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Abstract

We investigate the impact of wealth redistribution on economic growth,

building on Kelly’s (1956) optimal investment portfolio theory. A growth-

optimal policy redistributes wealth from ’lucky’ overperforming individu-

als to underperforming individuals, minimizing the systematic component

of this redistribution in a myopic fashion. That is, the policy minimizes the

discrepancy between endowments and outcomes, counterfactually taking

outcomes as independent of endowments. Alternatively, we reinterpret

this result in terms of maximum likelihood estimation of a distribution

over both latent and observable variables. Beliefs derived from the esti-

mated joint distribution fail Bayes’ plausibility due to misspecification;

however, the estimate myopically minimizes this failure.
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Growth and Redistribution: The Hedging Perspective

1 Introduction

Does economic growth generate inequality, or perhaps does inequality inhibit

growth? Can wealth redistribution foster economic growth? The literature

identifies various channels through which inequality and redistribution affect

economic growth, primarily explored in deterministic models that emphasize

effects on productivity via incentives, the allocation of resources, and techno-

logical advancement.

We investigate a relatively underexplored aspect of the relationship between

inequality, redistribution, and economic growth. Economic growth is inherently

stochastic, with some fortunate individuals experiencing rapid wealth accumu-

lation while others lag behind, even when controlling for productivity. Maxi-

mizing the economic growth rate requires redistribution to hedge against these

disparities in luck.

To emphasize the hedging aspect of wealth redistribution, we set aside all

the conventional modeling elements of economic growth. Incentive effects, pro-

duction, technological progress, and other factors are all condensed into a black

box, that determines each individual’s end-of-period wealth based on their initial

wealth and the realization of a random state. Different individuals have distinct

such return functions, reflecting persistent differences in their skills, education,

opportunities, and other factors. How should a planner with the ability to peri-

odically redistribute wealth respond optimally to individuals’ ex-ante differences

and varying degrees of luck?

Formally, we build upon Kelly’s (1956) classical study of optimal private

investment portfolios. Kelly’s investor allocates wealth to assets with uncertain

returns to maximize the long-term growth rate of the portfolio’s value. Kelly

provides two main insights. First, a growth-optimal portfolio involves hedging—

it comprises a variety of assets, including those with inferior expected returns,

and is maintained by periodically redistributing wealth from unexpectedly over-

performing to underperforming assets. Second, the optimal portfolio eliminates

the systematic part of this redistribution—the expected wealth share of each

asset must remain the same before and after rebalancing.

In our economic application, we view individuals as assets with uncertain

returns. The optimal policy periodically redistributes wealth to maintain a
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growth-maximizing allocation, akin to rebalancing a financial portfolio. To fit

our economic context, we extend the standard portfolio choice setting in three

ways. First, we allow the planner to control the state-contingent returns of

individuals, subject to feasibility constraints, thereby capturing the effects of

economic policies on individuals’ varying productivities. Second, to address

inequality concerns, we impose constraints on the planner’s choice of wealth

allocation. Finally, we allow returns and wealth allocations to interact, recog-

nizing that redistribution may affect incentives and, consequently, individual

returns.

To a first approximation, our results echo Kelly’s insights on the growth-

optimal portfolio. The growth-optimal economic policy involves hedging, allo-

cating wealth among a variety of individuals, including those with inferior ex-

pected returns. Additionally, the growth-optimal policy routinely redistributes

wealth from accidental economic winners to losers, thereby maintaining an op-

timal hedge. However, constraints may render the full elimination of systematic

redistribution infeasible in our setting, and, instead, the growth-optimal policy

myopically minimizes this redistribution.

To formulate this result, we compare two wealth distributions. The en-

dowment distribution refers to the wealth distribution periodically controlled

by the planner via redistribution. The outcome distribution represents the re-

sulting wealth distribution, after endowments have been augmented by returns,

averaged across random states. Our main result states that the growth-optimal

endowment distribution minimizes the Kullback-Leibler divergence from the in-

duced outcome distribution, treating the latter as given.

Somewhat counterintuitively, this minimization is myopic; the optimality

condition requires the planner to treat the outcome distribution as fixed and

approximate it with an endowment distribution as closely as possible, disregard-

ing that the outcomes themselves depend on the endowments. Acknowledging

that the outcomes depend on the endowments could further reduce systematic

redistribution, but at the expense of the economy’s growth.

Our analytical approach is novel. We express the economy’s growth rate as a

function of economic policy and the resulting path of wealth circulation, which

we define to capture how wealth moves among individuals through redistribu-

tion. Although wealth circulation depends on policy, our proof construction

decouples them, allowing us to treat policy and the path of wealth circulation

as independent inputs determining the growth rate. The source of the myopia

in our main result is then clear: maximizing the growth rate requires each input
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to be individually optimal when the other is fixed at its respective optimum.

We complete the result by linking the path of wealth circulation to the outcome

distribution.

This decoupling has an economic interpretation: we divide aggregate wealth

into infinitesimal fractions, each of which stochastically circulates throughout

the economy, randomly moving among individuals through redistribution. These

wealth fractions grow at their own rates, depending on their distinct realized

paths of circulation. The fastest-growing fraction ultimately prevails and deter-

mines the economy’s overall growth rate. Maximizing the economy’s growth rate

thus becomes a joint optimization over two decoupled controls: the endowment

distribution and the path of wealth circulation.

Section 5 reinterprets the setting in terms of maximum likelihood estimation.

