j p∗(j)r∗(j,ω)
is equalized across all
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Corollary 1 (Unconstrained Endowments). Assume that any endowment dis-

tribution p(i) ∈ ∆(I) is feasible along with each of the feasible return functions

r(i, ω). Then, the optimal policy pair eliminates systematic redistribution:

p∗(i) = op∗,r∗(i). (5)

Cover and Thomas (2006, Section 16.2) derive the optimality condition (5)

from the first-order conditions in a special case involving exogenous return func-

tions. Proposition 2 extends this classical result to cases where constraints

prevent the full elimination of systematic redistribution and where the planner

controls the return function.

The following example illustrates statements of Corollary 1 and Proposition

2.

Example 2 (Illustrations of the Main Result). Consider three individuals i ∈
{1, 2, 3} and four states ω ∈ Ω = I ∪ {g}. In each period, each individual

either has a log-productivity of one, ln r(i, ωt) = 1, or faces bankruptcy, in

which case r(i, ωt) = 0. No individual experiences bankruptcy in the good state

ω = g; however, in state ω = i ∈ I, all individuals except i face bankruptcy.

The a priori probabilities of the individuals’ favorable states are q0(1) = .01,

q0(2) = .02, and q0(3) = .07, leading to q0(g) = .9.

Let us start with an unconstrained planner who can select any endowment

distribution p(i) ∈ ∆(I). Corollary 1 states that such planner eliminates system-

atic redistribution. As we derive in Example 3, this implies a simple analytical

solution. The planner selects the endowment shares

p∗(i) = q0(i)/(1− q0(g)), (6)

proportionally to the probabilities of states favoring the individuals. Calculat-

ing the outcome distribution generated by this optimal policy according to (2)

confirms that p∗(i) = op∗(i), as required.

The above uneven endowments may be deemed unacceptable. Accordingly,

impose a constraint on the endowment distribution by limiting its Theil in-

equality index to no more than ln 3 − 1 ≈ .099.5 As a result, the constrained-

individuals with positive endowments. See the online appendix for a link to the optimality
conditions outlined by Caplin and Dean (2013) for the rational inattention problem with
entropic cost.

5The Theil index for the endowments p(i) of three individuals is given by 1
3

∑
i
p(i)
p

ln
p(i)
p

=

−H
(
p(i)

)
+ln 3, where the average endowment p = 1/3. Therefore, this inequality constraint
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optimal endowment distribution becomes more egalitarian, yielding p∗(1) ≈
.192, p∗(2) ≈ .264, and p∗(3) ≈ .544. This constrained planner systematically

redistributes wealth, creating the wedge between endowment and outcome dis-

tributions, with op∗,r(1) ≈ .183, op∗,r(2) ≈ 0.258, and op∗,r(3) ≈ .559. Treating

this outcome distribution as fixed, the planner cannot match it with the endow-

ment distribution due to the inequality constraint. Nonetheless, by Proposition

2, the planner myopically minimizes systematic redistribution by selecting an

endowment distribution p that minimizes KL
(
op∗,r(i) ∥ p(i)

)
, subject to the

inequality constraint. Indeed, numerically minimizing this objective yields the

constrained growth-optimal p∗(i), as required.

The myopia is optimal. For contrast, consider a planner who minimizes sys-

tematic redistribution, measured by the divergence KL
(
op,r(i) ∥ p(i)

)
between

the outcome and endowment distributions, subject to the same inequality con-

straint, but accounting for the effect of endowments on outcomes. This planner

selects p̃(1) ≈ .197, p̃(2) ≈ .257, and p̃(3) ≈ .546, achieving a slightly lower

divergence but also a lower growth rate than p∗. ▲

4 Analysis

This section proves the main result and offers intuition.

