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homo economicus flawlessly

forms Bayesian updates

evaluates likelihood

machine learning: the two tasks can only be approximated

we: halfway between machine learning and economics

we relax constraints enough

constrained-optimal models are often simple
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Generative Model

an agent holds a model p(x , z) ∈ ∆(X × Z ) of

observable x

latent z

economics:

x is the signal (education level)

z is the state (applicant’s type)

machine learning:

x is high-dimensional data input (job interview)

z is a compressed representation of x (classification of the applicant)
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Recognition Model

the agent

observes a realization x drawn from true process q0(x)6= p(x)

forms update q(z | x) 6= p(z | x)

recognition model:
q(x , z) = q0(x)q(z | x)



Constrained Updating
variational Bayes methods, Jordan et al.’99

updates solve

max(
q̃(z|x)

)
x

Eq̃(x,z) ln p(x̂ , ẑ) + H
(
q̃(x , z)

)
s.t. q̃(x , z) ∈ Q

the maximizer: constrained updates

the value: constrained likelihood
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Constrained Updating
variational Bayes methods, Jordan et al.’99

recognition model solves

min
q̃(x,z)

KL
(
q̃(x , z) ‖ p(x , z)

)
s.t. q̃(x , z) ∈ Q

q̃(x) = q0(x)



Some Updating Constraints

no constraint: Q = ∆(X × Z )

Bayesian updates, q(z | x) = p(z | x)

unconstrained likelihood, Eq0(x) ln p(x̂) + const.

analogy-based constraint: q(z | x) measurable w.r.to a partition of X

causal constraint; e.g.:

z = (z1, z2)

q must comply with directed acyclical graph z1 ← x → z2

⇔ factorization constraint q(x , z1, z2) = q(x)q(z1 | x)q(z2 | x)
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Likelihood Evaluation

sample (x1, . . . , xn)

via marginalization:

p(x) =
∑

z p(x , z)

` =
∏

i p(xi )

via sample extension:

extended sample (xi , zi )
n
i=1

frequencies of (x , z): frequencies of x observed & z | x ∼ p(z | x)

` =
∏

i p(xi , zi )× no. of distinct permutations

updating and fit evaluation are related



Constrained updating

estimate frequencies q(x , z) in the extended sample

max
q̃(x,z)

p-likelihood

s.t. q̃(x) = q0(x)

q̃(x , z) ∈ Q



Estimation

p-likelihood of an extended sample with frequencies q(x , z) is

n∏
i=1

p(xi , zi ) =
∏
x,z

p(x , z)q(x,z)n

p-likelihood of all such extended samples

`n(q) :=
∏
x,z

p(x , z)q(x,z)n ×Nn(q)

the estimate:
qn(x , z) ∈ arg max

q̃∈Qn

`n(q)



Permutations
Illustration

x ∈ {r , b}

z ∈ {0, 1}

x4 = rbrb

consider q(x , z) uniform on {r , b} × {0, 1}

four possible extended samples:

x4 r b r b

z4 0 0 1 1

z4 1 0 0 1

z4 0 1 1 0

z4 1 1 0 0



Limit

let Qn approximate Q details

proposition

qn(x , z) → recognition model q(x , z)

1

n
ln `n

(
qn
)
→ constrained likelihood + const.

because

1

n
ln

∏
x,z

p(x , z)q(x,z)n × Nn(q)

→ Eq(x,z) ln p(x̂ , ẑ) + H
(
q(x , z)

)
−H

(
q0(x)

)
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Approximate Maximum Likelihood Estimation
variational autoencoder, Kingma&Welling’13

principle

Choose the generative model that maximizes constrained likelihood.

min
p̃(x,z),q̃(x,z)

KL
(
q̃(x , z) ‖ p̃(x , z)

)
s.t. p̃(x , z) ∈ P

q̃(x , z) ∈ Q

q̃(x) = q0(x)
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Causal Constraint
example

z = (z1, z2)

recognition model restricted to a chain: x → z1 → z2

P has unconstrained margin:

all p(z) are feasible

a constraint on
(
p(x | z)

)
z

independent of p(z)

deterministic collapse

The agent forms a partially deterministic model:

z2 = d(z1)

a.s. under both p and q, for some deterministic function d .
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Rational Expectations
definition

we identify rational expectations with

p(z) = Eq0(x) q(z | x̂) ≡ q(z)

in general, our agent will not form RE because she

isn’t Bayes’ rational

is misspecified

yet, under a condition, the agent forms RE



Rational Expectations
result

proposition

If P has unconstrained margin, then agent forms rational expectations.

proof: optimize over p̃(z),

KL
(
q(x , z) ‖ p̃(x , z)

)
= KL

(
q(z) ‖ p̃(z)

)
+
∑
z

q(z) KL
(
q(x | z) ‖ p(x | z)

)



Discussion

standard Bayes’ plausibility is forced by the Bayes’ law

it can fail in our framework, but holds at the optimum

a popular non-Bayesian intuition in support of RE:

systematically surprised agent should adjust her prior

indeed, p(z) is chosen to match q(z)
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Posterior Approach
information design

posterior representation: q(z),
(
q(x | z)

)
z
, and

(
p(x | z)

)
z

specifies both models p(x , z) and q(x , z)

lemma: posterior-separable objective

If P has unconstrained margin, then the model-fitting problem becomes

max
q̃(z),(q̃(x|z))z ,(p̃(x|z))z

Eq̃(z)

[
Eq̃(x|ẑ) ln p̃(x̂ | ẑ) + H

(
q̃(x | ẑ)