The analogy between economic growth maximization and maximum likelihood

estimation arises because both problems can be viewed as competitions among

growth processes. In the latter case, the likelihood for each considered hypoth-

esis, defined as the product of the likelihoods of all sample points, grows in a

stochastic growth process with an expanding sample. Thus, the analyst asymp-

totically selects the hypothesis with the highest long-run growth rate, analogous

to the planner selecting the policy with the highest economic growth rate. This

analogy clarifies why distributed growth processes, such as the economic growth

in our main application, may resemble inference.

Our main result translates into a generalization of the familiar Bayes’ plau-

sibility condition. First, an analyst estimates a joint distribution of observable

and latent variables and then forms a posterior belief about the latent variable

for each given value of the observable variable. For illustration, consider an ana-

lyst observing the choices (such as labor force participation) of many individuals

and modeling these choices as stochastic consequences of the individuals’ latent

characteristics (such as reservation wages). The analyst estimates the joint dis-

tribution of choices and characteristics, then forms Bayesian posteriors about

each individual’s characteristics given the observed choices. If the analyst is

well-specified, Bayes’ plausibility implies that the average of the analyst’s pos-

teriors equals her marginal belief about the latent characteristics. However, if

the analyst is misspecified and forms an incorrect estimate, Bayes’ plausibility

fails: the empirical average of her posteriors differs from her estimated marginal

belief about the latent characteristics.

In the inference context, our main result states that the maximum likeli-

hood estimate myopically minimizes the extent of this Bayes’ plausibility fail-
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ure. Specifically, the analyst’s marginal belief about the latent characteristics

minimizes the Kullback-Leibler divergence from the average of her posteriors,

treating the latter as given. This tendency to align the prior with the average

posterior arises from fitting the model to the data rather than from Bayes’ rule.

Thus, Bayes’ plausibility may serve as a good approximation for agents who

form their beliefs by fitting models to data, even when they are misspecified.

2 Literature

Inequality and Growth. The theoretical literature identifies several chan-

nels through which inequality might boost growth. In an early survey, Aghion et

al. (1999, p. 1615) note that one’s ‘textbook’ reaction is that inequality will foster

growth by providing incentives. Inequality may also foster growth if the wealthy

have higher saving rates (Kaldor, 1957), if inequality allows some individuals

to become educated and entrepreneurs (Barro, 2000), if it increases the median

voter’s support for public education (Saint-Paul and Verdier, 1993), or if com-

plementarities (Benabou, 1996a) or externalities (Galor and Tsiddon, 1997a) in

human capital formation are strong enough. Galor and Tsiddon (1997b) explain

that allowing high-ability workers to congregate increases both inequality and

growth. Conversely, one can readily identify channels through which inequal-

ity retards growth (e.g., Todaro and Smith (2020, Chapter 5)). In Galor and

Zeira (1993), inequality discourages investment in human capital. In Galor and

Moav (2004), inequality enhances growth when the return to physical capital is

relatively high but is detrimental to growth when the return to human capital

is high. In De La Croix and Doepke (2003), inequality increases the fertility

of the poor, thereby reducing human capital accumulation and growth. Mdingi

and Ho (2021) provide a review of the theoretical links, noting arguments for

both positive and negative effects of inequality on growth.

The survey of Aghion et al. (1999) concludes that inequality retards growth

in some circumstances, and hence that attention should turn to the impact of

redistribution. Once again, the theoretical implications are mixed. Redistri-

bution is typically viewed as dampening incentives and thus reducing growth.

In contrast, Stiglitz (1969) suggests that redistribution from the rich to the

poor fosters growth by alleviating diminishing returns and credit constraints.

In Chou and Talmain (1996), redistribution can either boost or impede growth,

depending on the curvature of the labor supply curve.
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We abstract from all these considerations to focus on optimal hedging. This

is not meant to diminish the importance of existing models. Instead, we view our

analysis as complementary, highlighting that the inherently stochastic nature of

growth introduces considerations for inequality, redistribution, and growth that

are often absent from the literature.

The empirical literature on inequality and growth, originating from work

that added inequality to cross-country growth regressions pioneered by Barro

and Sala-i-Martin (1995), is similarly mixed. An early view held that inequality

has a weak negative effect on growth. Benabou (1996b, p. 13) concludes that

“initial inequality is detrimental to long-run growth.” Barro (2000, p. 5) sum-

marizes his results as showing “little overall relation between income inequality

and rates of growth and investment.” Forbes (2000, p. 869) summarizes the

literature as finding “a negative and just-significant coefficient on inequality,

leading most economists to conclude that inequality has a negative impact on

growth.”

Recent research shows less consensus, both regarding the direction and

strength of the results. According to Forbes (2000, p. 869), improved data

show that “an increase in a country’s level of income inequality has a signifi-

cant positive relationship with subsequent economic growth.” Berg et al. (2018,

p. 260) describe their findings as showing that “lower net inequality is robustly

correlated with faster and more durable growth. . . redistribution appears benign

in terms of its impact on growth, except when it is extensive. . . .” In contrast,

El-Shagi and Shao (2019) find that inequality generally strengthens growth,

particularly when education levels are high, but that redistribution can also

promote growth. Breunig and Majeed (2020) find that inequality has a nega-

tive effect on growth, especially in countries with a high incidence of poverty.

Cingano (2014) reports similar findings. Brueckner and Lederman (2018) find

that inequality boosts growth in low-income countries, with the relationship

reversing at higher incomes. Mdingi and Ho (2021) again offer a useful survey.

Variational Inference. Our analytical method links the classical informa-

tion theory treatment of investment portfolios by Kelly (1956) to the modern

variational inference literature. This literature, originating with Jordan et al.