4.1 Generalized Distributions

To facilitate the use of tools from information theory, we relabel the notation for

the policy pairs. We retain p(i) to denote the endowment distribution. However,

instead of r(i, ω), we now write p(ω | i), a function I × Ω → R+, for the return

function. We treat p(ω | i), i ∈ I, as generalized conditional distributions (which

need not be normalized to have unit mass) and introduce

p(i, ω) := p(i)p(ω | i),

which we again treat as a generalized joint distribution. Note that p(i, ω) is

a sufficient summary statistic of the policy pair with respect to the aggregate

growth rate (1), because this rate depends solely on this product. Therefore,

we refer to p(i, ω) as the policy. The set P̃ of feasible policies comprises those

is equivalent to requiring that the entropy H
(
p(i)

)
be at least 1.
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p(i, ω) = p(i)p(ω | i) that can be expressed as the product of a feasible policy

pair
(
p(i), p(ω | i)

)
∈ P.

We extend the standard definition of KL-divergence to take any well-normalized

joint distribution q(i, ω) and any policy p(i, ω) as arguments (noting that it can

now attain negative values). It is straightforward to verify that the usual chain

rule continues to hold:

KL
(
q(i, ω) ∥ p(i, ω)

)
= KL

(
q(i) ∥ p(i)

)
+
∑
i

q(i)KL
(
q(ω | i) ∥ p(ω | i)

)
,

with the summation over i ∈ supp(q(i)) ∩ supp(p(i)). An analogous equality

holds when the roles of i and ω are reversed.

4.2 Wealth Circulation

We analyze the economy’s growth rate by tracking the circulation of wealth

among individuals. To introduce wealth circulation informally, we imagine each

dollar drawn from the initial stock of perfectly divisible aggregate wealth as

founding a separate dynasty of subsequent wealth. In each period, every such

dynasty is held by an individual i, randomly drawn from the endowment distri-

bution p(i), and in a random aggregate state ω of the economy, independently

drawn from q0(ω). Consequently, the dynasty’s wealth is multiplied by the re-

turn p(ω | i). Without loss of generality, we assume that these dynasties remain

separate and do not mix. That is, all wealth generated from the compounding

returns of each dollar initially founding a dynasty circulates within the economy

as separate, infinitesimal fractions of the aggregate wealth, each representing a

distinct dynasty.

Consider a sufficiently large time horizon, allowing us to abstract from any

issues related to divisibility. Up to this horizon, let the dynasty-specific distri-

bution q(i, ω) represent the frequency of individuals and states occupied by the

dynasty; we refer to q(i, ω) as the dynasty’s pattern of circulation, or simply, its

pattern. Since the states ωt are aggregate, all patterns must satisfy the consis-

tency condition q(ω) = q0(ω) in the long run. Accordingly, we formally define a

pattern as any joint distribution q(i, ω) ∈ ∆(I × Ω) that satisfies q(ω) = q0(ω).

For each pattern, there are numerous distinct dynasties characterized by this

pattern, each corresponding to a distinct permutation of (it, ωt)t. Note that a

dynasty’s pattern serves as a sufficient statistic with respect to its wealth.

Over any finite horizon, dynasties differ in the frequencies with which they
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have been in the hands of each individual i, as well as in how their allocations

to various individuals correlate with those individuals’ random productivities.6

By chance, a small subset of lucky dynasties spend a disproportionate fraction

of periods in the hands of individuals when these individuals are particularly

productive. As it turns out, these fortunate dynasties generate effectively all of

the economy’s wealth.

For each pattern q(i, ω), we define its wealth as the aggregate wealth of

all dynasties whose realized patterns correspond to q(i, ω). We show that the

wealth of the pattern q(i, ω) under the policy p(i, ω) grows exponentially at a

long-run rate given by

γ(p, q) = Eq(i,ω) ln p(ω | i)− Eq0(ω) KL
(
q(i | ω) ∥ p(i)

)
(7)

= −KL
(
q(i, ω) ∥ p(i, ω)

)
+ const.

The first equality breaks down the growth rate of a pattern into two distinct

components. First, the growth rate of each separate dynasty adhering to the

pattern q(i, ω) is given by its long-run average log-return Eq(i,ω) ln p(ω | i). Sec-
ond, patterns that deviate from the endowment distribution p(i) by assigning

distinct state-contingent frequencies q(i | ω) ̸= p(i) to individuals are atypical,

leading to a gradual decline in the measure of dynasties following such patterns

over time. The measure of these dynasties, and hence their initial wealth, dimin-

ishes at the rate given by Eq0(ω) KL
(
q(i | ω) ∥ p(i)

)
. The greater the deviation

from the endowment distribution, the faster the decline.7 The wealth of all

dynasties following a given pattern then grows at a rate given by the difference

between the two rates.