)]
s.t. (p̃(x | z))z ∈ P ′

q̃(z)q̃(x | z) ≡ q̃(x , z) ∈ Q

Eq̃(z) q̃(x | z) = q0(x).
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q̃(x | ẑ) ‖ p̃(x | ẑ)
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Deterministic Collapse
proof

recall the chain constraint Q: x → z1 → z2

equivalent to q(x | z1, z2) = q(x | z1)

for each z1, optimize over q(z2 | z1)

z2 affects Eq̃(x|z1) ln p(x̂ | z1, z2) + H
(
q̃(x | z1)

)
only via p

deterministically pick z∗2 (z1) that maximizes this



Markov Boundary
Pearl ’88

Markov boundary of A: minimal set that contains all information about A

e.g. in x → z1 → z2

z1 is in the Markov boundary of x

z2 isn’t



General Simplicity Result

fix DAG

zB – the latent variables from Markov boundary of x

q(x | z) depends only on zB

say q′ is simpler than q if

q′(x , zB) = q(x , zB), and

z−B | zB is deterministic under q′

Q: q compatible with the DAG and any q′ simpler than q

deterministic collapse

A solution exists such that latent variables from outside of the Markov
boundary of x are deterministic functions of the variables from within the
boundary.
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Two Frictions

P
Well-specified Miss-specified

Q
Bayes’ Rationality Wald’49 Berk’66

Updating Friction model-fitting model-fitting



Information vs Moment Projection

moment projection: sample → model

White’82/Berk’66:

agent observes sample and chooses model p̃(y) ∈ P

min
p̃∈P

KL
(
q0(y) ‖ p̃(y)

)

information projection: model → sample

Sanov’s Theorem:

agent holds model p(y) and reasons about sample

min
q̃∈Q

KL
(
q̃(y) ‖ p(y)

)



Example: Analogy-Based Reasoning

a measurability constraint on conditional distributions

moment projection ⇒ arithmetic mean (Jehiel’05)

p(z | x) ∝
∑

x̃∈X (x)

q0(x̃)q0(z | x̃)

information projection ⇒ geometric mean

q(z | x) ∝

 ∏
x̃∈X (x)

p(z | x̃)q0(x̃)

 1

q0(Xk(x))



White/Berk As a Special Case

what model p(x) of the observable variable the agent chooses?

proposition

If updating is unconstrained, then p(x) is the moment projection

p(x) ∈ arg min
p̃(x)∈P′

KL
(
q0(x) ‖ p̃(x)

)
.

follows from the chain rule

KL
(
q̃(x , z) ‖ p̃(x , z)

)
= KL

(
q0(x) ‖ p̃(x)

)
+
∑
x

q0(x) KL
(
q̃(z | x) ‖ p̃(z | x)

)



Simple Model Preferred for Constrained Updating
example

x = (x1, x2) and z = (z1, z2)

the true process q0(x1, x2) exhibits correlation

P
x1

x2

z1

z2

Q
x1

x2

z1

z2

agent is well-specified

⇒ learns the true process q0 if updates are unconstrained

the updating constraint

⇒ optimal correlation neglect p(x1, x2) = p(x1)p(x2) proof
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Rational Inattention

payoff state x ∼ q0(x)

agent chooses experiment q(z | x)

maps the observed signal to action a

maximizes E u(a, x) + E H
(
q(x | z)

)
plot ρ 7→ maxa Eρ(x) u(a, x̂)

ρ

v



Rational Inattention

payoff state x ∼ q0(x)

agent chooses experiment q(z | x)

maps the observed signal to action a

maximizes E u(a, x) + E H
(
q(x | z)

)
plot ρ 7→ maxa Eρ(x) u(a, x̂) + H

(
ρ
)

ρ

v + H



Rational Inattention

payoff state x ∼ q0(x)

agent chooses experiment q(z | x)

maps the observed signal to action a

maximizes E u(a, x) + E H
(
q(x | z)

)
find the optimal posteriors

ρq0



Connection

P and Q are posterior separable if

p and q are feasible iff p(x | z) ∈ P̄ and q(x | z) ∈ Q̄

primitive distributions are “actions” P̄ = {pa(x)}a

writing ln pa(x) = u(a, x), our problem becomes the RI problem:

max E
[
u
(
a, z
)

+ H
(
q̃(x | ẑ)

)]
with additional constraint: posteriors ∈ Q̄



Concavification of the Augmented Value Function

ρq0



Illustration
Matysková&Montes’23

no updating constraint

1

p1

2

p2

3

p3

q(x|1) q(x|2)
q0

generative model employs 1, 2, or 3 primitive distributions

accompanied by a recognition model of the same complexity



Base-Rate Neglect

comparative statics w.r.to true process

local invariance

Let true process q∗0 (x) induce posteriors by p∗(x | z) and q∗(x | z).
For all processes q0(x) in the convex hull of

(
q∗(x | z)

)
z
:

p(x | z) = p∗(x | z)

q(x | z) = q∗(x | z).



Hallucination

optimal recognition model may hallucinate:

there may exist z and z ′ such that

p(x | z) = p(x | z ′)

q(x | z) 6= q(x | z ′)

this cannot happen when Q̄ is convex

akin to the recommendation lemma in RI

beneficial randomization over q(x | z)



Conclusion

machine learning → economics:

updating and likelihood evaluation are hard

two distinct statistical models are handy

tractable constrained updating and model-fitting problems

economics → machine learning:

relaxed constraints may generate solutions with interesting structure

optimal models are often simple



Approximation

correspondence Q(θ), θ ∈ [0, 1]

Q(0) = Q∩
{
q̃(x , z) : q̃(x) = q0(x)

}
Q(θ) = Qb 1

θ c for θ > 0

continuity at θ = 0

back
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