(1999) and Kingma and Welling (2013), provides approximations to Bayes’ rule

and maximum likelihood estimation. One can see this connection in Proposi-

tion 3. Within our focus on economic growth, Proposition 3 expresses growth

maximization as an optimization over both a policy and a path of wealth cir-
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culation within the economy. The same optimization problem appears in the

variational inference literature, albeit with a different interpretation. There, one

of the controls is the analyst’s statistical model of the data-generating process,

while the other control is the analyst’s system of posterior beliefs about latent

variables. In this standard interpretation, instead of growth maximization, the

focus is on maximizing statistical fit. Thanks to the homeomorphism between

the growth optimization and the inference problem, our main result can be in-

terpreted both as an optimality condition for wealth redistribution and as a

relaxed Bayes’ plausibility condition in the inference context.

There is a growing interest in variational inference methods in behavioral

economics. Aridor et al. (2020, 2024) and Strzalecki (2024) modify the varia-

tional inference problem to accommodate behavioral biases. In Samuelson and

Steiner (2024), we employ the variational inference approach to study interac-

tions between misspecification and frictions in Bayesian updating.

This paper is one of our three projects that highlight the central role of

large deviations—atypical sequences of draws—in stochastic growth processes.

In Robson et al. (2023), we observed that the wealth concentration generated

by stochastic growth without redistribution can be studied by exploiting an

equivalence to a rational-inattention problem. This paper focuses on the impact

of redistribution on growth and highlights the equivalence between growth with

redistribution and the variational inference problem. In Samuelson and Steiner

(2024), we focus on inference, using the connection to growth in the background

to provide a micro-founded interpretation of the variational inference problem.

Misspecified Learning. The standard result on misspecified learning, origi-

nating from White (1982) and Berk (1966), identifies the asymptotic estimate as

the best feasible approximation of the true generating distribution. Esponda and

Pouzo (2016) incorporate misspecified learning into an equilibrium concept.1

These learning models are concerned with observable variables. In contrast, we

consider an analyst who, in addition to the observable variable, also reasons

about its latent counterpart. Incorporating the latent variable introduces new

considerations into the asymptotic characterization of the misspecified learning

outcome, effectively turning it into a fixed point.

1For useful points of entry into the misspecified learning literature, see Frick et al. (2023)
and Bohren and Hauser (2023) and their references.
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3 Economic Growth

Although we describe the model in terms of economic growth, it allows for

alternative interpretations. Refer to Section 5 for a reinterpretation within the

context of statistical inference.

3.1 Growth Maximization

The population consists of a finite set I of individuals i, and there is a finite

set Ω of states ω. The economy begins in period 1 with an initial quantity of

perfectly divisible wealth. A time-invariant endowment distribution p ∈ ∆(I)

assigns a share p(i) of the current aggregate wealth to each individual i ∈ I at

the beginning of every period t = 1, 2, . . .. Afterwards, in each period, nature

independently draws a state ωt according to an interior distribution q0 ∈ ∆(Ω).

Subsequently, each individual i earns a nonnegative gross return per unit of her

endowment. The return depends on the current state ωt and the individual i; we

denote this time-invariant return function as r(i, ωt). The resulting aggregate

wealth is then redistributed at the beginning of the next period according to p,

and so on.

The policy pair p and r jointly determine the long-run growth rate of the

aggregate wealth,

Eq0(ω) ln
(∑

i

p(i)r(i, ω)
)
. (1)

A planner chooses a policy pair from a set P ⊆ ∆(I)× RI×Ω
+ of feasible policy

pairs to maximize the growth rate (1). The set P is compact and contains

at least one policy pair resulting in a finite growth rate. The existence of an

optimizer is then ensured.2 The growth-maximizing policy pair is denoted by

p∗(i) and r∗(i, ω).

Naturally, societies face constraints in both elements of the policy pair. Eq-

uity constraints may restrict feasible endowments p(i), while technological con-

straints on capital formation may restrict the returns r(i, ω). The feasibility

of endowments and returns is typically interconnected. The choice of the re-

distribution scheme may affect incentives and, consequently, the feasibility of

return functions, resulting in a constraint set P that is not a product set. Unlike

much of the economic research that derives the set P from microfoundations,

2If there exists a policy pair yielding a finite growth rate g, then the subset of P of policy
pairs that produce growth rates of at least g is compact. The objective function in equation
(1) is continuous on this set, ensuring the existence of a maximizer.
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we consider P as a primitive and develop results applicable to all such sets.3

The restriction to stationary policy pairs is without loss of generality because

the optimal stationary policy induces at least as high a growth rate as any

history-dependent policy. Let a feasible history-dependent policy associate a

policy pair from P with every history (ω1, . . . , ωt−1), for each t.

Proposition 1 (Cover and Thomas (2006)). Let the random variable St denote

the aggregate wealth accumulated under a feasible history-dependent policy over

the first t periods. Let S∗t denote the aggregate wealth accumulated under the

growth-maximizing stationary policy pair. Then, almost surely,

lim sup
t→∞

(
lnSt
t
− lnS∗t

t

)
≤ 0.

Cover and Thomas (2006, Theorem 16.3.1) prove this result for an exogenous

return function. Theorem 1 from our working paper, Samuelson and Steiner

(2023), provides a straightforward extension to the setting at hand.