The second equality in (7) follows from straightforward algebra. This rear-

rangement indicates that the closer the pattern q(i, ω) aligns with the policy

p(i, ω), the greater the resulting growth rate.

As the wealth of each pattern grows exponentially, the wealth of the fastest-

growing pattern eventually dwarfs that of all others. Consequently, the overall

growth rate of the economy under a given policy is determined by the pattern

that minimizes its divergence from the policy. The maximum feasible growth

rate of the economy is thus achieved by the pattern-policy pair that minimizes

6A probability theorist would refer to atypical patterns of circulation as ’large deviations’
from the generating distribution p(i)q0(ω).

7This follows from Sanov’s theorem, which implies that the chance of drawing a sample with
an empirical frequency q(i) from a distribution p(i) decreases at the rate of KL

(
q(i) ∥ p(i)

)
as the sample expands.
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their divergence. The following result, which is proven in the appendix, formal-

izes this intuition:

Proposition 3. A policy p∗(i, ω) maximizes the economy’s growth rate if and

only if it solves

min
q(i,ω),p(i,ω)

KL
(
q(i, ω) ∥ p(i, ω)

)
(8)

s.t. p(i, ω) ∈ P̃

q(i, ω) ∈ ∆(I × Ω)

q(ω) = q0(ω),

alongside a corresponding minimizer q∗(i, ω).

This optimization problem appears in a different context in the seminal ma-

chine learning paper by Kingma and Welling (2013), where it is introduced as

a variational approach to maximum likelihood estimation. In the generative

task studied by Kingma and Welling, a machine aims to learn a joint distribu-

tion p(i, ω) ∈ P̃ over the latent variable i and the observable variable ω that

best matches a large sample of observed data, (ω1, . . . , ωn). In this context,

the set P̃ ⊂ ∆(I × Ω) represents the collection of joint distributions that the

machine considers and is capable of expressing. The asymptotic maximum like-

lihood estimator is given by the optimizer p∗(i, ω) from Problem (8), where

q0(ω) corresponds to the true data generating distribution. The accompanying

optimizer q∗(i, ω) characterizes Bayesian updates derived from the estimated

p∗: q∗(i | ω) = p∗(i | ω).8

The equivalence between growth maximization and maximum likelihood esti-

mation may seem surprising. The connection arises because maximum likelihood

estimation can be interpreted as a competition among growth processes. Specif-

ically, the likelihood of each considered hypothesis p(i, ω) evolves as a stochastic

growth process, with a (negative) stochastic growth rate ln p(ωt) = ln
∑

i p(i, ωt)

in each period t. Consequently, as the sample size increases, the likelihood of

the hypothesis grows at the long-run rate Eq0(ω) ln
∑

i p(i, ω). Asymptotically,

maximum likelihood estimation selects the hypothesis with the highest growth

rate, analogous to a planner selecting the growth-maximizing policy.

8We explore this cognitive interpretation of Problem (8) in Samuelson and Steiner (2024).
In a similar vein, Gabaix and Graeber (2024) represent cognition in a macroeconomically
inspired model.
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Our proof of Proposition 3 is distinct from the standard arguments in the

variational inference literature that are based on convex analysis. Instead, we

focus on the dynamic aspect of stochastic growth and draw on intuitions from

large deviations theory.

4.3 Growth-Maximizing Pattern and Policy

To prove the main result in Proposition 2, we establish an identity between

two conceptually distinct objects: the outcome distribution and the growth-

maximizing pattern of circulation.

We extend the definition of the outcome distribution by introducing a joint

outcome distribution, induced by the policy p(i, ω), and defined as

op(i, ω) := q0(ω)op(i | ω), (9)

where op(i | ω) is the state-contingent outcome distribution defined in (2).