3.2 Wealth Distributions

Our main result contrasts two wealth distributions. First, the endowment dis-

tribution p(i), as introduced above and controlled by the planner, specifies the

wealth shares at the beginning of each period. Second, we denote the wealth

distribution at the end of each period as

op,r(i | ω) =
p(i)r(i, ω)∑
j∈I p(j)r(j, ω)

, (2)

which specifies the wealth shares of individuals i at the end of each period in

which the state ωt = ω. Furthermore,

op,r(i) = Eq0(ω) op,r(i | ω) (3)

denotes the long-run end-of-period wealth distribution; this represents the prob-

ability that a dollar, randomly selected from the aggregate wealth at the end of

a random period, belongs to individual i. We refer to op,r(i | ω) and op,r(i) as

the (state-contingent) outcome distributions.

3A straightforward reinterpretation incorporates consumption. Let individual i consume a
share c(i, ω) ∈ [0, 1] of her endowment in state ω and generate a gross return r(i, ω) on her
residual wealth. Then our analysis applies with return function r′(i, ω) = (1− c(i, ω))r(i, ω).
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Our main result establishes a necessary condition for the growth-maximizing

policy pair. The growth-optimal policy pair must minimize a measure of system-

atic redistribution, while taking the outcome distribution as given. To formulate

this, we recall that the Kullback-Leibler divergence between two probability dis-

tributions, o(i) and p(i), is defined as follows:4

KL
(
o(i) ‖ p(i)

)
:=
∑
i∈I

o(i) ln
o(i)

p(i)
,

and quantifies the discrepancy between the two distributions.

3.3 Main Result

The optimal policy pair must satisfy a fixed-point condition. To state this condi-

tion, let E∗ = {p(i) : (p(i), r∗(i, ω)) ∈ P} be the set of endowment distributions

to which the planner can deviate, starting from the optimal policy pair, without

altering the optimized returns r∗(i, ω).

Proposition 2 (Myopically Minimal Redistribution). If the endowment dis-

tribution p∗(i) and the return function r∗(i, ω) jointly maximize the aggregate

growth rate, then p∗(i) minimizes the KL-divergence from the induced outcome

distribution:

p∗(i) ∈ arg min
p(i)∈E∗

KL
(
op∗,r∗(i) ‖ p(i)

)
. (4)

Thus, the planner myopically minimizes the systematic redistribution of

wealth. Among the feasible endowment distributions in combination with the

optimized returns, the planner chooses the one most closely aligned with the

outcome distribution. This optimization is myopic because the planner proceeds

as if the outcome distribution op,r∗(i) is fixed at op∗,r∗(i) and independent of the

control p(i). As a result, the planner generally does not choose the endowments

p(i) that minimize KL
(
op,r∗(i) ‖ p(i)

)
. Such a minimization would further re-

duce this measure of systematic redistribution by leveraging the link between

the endowment distribution and the induced outcome distribution. However,

this would decrease the growth rate.

A simple case arises when the planner is unconstrained in her choice of an

endowment distribution. Then, the growth-optimal policy pair fully eliminates

systematic redistribution.5

4We use the standard convention 0 ln 0 = 0.
5Recalling that op∗,r∗ (i) = Eq0(ω)

p∗(i)r∗(i,ω)∑
j p∗(j)r∗(j,ω)

, this corollary implies that the expected
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Corollary 1 (Unconstrained Endowments). Suppose that any endowment dis-

tribution p(i) ∈ ∆(I) is feasible along with each of the feasible return functions

r(i, ω). Then, the optimal policy pair eliminates systematic redistribution, so

that p∗(i) = op∗,r∗(i).

Cover and Thomas (2006, Section 16.2) derive the corollary statement from

the first-order conditions in a special case with exogenous return functions.

Therefore, Proposition 2 generalizes this classical result to cases where con-

straints prevent the full elimination of systematic redistribution and where the

planner controls the return function.

Example 1 (Economic Growth). Consider three individuals and three states,

where I = Ω = {1, 2, 3}. Each individual has a high return in her corresponding

state and a low return otherwise: r(i, ω) = 2 if i = ω, and r(i, ω) = 1 if i 6= ω.

The a priori probabilities of the individuals’ favorable states are q0(1) = .05,

q0(2) = .35, and q0(3) = .6, indicating that the individuals’ a priori stochastic

productivity increases with i.

Let us start with an unconstrained planner who can choose any endowment

distribution p(i) ∈ ∆(I). She maximizes the economy’s growth rate by excluding

the low-productivity individual 1 and endowing individuals 2 and 3 with wealth

shares p∗(2) ≈ .105 and p∗(3) ≈ .895. The resulting growth rate of .418 exceeds

the autarky growth rate (.6 ln(2) ≈ .416) of the most productive individual

3 as the moderate redistribution involving i = 2 serves as an advantageous

hedge. As Corollary 1 implies, this unconstrained planner eliminates systematic

redistribution. Indeed, numerical computation verifies that the induced outcome

distribution op∗,r(i) coincides with the chosen endowment distribution p∗(i).

Leaving individual 1 impoverished may be deemed unacceptable. Accord-

ingly, we impose a constraint on the endowment distribution by restricting its

Theil inequality index to at most ln 3−1 ≈ .099.6 Consequently, the constrained-

optimal endowment distribution becomes more egalitarian, with p∗(1) ≈ .158,

p∗(2) ≈ .329, p∗(3) ≈ .513, and the achieved growth rate drops to .355.