That is, op(i, ω) is the probability that a dollar, sampled from the aggregate

wealth at the end of a random period, is held by individual i in state ω. The

outcome distribution, as defined in (3), is then given by the marginalization

op(i) =
∑

ω op(i, ω).

Given a policy p(i, ω), let

q∗p(i, ω) ∈ argmin
q(i,ω)∈∆(I×Ω)

KL
(
q(i, ω) ∥ p(i, ω)

)
(10)

s.t. q(ω) = q0(ω)

denote the fastest-growing pattern.

Lemma 1. For any given policy p(i, ω), the fastest-growing pattern q∗p(i, ω) is

identical to the joint outcome distribution op(i, ω).

Proof. Recall that the policy p(i, ω) is a generalized (non-normalized) joint dis-

tribution, on which we perform standard probability-theory operations. We

formally define the conditional policy as p(i | ω) = p(i,ω)∑
i p(i,ω) . Observe that

p(i | ω) = op(i | ω), where op(i | ω) is the state-contingent outcome distribution,

as previously defined in (2).

Applying the chain rule and utilizing the constraint q(ω) = q0(ω), we express

15



the objective from (10) as

KL
(
q(i, ω) ∥ p(i, ω)

)
= KL

(
q0(ω) ∥ p(ω)

)
+
∑
ω

q0(ω)KL
(
q(i | ω) ∥ p(i | ω)

)
.

Minimizing with respect to q(i | ω) yields q∗p(i | ω) = p(i | ω) for each ω. The

lemma then follows from the definition of op(i, ω) in (9):

op(i, ω) = q0(ω)op(i | ω) = q0(ω)p(i | ω) = q0(ω)q∗p(i | ω) = q∗p(i, ω).

Proposition 3 and Lemma 1 jointly establish that the optimal policy and

the associated outcome distribution are two optimized, decoupled controls. The

proof of the main result is presented below.

Proof of Proposition 2. Let p∗(i, ω) be the growth-maximizing policy and q∗p∗(i, ω)

the associated fastest-growing pattern. By Proposition 3, the policy p∗ maxi-

mizes the growth rate of this pattern:

p∗(i, ω) ∈ argmin
p(i,ω)∈P̃

KL
(
q∗p∗(i, ω) ∥ p(i, ω)

)
=argmin

p(i,ω)∈P̃
KL
(
op∗(i, ω) ∥ p(i, ω)

)
,

where the equality follows from Lemma 1.

Applying the chain rule, we can express the objective as:

KL
(
op∗(i) ∥ p(i)

)
+

∑
i∈supp(op∗ (i))∩supp(p(i))

op∗(i)KL
(
op∗(ω | i) ∥ p(ω | i)

)
.

By setting the returns p(ω | i) to the optimized returns p∗(ω | i) and restricting

the optimization of the last inline expression to the control of the endowment

distribution p(i) within E∗, we obtain the statement in (4).

4.4 Additional Examples

We now present three examples that focus on characterizing the optimal pol-

icy. The first example illustrates how Proposition 3 characterizes the optimal

policy and the resulting pattern of wealth circulation. The analysis leverages

the specific structure of the example, resulting in a simple pattern. The online
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appendix extends the analytical approach from this example to more general

settings. Specifically, it shows that the planner’s problem—when the return

function is fixed and the endowment distribution is unconstrained—is mathe-

matically equivalent to the rational inattention problem with entropic informa-

tion costs, as introduced by Matějka and McKay (2015).

Example 3 (Analysis). We now revisit the unconstrained setting from Exam-

ple 2 to illustrate the application of Proposition 3. First, we fix a possibly sub-

optimal endowment distribution p(i) and compute the corresponding growth-

maximizing pattern q∗p(i, ω). Since q(ω) = q0(ω) is fixed, we only need to find

the conditional distributions q∗p(i | ω) for each ω ∈ Ω. Recall that in states

ω ∈ I, all individuals except i = ω become bankrupt, with r(j, ω) = 0 for j ̸= ω.

Hence, q∗p(i | ω) = 1i=ω for all ω ∈ I. In other words, the growth-maximizing

pattern avoids bankruptcy in any states ω ∈ I where bankruptcy could arise,

as failing to do so would result in a growth rate of negative infinity. In the

state ω = g, the growth-maximizing pattern q∗(i | ω) = p(i) aligns with the

endowment distribution, as all individuals receive the same return in this state,

making any deviation from p(i) unbeneficial. Therefore, given the endowment

distribution p(i), the outcome distribution op(i) is given by

op(i) = Eq0(ω) q
∗
p(i | ω) = q0(i) + q0(g)p(i).

Proposition 3 requires the optimal policy to minimize divergence from the

pattern q∗p∗ . Specifically, when the endowment distribution is unconstrained,

Corollary 1 applies, yielding p∗(i) = op∗(i) ≡ q∗p∗(i), which implies that

p∗(i) = q0(i) + q0(g)p∗(i),

thereby delivering the characterization given in (6). ▲

We now present an extension where the justifiability of redistribution de-

pends on past payoff states, thereby introducing history dependence to the pol-

icy constraint.

Example 4 (History-Dependent Constraints). We let the set Pωt−1
, represent-

ing the policies p(i, ω) feasible in period t, depend on the preceding state ωt−1.

For instance, the planner may need to select an endowment distribution p(i) at

the beginning of period t that maintains the ranking of individuals’ returns from

the end of period t−1, consistent with the meritocracy notion. For illustration,
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consider an environment with sets I = {1, 2, 3} and Ω = {1, 2, 3, g}, as well as

returns p(ω | i) ≡ r(i, ω) from Example 2. Given that returns are fixed here,

we abuse notation by associating the set Pωt−1 of feasible policies with the set

of feasible endowment distributions. Recall that in states ωt−1 ∈ {1, 2, 3}, all
individuals except i = ωt−1 went bankrupt at t−1. Thus, following these states,

the feasible set is

Pωt−1 = {p(i) ∈ ∆(I) : p(j) ≥ p(k) for j = ωt−1 and all k ̸= ωt−1},

and the set Pg = ∆(I) permits any endowment distribution since all individuals

have received the same return when ωt−1 = g.

The following separability property extends our results to environments with

state-dependent policy constraints. Define γ̃(p) = Eq0(ω) ln
∑

i p(i, ω) as the

growth rate achieved by applying a policy p(i, ω) in all rounds. Since the states

are serially independent, a conditional policy pωt−1
achieves a growth rate of

Eq0(ω) γ̃(pω). Consequently, a planner facing state-dependent feasibility sets

Pωt−1
selects, in each period t, the policy that is optimal in the main setting

with P̃ = P̃ωt−1
.

For the specification from Example 2, the planner is unconstrained following

ωt−1 = g and thus chooses the unconstrained optimal endowment distribution

(.1, .2, .7). After state ωt−1 = 1, the planner must allocate the largest share

to individual 1, resulting in the constrained optimal endowment distribution

(.4, .2, .4). After state ωt−1 = 2, individual 2 must receive the largest share,

yielding the constrained optimal endowment distribution (.1, .45, .45). Finally,

following state ωt−1 = 3, the constraint is not binding and thus the planner

chooses (.1, .2, .7). ▲

Although our basic model assumes that productivities are serially indepen-

dent and the planner can periodically redistribute the entire aggregate wealth,

applications may require incorporating serially correlated productivities and

more realistic redistribution schemes. The following example sketches an exten-

sion of our framework, characterizing how the optimal flat tax rate depends on

productivity inertia.9

9While a class of settings from this paper is homeomorphic to the static rational inattention
problem from Matějka and McKay (2015) (see the online appendix), we conjecture that a
natural extension of this class, which generalizes Example 5, is homeomorphic to the dynamic
rational inattention problem from Steiner et al. (2017).
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Example 5 (Inertia). We now extend the model to incorporate serially corre-

lated productivities and policies akin to flat tax rates. The payoff state now

evolves in a stationary Markov chain q0(ωt | ωt−1). Rather than selecting an

endowment distribution p(i), the planner now chooses a redistribution rule, rep-

resented by a Markov chain p(i | j), which specifies the share of wealth from

each individual j that is redistributed to each individual i at the end of each

period. For example, a flat tax rate τ with uniform redistribution of the tax

revenue results in p(i | j) = τ/|I|+(1− τ)1i=j . The redistribution rule and the

return function jointly induce a stochastic evolution of wealth levels:

wi,t+1 =
∑
j∈I

p(i | j)wj,tr(j, ωt),

where the planner’s objective is to maximize the long-run growth rate.