This constrained planner systematically redistributes wealth in favor of in-

dividuals 1 and 2, resulting in the outcome distribution of op∗,r(1) ≈ .118,

relative return Eq0(ω)
r∗(i,ω)∑

j p∗(j)r∗(j,ω)
is equalized across all individuals with positive endow-

ments when p(i) is unconstrained.
6The Theil index for the endowments p(i) of three individuals is 1

3

∑
i
p(i)
p

ln
p(i)
p

=

−H
(
p(i)

)
+ ln 3, where the average endowment p = 1/3. Thus, the above inequality con-

straint is equivalent to restricting the entropy H
(
p(i)

)
to be at least 1.
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op∗,r(2) ≈ .318, op∗,r(3) ≈ .564. Treating this outcome distribution as fixed, the

planner cannot match it with the endowment distribution due to the inequality

constraint. However, according to Proposition 2, the planner myopically mini-

mizes systematic redistribution. The selected endowment distribution minimizes

KL
(
op∗,r(i) ‖ p(i)

)
subject to the inequality constraint. Indeed, the numerical

optimization yields the constrained growth-optimal p∗(i), as required.

The myopia is optimal. For contrast, consider a planner who minimizes sys-

tematic redistribution, measured by the divergence KL
(
op,r(i) ‖ p(i)

)
between

the outcome and endowment distributions, subject to the same inequality con-

straint, while taking into account that endowments affect outcomes. This plan-

ner selects p(1) ≈ .148, p(2) ≈ .362, and p(3) ≈ .490, achieving a slightly lower

growth rate of .354. N

4 Analysis

This section proves the main result and offers intuition.

4.1 Generalized Distributions

To facilitate the use of tools from information theory, we now relabel the no-

tation for the policy pairs. We continue to denote the endowment distribution

by p(i) ∈ ∆(I). However, instead of r(i, ω), we write p(ω | i), a function

I × Ω → R+, for the return function. We treat p(ω | i), i ∈ I, as generalized

conditional distributions (which need not be normalized) and introduce

p(i, ω) := p(i)p(ω | i).

Note that p(i, ω) is a sufficient summary statistic of the policy pair for the

aggregate growth rate (1), because this rate depends solely on this product.

Therefore, we refer to p(i, ω) as the policy. The set P̃ of feasible policies consists

of those p(i, ω) = p(i)p(ω | i) that can be expressed as a product of a feasible

policy pair
(
p(i), p(ω | i)

)
∈ P.

Once again, we treat p(i, ω) as a generalized (non-normalized) joint distri-

bution and apply standard probability-theory operations to it. For example, we

define the conditional policy

p(i | ω) =
p(i, ω)∑
i p(i, ω)

(5)
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through a formal application of Bayes’ rule. This represents the end-of-period

wealth share of individual i in state ω and is equivalent to the state-contingent

outcome distribution o(i | ω) induced by the policy p(i, ω), as previously defined

in (2).

We extend the standard definition of KL-divergence to a map that takes any

well-normalized joint distribution q(i, ω) and any policy p(i, ω) as arguments.

It is straightforward to verify that the usual chain rule continues to hold:

KL
(
q(i, ω) ‖ p(i, ω)

)
= KL

(
q(i) ‖ p(i)

)
+
∑
i

q(i) KL
(
q(ω | i) ‖ p(ω | i)

)
,

where the summation is over i ∈ supp(q(i))∩ supp(p(i)). An analogous equality

holds when the roles of i and ω are reversed.

4.2 Wealth Circulation

We analyze the economy’s growth rate by tracking the circulation of wealth

among individuals. To introduce the concept of wealth circulation informally,

we imagine each dollar drawn from the initial stock of perfectly divisible ag-

gregate wealth as founding a separate dynasty of subsequent wealth. In each

period, each such dynasty is held by an individual i, randomly drawn from the

endowment distribution p(i), and in a random aggregate state ω of the economy,

independently drawn from q0(ω). Consequently, the dynasty’s wealth multiplies

by the return p(ω | i). Without loss of generality, we assume that the dynas-

ties do not mix. That is, all wealth generated by the compounding returns to

each dollar initially founding a dynasty circulates within the economy as sepa-

rate infinitesimal fractions of the aggregate wealth, each representing a distinct

dynasty.

Up to a given time horizon, let the dynasty-specific distribution q(i, ω) de-

scribe the frequency of individuals and states occupied by this dynasty; we refer

to q(i, ω) as the dynasty’s path. Since the shocks ωt are aggregate, all paths

satisfy the consistency condition q(ω) = q0(ω) in the long run. Accordingly,

we formally define the path as any joint distribution q(i, ω) ∈ ∆(I × Ω) that

satisfies q(ω) = q0(ω).

For any finite horizon, the dynasties differ in the frequencies they have spent

in the hands of each individual i, and in how their allocation to various indi-

viduals correlates with the individuals’ random productivities. By chance, a

small proportion of lucky dynasties spend a disproportionate fraction of periods
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in the hands of individuals when these individuals are particularly productive.

As it turns out, these fortunate dynasties generate almost all of the economy’s

growth.7

For each path q(i, ω) and any given time horizon, we define the wealth of

the path as the aggregate wealth of all dynasties whose realized path matches

q(i, ω). We show that the wealth of the path q(i, ω) under policy p(i, ω) grows

exponentially at a long-run rate

γ(p, q) = Eq(i,ω) ln p(ω | i)− Eq0(ω) KL
(
q(i | ω) ‖ p(i)

)
(6)

= −KL
(
q(i, ω) ‖ p(i, ω)

)
+ const.

To understand the first equality, we decompose the growth rate of a path into

two components. First, the growth rate of each separate dynasty following

the path q(i, ω) equals its long-run log-return Eq(i,ω) ln p(ω | i). Second, paths

that deviate from the endowment distribution p(i) by visiting individuals i with

distinct state-contingent frequencies q(i | ω) 6= p(i) involve atypical draws, caus-

ing the measure of dynasties following such paths to diminish over time. The

measure of such dynasties, and hence their wealth, diminishes at the rate of

Eq0(ω) KL
(
q(i | ω) ‖ p(i)

)
; the more significant the deviation from the endow-

ment distribution, the faster the decline.8 The wealth of all dynasties following

a given path then grows at a rate given by the difference between the two rates.

The second equality in (6) follows from straightforward algebra. This re-

arrangement indicates that the closer the path q(i, ω) aligns with the policy

p(i, ω), the higher the resulting growth rate of wealth.

As the wealth of each path grows exponentially, the wealth of the fastest-

growing path ultimately dwarfs that of all other paths. Consequently, the overall

growth rate of the economy under a given policy is determined by the path that

minimizes divergence from the policy. The maximal feasible growth rate of

the economy is then achieved by the combination of the path and policy that

minimize their divergence. The following result formalizes this intuition:

Proposition 3. A policy p∗(i, ω) maximizes the growth rate of the economy if

7A probability theorist would refer to these atypical paths as ’large deviations’ from the
generating distribution p(i)q0(ω).

8This is a consequence of Sanov’s theorem, which implies that the chance of drawing a
sample with an empirical frequency q(i) from a distribution p(i) decreases at the rate of
KL
(
q(i) ‖ p(i)

)
as the sample expands.
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and only if it solves

min
q(i,ω),p(i,ω)

KL
(
q(i, ω) ‖ p(i, ω)

)
s.t. p(i, ω) ∈ P̃

q(i, ω) ∈ ∆(I × Ω)

q(ω) = q0(ω),

together with some minimizer q∗(i, ω).

See the Appendix for the proof. This optimization appears in a different

context in Kingma and Welling (2013) as a variational approach to maximum

likelihood estimation. We explore this inference context in Section 5. In our par-

allel project, Samuelson and Steiner (2024), we focus on behavioral constraints

imposed on inference.

4.3 Growth-Maximizing Path and Policy

To prove the main result in Proposition 2, we establish an identity between

two conceptually distinct objects: the outcome distribution and the growth-

maximizing path. For this, we extend the definition of the outcome distribution

by introducing a joint outcome distribution induced by the policy p(i, ω), defined

as

op(i, ω) := q0(ω)p(i | ω), (7)

where p(i | ω) is given by (5). That is, op(i, ω) is the probability that a dollar,

sampled from the aggregate wealth at the end of a random period, is held by

individual i in state ω. The outcome distribution, as defined in (3), is then

given by the marginalization op(i) =
∑
ω op(i, ω).

Given a policy p(i, ω), let

q∗p(i, ω) ∈ arg min
q(i,ω)∈∆(I×Ω)

KL
(
q(i, ω) ‖ p(i, ω)

)
(8)

s.t. q(ω) = q0(ω)

denote the fastest-growing path.

Lemma 1. For any policy p(i, ω), the fastest-growing path q∗p(i, ω) equals the

joint outcome distribution op(i, ω).
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Proof. Using the chain rule and the constraint q(ω) = q0(ω), we express the

objective from (8) as

KL
(
q(i, ω) ‖ p(i, ω)

)
= KL

(
q0(ω) ‖ p(ω)

)
+
∑
ω

q0(ω) KL
(
q(i | ω) ‖ p(i | ω)

)
.

Minimizing with respect to q(i | ω) implies that q∗p(i | ω) = p(i | ω) for each

ω. The lemma then follows from the definition of op(i, ω) in (7): op(i, ω) =

q0(ω)p(i | ω) = q∗p(i, ω).

Proposition 3 and Lemma 1 jointly establish that the optimal policy and

the resulting outcome distribution are two optimized, decoupled controls. The

proof of the main result follows.

Proof of Proposition 2. Let p∗(i, ω) be the growth-maximizing policy and q∗p∗(i, ω)

the associated fastest-growing path. According to Proposition 3, the policy p∗

maximizes the growth rate of this path:

p∗(i, ω) ∈ arg min
p(i,ω)∈P̃

KL
(
q∗p∗(i, ω) ‖ p(i, ω)

)
= arg min
p(i,ω)∈P̃

KL
(
op∗(i, ω) ‖ p(i, ω)

)
,

where the equality follows from Lemma 1.

By applying the chain rule, we rewrite this last objective as follows:

KL
(
op∗(i) ‖ p(i)

)
+

∑
i∈supp(op∗ (i))∩supp(p(i))

op∗(i) KL
(
op∗(ω | i) ‖ p(ω | i)

)
.

By setting the returns p(ω | i) to the optimized returns p∗(ω | i) and restrict-

ing optimization of the last inline expression to the control of the endowment

distribution p(i) within E∗, we obtain the statement in (4).

5 Inference

We conclude by observing that our model of economic growth can be reinter-

preted as a process of maximum likelihood estimation. This relabeling translates

our main result—the minimization of systematic redistribution—into a relaxed

version of Bayes’ plausibility condition.
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To this end, consider an analyst concerned with two random variables: the

observable ω and the latent i, with finite support sets Ω and I. The analyst

observes a sample ωn = (ωt)
n
t=1 drawn independently from an unknown distri-

bution q0(ω), and selects a statistical model p(i, ω) ∈ P̃. Each statistical model

p is a joint distribution of the observable and latent variable. Here, the set

P̃ ⊂ ∆(I × Ω) is the collection of models the analyst considers; it specifies the

analyst’s preconceived knowledge of the distribution p(i) of the latent variable

and of the likelihoods p(ω | i). Given the observed sample ωn, the analyst

selects the maximum likelihood estimate

pn(i, ω) ∈ arg max
p(i,ω)∈P̃

n∏
t=1

p(ωt),

where p(ω) =
∑
i p(i, ω) is the marginalized model. As shown by White (1982),

when the sample size n diverges, the estimate converges to the set of models,

arg min
p(i,ω)∈P̃

KL
(
q0(ω) ‖ p(ω)

)
, (9)

that minimize the divergence from the true data-generating distribution q0(ω).