We recall the concept of wealth dynasties from Section 4.2 and let them

circulate across individuals according to the chain p(it | it−1), which replaces

the iid draws from the endowment distribution. Since the dynasties circulate

across individuals independently of the state evolution, the pair (it, ωt), which

tracks the individual and the state, evolves according to the Markov chain

m(it+1, ωt+1 | it, ωt) = p(it+1 | it)q0(ωt+1 | ωt).

Again, for a finite time horizon, some dynasties, by chance, follow a pattern

described by a chain q(it+1, ωt+1 | it, ωt) that differs from m. The aggregate

wealth of dynasties following the pattern q grows at the rate

γ(q, p) = Eq ln r(it, ωt)− Eq KL
(
q(it+1, ωt+1 | it, ωt)∥m(it+1, ωt+1 | it, ωt)

)
,

where q(it, ωt) is the stationary distribution of the chain q. The first term on the

right represents the growth rate of each dynasty along the pattern q. The second

term represents the divergence rate between chains q and m, capturing the rate

at which the measure of dynasties adhering to pattern q declines over time. For

a given policy p, the economy’s growth rate is given by γ(q, p), maximized over

all q that match q0(ωt | ωt−1) on the margin. Thus, the planner’s problem

involves jointly maximizing γ(q, p) over feasible patterns of circulation q and

policies p.

For brevity, consider a setting with two individuals and two states, I = Ω =

{1, 2}, with returns given by r(i, ω) = 2× 1i=ω. In this setting, each individual

19



i doubles her wealth in her productive state ω = i and becomes bankrupt when

ω ̸= i, as in Example 1. In this case, the state evolves according to the Markov

chain q0(ωt | ωt−1) = σ when ωt = ωt−1, where σ ∈ [1/2, 1) represents the

degree of state inertia. The planner selects a tax rate τ ∈ [0, 1] and redistributes

the tax revenue evenly across both individuals, inducing the redistribution rule

p(i | i) = ν and p(i | j) = 1− ν for i ̸= j, where ν = 1− τ/2.

In this setting, the optimal pattern q∗ is straightforward: a dynasty must

be owned by the productive individual each period to survive, which implies

it = ωt almost surely under the optimal q∗. Then,

KL
(
q∗
(
it+1, ωt+1 | it, ωt

)
∥m
(
it+1, ωt+1 | it, ωt

))
takes the value − ln ν (in case it+1 = ωt+1 = ωt = it) or − ln(1 − ν) (in case

it+1 = ωt+1 ̸= ωt = it), because q∗ enforces it+1 = ωt+1 with certainty, while

under m, it+1 = ωt+1 with probabilities ν and 1 − ν, respectively, in the two

scenarios. Given the probabilities σ and 1−σ for these two cases, a redistribution

rule pν(i | j) yields a growth rate of

γ(q∗, pν) = ln 2 + σ ln ν + (1− σ) ln(1− ν).

Maximizing over ν results in the optimal value ν∗ = σ, which corresponds to a

tax rate τ∗ = 2 − 2σ. When σ = 1/2, indicating that states are independent,

the planner optimally confiscates all wealth each period and redistributes it uni-

formly, aligning with the baseline analysis for this symmetric setting. However,

for σ > 1/2, the planner takes advantage of productivity inertia by redistribut-

ing only a smaller fraction of wealth, anticipating continued high productivity

from currently wealthy individuals. ▲

5 Summary

We have deliberately set aside the usual factors that mediate the impact of

redistribution on economic growth, to emphasize a relatively unexplored factor

stemming from the stochastic nature of growth. Optimizing growth necessitates

regular redistribution. This optimization is forward-looking, with the optimal

policy regularly redistributing incidental wealth gains and losses. Nevertheless,

our main result underscores the adverse impact of systematic redistribution on

growth. The growth-optimal policy myopically minimizes systematic redistri-
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bution, treating economic outcomes as independent of the policy. Specifically,

the growth-optimal policy does not globally minimize systematic redistribution.