We refer to any of these minimizers as the asymptotic estimate.

Our main result, when translated to the inference context, provides a neces-

sary condition on the asymptotic estimate. To this end, given a model p(i, ω),

we define the average posterior belief

op(i) = Eq0(ω) p(i | ω).

Specifically, we let the analyst sample the observable ω from the true process

q0(ω), form Bayesian posteriors p(i | ω) about the latent values i associated

with the observed values ω using the estimated model p(i, ω), and compute the

long-run average of these posteriors under the true process generating the ob-

servables. As the notation indicates, op(i) is formally equivalent to the outcome

distribution induced by the economic policy p in our main application.

When the analyst correctly learns the true process that generates observ-

ables, so that p(ω) = q0(ω), Bayes’ plausibility dictates that p(i) = op(i)—the

analyst’s prior p(i) over the latent variable coincides with the average of her pos-

teriors. In general, however, the analyst is misspecified and hence does not learn

the true observable process, p(ω) 6= q0(ω). Consequently, the analyst generally
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fails the analogue of the Bayes’ plausibility condition: her prior p(i) differs from

the empirical average op(i) of her posteriors. The next result, however, states

that the analyst myopically minimizes the extent of this discrepancy.

For an asymptotic estimate p∗(i, ω), let again E∗ = {p(i) : p(i)p∗(ω | i) ∈ P̃}
be the set of the marginal distributions p(i) to which the analyst can deviate

without changing the estimated likelihoods p∗(ω | i).

Corollary 2. The asymptotic estimate myopically minimizes the failure of plau-

sibility as follows:

p∗(i) ∈ arg min
p(i)∈E∗

KL
(
op∗(i) ‖ p(i)

)
. (10)

This result differs from the standard asymptotic characterization of mis-

specified learning by White (1982) and Berk (1966). The typical setting in

the misspecified learning literature involves only observable variables. In that

setting, the asymptotic estimate is the best feasible approximation of the true

generating distribution, as in (9). In contrast, condition (10) relates the esti-

mated distribution p∗(i) of the latent variable to the deduced distribution op∗(i).

Indeed, op∗(i) represents the analyst’s deduction about the frequencies of the

latent counterparts (i1, . . . , in) of the observed values (ω1, . . . , ωn). This de-

duction is endogenous because it depends on the estimate p∗(i, ω) through the

posteriors p∗(i | ω). Thus, the corollary establishes a fixed-point condition.

As in our main result regarding the optimal economic policies, the minimiza-

tion in (10) is myopic because it treats op∗(i) as fixed. A global minimization

of KL
(
op(i) ‖ p(i)

)
, which acknowledges that the deduced sample distribution

op(i) of the latent variable depends on the model p(i, ω), would further reduce

the plausibility failure but also worsen the fit. Therefore, an analyst employing

maximum likelihood estimation minimizes the extent of the plausibility failure

myopically but not globally.

Corollary 2 follows directly from our main result in Proposition 2 because the

growth-maximizing objective from (1) and the asymptotic-estimate objective

from (9) differ only in sign and a constant:

KL
(
q0(ω) ‖ p(ω)

)
= −Eq0(ω) ln

∑
i

p(i, ω) + C,

with C = −H(q0(ω)). Intuitively, the equivalence arises because maximum

likelihood estimation can be viewed as a competition of growth processes. The

likelihood of each considered model p(i, ω) grows in a stochastic growth process
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with a (negative) growth rate Eq0(ω) ln
∑
i p(i, ω) as the sample size n increases.

Thus, asymptotically, the analyst selects the estimate with the highest growth

rate, similar to the planner who selects the growth-maximizing policy.

Below, we translate Example 1 from the economic context to the inference

context.

Example 2 (Inference). The observable and latent random variables attain val-

ues in Ω = I = {1, 2, 3}. The analyst is certain of the likelihoods p(ω | i) = 1/2

for ω = i and p(ω | i) = 1/4 otherwise. She does not know the marginal distri-

bution p(i) of the latent variable but is confident that i is stochastic; specifically,

the analyst is convinced that H
(
p(i)

)
≥ 1. The true distribution q0(ω) gener-

ating the observables, unknown to the analyst, is q0(1) = .05, q0(2) = .35, and

q0(3) = .6. The analyst observes a large sample of the observable variable draws

and learns the distribution p(i) using maximum likelihood estimation.

This inference is equivalent to the inequality-constrained planner’s problem

from Example 1, with the likelihood function p(ω | i) = r(i, ω)/4 equaling the

(renormalized) original return function, and with the stochasticity constraint

imposed on p(i) corresponding to the original planner’s inequality constraint.

Accordingly, the solution from Example 1 applies, and the analyst’s estimate

of the latent distribution corresponds to the constrained optimal endowment

distribution of the planner. Thus, the analyst forms the estimate p∗(i) with

p∗(1) ≈ .158, p∗(2) ≈ .329, and p∗(3) ≈ .513. The analyst is misspecified, with

the estimated marginal probabilities p∗(ω) =
∑
i p
∗(i)p(ω | i) of states ω = 1, 2,

and 3 approximately equal to .29, .33, and .38, respectively, differing from the

true generating distribution q0(ω).

Due to the misspecification, the analyst’s average posterior belief op∗(i) =

Eq0(ω) p
∗(i | ω) differs from her marginal belief p∗(i), with op∗(1) ≈ .118,

op∗(2) ≈ .318, and op∗(3) ≈ .564, as in Example 1. However, according to Corol-

lary 2, the estimate p∗(i) myopically minimizes the measure KL
(
op∗(i) ‖ p(i)

)
of this plausibility failure, taking the average op∗(i) of the posteriors as given.

Again, this myopicity is optimal for maximizing the model’s likelihood. An al-

ternative estimate p(i) with p(1) ≈ .148, p(2) ≈ .362, and p(3) ≈ .490 minimizes

the measure KL
(
op(i) ‖ p(i)

)
of the plausibility failure globally, recognizing that

the chosen estimate p(i) affects op(i). However, it decreases the model’s fit. N
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6 Summary

We have deliberately ignored all of the usual factors that mediate the effect of

redistribution on economic growth, in order to highlight a relatively unexplored

factor, arising from the stochastic nature of growth. Growth optimization re-

quires regular redistribution. This optimization is forward-looking, with the

optimal policy regularly redistributing incidental wealth gains and losses. How-

ever, our main result highlights the adverse effect of systematic redistribution

on growth. The growth-optimal policy myopically minimizes systematic redis-

tribution, taking economic outcomes as independent of the policy. Specifically,

the growth-optimal policy does not globally minimize systematic redistribution.

This counterintuitive myopia results from the fixed-point property of the opti-

mal policy, which we derive through a decoupling approach with an intuitive

economic interpretation. It remains for further work to embed this role of re-

distribution in a richer growth model.

Our reinterpretation of the problem in terms of inference yields two addi-

tional insights. First, because most analysts are misspecified, their empirical

average of posteriors does not match their marginal belief about the latent vari-

able. However, if they estimate their models using maximum likelihood estima-

tion, they myopically minimize this failure of Bayes’ plausibility. Thus, Bayes’

plausibility serves as a reliable first approximation. Second, the homeomor-

phism between growth optimization and inference may explain why phenomena

resembling inference may arise in distributed systems.
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A Proof of Proposition 3

A policy p(i, ω) generates growth rate of aggregate wealth in each state ω equal

to:

ln
∑
i

p(i, ω) =
1

t
ln

(∑
i

p(i, ω)

)t

=
1

t
ln
∑
i∈It

∏
i

p(i, ω)qi(i)t,

where t ∈ N is arbitrary, i ∈ It is a sequence (i1, . . . , it) and qi(i) = 1
t

∑t
τ=1 1iτ=i

is the empirical distribution of the sequence i. Since all sequences i with the

same empirical distribution generate the same value of the inline summand, we

obtain the growth rate in state ω:

ln
∑
i

p(i, ω) =
1

t
ln

 ∑
q(i|ω)∈∆t

nt
(
q(i | ω)

)∏
i

p(i, ω)q(i|ω)t

 , (11)

where ∆t ⊂ ∆(I) is the set of the empirical distributions that can be gener-

ated by sequences i of length t, and nt : ∆t → N maps each distribution q

to the number nt(q) of sequences of length t that generate such an empirical

distribution.

The number of sequences of length t with an empirical distribution q can be

approximated using the entropy H(q) as follows:

1

(t+ 1)|I|
exp[t×H(q)] ≤ nt(q) ≤ exp[t×H(q)], (12)

for all q ∈ ∆t. See Theorem 11.1.3 in Cover and Thomas (2006) for these

bounds.

Substitution of the bounds into (11) yields:

1

t
ln

∑
q(i|ω)∈∆t

exp
[
t×
(
Eq(i|ω) ln p(i, ω) + H

(
q(i | ω)

)) ]
− |I| ln(t+ 1)

t

≤ ln
∑
i

p(i, ω) (13)

≤ 1

t
ln

∑
q(i|ω)∈∆t

exp
[
t×
(
Eq(i|ω) ln p(i, ω) + H

(
q(i | ω)

)) ]
.
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These bounds further simplify to:

max
q(i|ω)∈∆t

{
Eq(i|ω) ln p(i, ω) + H

(
q(i | ω)

)}
− |I| ln(t+ 1)

t

≤ ln
∑
i

p(i, ω)

≤ max
q(i|ω)∈∆t

{
Eq(i|ω) ln p(i, ω) + H

(
q(i | ω)

)}
+
|I| ln(t+ 1)

t
.

For the lower bound, we replaced the sum in lower bound from (13) by its

maximal summand. For the upper bound, we replaced each summand in the

upper bound from (13) by the maximal summand and noticed that there are at

most (t+ 1)|I| summands. This is because the distributions q(i | ω) ∈ ∆t attain

values in { 0
t ,

1
t , . . . ,

t
t} for each i ∈ I; hence |∆t| ≤ (t+ 1)|I|.

Since ln(t+1)
t vanishes as t diverges, taking the limit t→∞ yields:

ln
∑
i

p(i, ω) = max
q(i|ω)∈∆(I)

{
Eq(i|ω) ln p(i, ω) + H

(
q(i | ω)

)}
.

Taking the expectation over ω ∼ q0(ω) and straightforward algebraic steps yield

the characterization of the aggregate growth rate induced by a policy p(i, ω):

Eq0(ω) ln
∑
i

p(i, ω) = maxq(i,ω)∈∆(I×Ω) γ
(
q(i, ω) ‖ p(i, ω)

)
s.t. q(ω) = q0(ω),

where the growth rate γ
(
q(i, ω) ‖ p(i, ω)

)
is defined as in (6). Finally, optimiza-

tion over the policy p(i, ω) yields the proposition.
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