This counterintuitive myopia arises from the fixed-point property of the opti-

mal policy, which we derive through a decoupling approach that has an intuitive

economic interpretation. Example 5 outlines an extension that incorporates re-

alistic redistribution policies and accounts for inertial environments.
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A Proof of Proposition 3

A policy p(i, ω) generates a growth rate of aggregate wealth in each state ω

given by:

ln
∑
i

p(i, ω) =
1

t
ln

(∑
i

p(i, ω)

)t

=
1

t
ln
∑
i∈It

∏
i

p(i, ω)qi(i)t,

where t ∈ N is an arbitrary time horizon, i ∈ It is a sequence (i1, . . . , it) and

qi(i) = 1
t

∑t
τ=1 1iτ=i is the empirical distribution of the sequence i. Since all

sequences i with the same empirical distribution generate the same value of the

inline summand, we obtain the growth rate in state ω:

ln
∑
i

p(i, ω) =
1

t
ln

 ∑
q(i|ω)∈∆t

nt

(
q(i | ω)

)∏
i

p(i, ω)q(i|ω)t

 , (11)

where ∆t ⊂ ∆(I) is the set of the empirical distributions that can be generated

by sequences i of length t, and nt : ∆t → N maps each q to the number nt(q)

of sequences of length t that generate such an empirical distribution. Using the

entropy H(q), Theorem 11.1.3 in Cover and Thomas (2006) approximates this

function as follows:

1

(t+ 1)|I|
exp[t×H(q)] ≤ nt(q) ≤ exp[t×H(q)], (12)

for all q ∈ ∆t.

Substituting these bounds into (11) yields:

1

t
ln

∑
q(i|ω)∈∆t

exp
[
t×

(
Eq(i|ω) ln p(i, ω) + H

(
q(i | ω)

)) ]
− |I| ln(t+ 1)

t

≤ ln
∑
i

p(i, ω) (13)

≤ 1

t
ln

∑
q(i|ω)∈∆t

exp
[
t×

(
Eq(i|ω) ln p(i, ω) + H

(
q(i | ω)

)) ]
,
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which further simplifies to:

max
q(i|ω)∈∆t

{
Eq(i|ω) ln p(i, ω) + H

(
q(i | ω)

)}
− |I| ln(t+ 1)

t

≤ ln
∑
i

p(i, ω)

≤ max
q(i|ω)∈∆t

{
Eq(i|ω) ln p(i, ω) + H

(
q(i | ω)

)}
+

|I| ln(t+ 1)

t
.

For the lower bound, we replaced the sum in lower bound from (13) with its

maximal summand. For the upper bound, we replaced each summand in the

upper bound from (13) by the maximal summand and observed that there are

at most (t+1)|I| summands. This holds because the distributions q(i | ω) ∈ ∆t

takes values in { 0
t ,

1
t , . . . ,

t
t} for each i ∈ I; hence |∆t| ≤ (t + 1)|I| (Cover and

Thomas, 2006, Theorem 1.1.1).

Since ln(t+1)
t vanishes as t diverges, taking the limit t → ∞ yields:10

ln
∑
i

p(i, ω) = max
q(i|ω)∈∆(I)

{
Eq(i|ω) ln p(i, ω) + H

(
q(i | ω)

)}
. (14)

Taking the expectation over ω ∼ q0(ω) and straightforward algebraic steps yield

the characterization of the aggregate growth rate induced by a policy p(i, ω):

Eq0(ω) ln
∑
i

p(i, ω) = maxq(i,ω)∈∆(I×Ω) γ
(
q(i, ω) ∥ p(i, ω)

)
s.t. q(ω) = q0(ω),

where the growth rate γ
(
q(i, ω) ∥ p(i, ω)

)
is defined in (7). Finally, optimization

over the policy p(i, ω) yields the proposition.
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