# Constrained Data-Fitters 

Larry Samuelson, Jakub Steiner

Caltech, April 2024
homo economicus flawlessly

- forms Bayesian updates
- evaluates likelihood
machine learning: the two tasks can only be approximated
we: halfway between machine learning and economics
- we relax constraints enough
constrained-optimal models are often simple


## Literature

variational Bayes methods: Jordan et al.'99, Kingma\&Welling'13, Aridor, da Silveira\&Woodford'24

- approximate Bayes' rule and maximum-likelihood estimation
misspecified learning: Berk'66, White'82, Esponda\&Pouzo'16
- arises as a special case
causal networks: Pearl'09, Spiegler'16
- description of cognitive constraints
information design: Aumann\&Maschler'95, Kamenica\&Gentzkow'11, Caplin\&Dean'13
- posterior approach
(1) Approximate Updates and Likelihood
(2) Microfoundations
(3) Model Fitting

4 Optimal Simplicity
(5) (not so) Rational Expectations
(6) Posterior Approach
(7) Misspecification and Beyond
(8) Tricks from Rational Inattention

## Generative Model

an agent holds a model $p(x, z) \in \Delta(X \times Z)$ of

- observable $x$
- latent $z$
economics:
- $x$ is the signal (education level)
- $z$ is the state (applicant's type)
machine learning:
- $x$ is high-dimensional data input (job interview)
- $z$ is a compressed representation of $x$ (classification of the applicant)


## Generative Model

an agent holds a generative model $p(x, z) \in \Delta(X \times Z)$ of

- observable $x$
- latent $z$
economics:
- $x$ is the signal (education level)
- $z$ is the state (applicant's type)
machine learning:
- $x$ is high-dimensional data input (job interview)
- $z$ is a compressed representation of $x$ (classification of the applicant)


## Recognition Model

the agent

- observes a realization $x$ drawn from true process $q_{0}(x) \neq p(x)$
- forms update $q(z \mid x) \neq p(z \mid x)$
recognition model:

$$
q(x, z)=q_{0}(x) q(z \mid x)
$$

updates solve

$$
\begin{array}{cl}
\max _{(\tilde{q}(z \mid x))_{x}} & \mathrm{E}_{\tilde{q}(x, z)} \ln p(\hat{\chi} \\
\text { s.t. } & \tilde{q}(x, z) \in \mathcal{Q}
\end{array}
$$

the maximizer: constrained updates
the value: constrained likelihood

Constrained Updating
recognition model solves

$$
\begin{array}{ll}
\max _{\tilde{q}(x, z)} & \mathrm{E}_{\tilde{q}(x, z)} \ln p(\hat{x}, \hat{z})+\mathrm{H}(\tilde{q}(x, z)) \\
\text { s.t. } & \tilde{q}(x, z) \in \mathcal{Q} \\
& \tilde{q}(x)=q_{0}(x)
\end{array}
$$

empirical constraint

Constrained Updating
recognition model solves

$$
\begin{array}{ll}
\max _{\tilde{q}(x, z)} & \mathrm{E}_{\tilde{q}(x, z)} \ln p(\hat{x}, \hat{z})+\mathrm{H}(\tilde{q}(x, z)) \\
\text { s.t. } & \tilde{q}(x, z) \in \mathcal{Q} \\
& \tilde{q}(x)=q_{0}(x)
\end{array}
$$

updating constraint

Constrained Updating
recognition model solves

$$
\begin{array}{ll}
\max _{\tilde{q}(x, z)} & \mathrm{E}_{\tilde{q}(x, z)} \ln p(\hat{x}, \hat{z})+\mathrm{H}(\tilde{q}(x, z)) \\
\text { s.t. } & \tilde{q}(x, z) \in \mathcal{Q} \\
& \tilde{q}(x)=q_{0}(x)
\end{array}
$$

reconstruction term

Constrained Updating
recognition model solves

$$
\begin{array}{ll}
\max _{\tilde{q}(x, z)} & \mathrm{E}_{\tilde{q}(x, z)} \ln p(\hat{x}, \hat{z})+\mathrm{H}(\tilde{q}(x, z)) \\
\text { s.t. } & \tilde{q}(x, z) \in \mathcal{Q} \\
& \tilde{q}(x)=q_{0}(x)
\end{array}
$$

regularization term
recognition model solves

$$
\begin{array}{ll}
\min _{\tilde{q}(x, z)} & \mathrm{KL}(\tilde{q}(x, z) \| p(x, z)) \\
\text { s.t. } & \tilde{q}(x, z) \in \mathcal{Q} \\
& \tilde{q}(x)=q_{0}(x)
\end{array}
$$

## Some Updating Constraints

no constraint: $\mathcal{Q}=\Delta(X \times Z)$

- Bayesian updates, $q(z \mid x)=p(z \mid x)$
- unconstrained likelihood, $\mathrm{E}_{q_{0}(x)} \ln p(\hat{x})+$ const.
analogy-based constraint: $q(z \mid x)$ measurable w.r.to a partition of $X$
causal constraint; e.g.:
- $z=\left(z_{1}, z_{2}\right)$
- $q$ must comply with directed acyclical graph $z_{1} \leftarrow x \rightarrow z_{2}$
- $\Leftrightarrow$ factorization constraint $q\left(x, z_{1}, z_{2}\right)=q(x) q\left(z_{1} \mid x\right) q\left(z_{2} \mid x\right)$
(1) Approximate Updates and Likelihood
(2) Microfoundations
(3) Model Fitting

4 Optimal Simplicity
(5) (not so) Rational Expectations
(6) Posterior Approach
(7) Misspecification and Beyond
(8) Tricks from Rational Inattention

## Likelihood Evaluation

sample $\left(x_{1}, \ldots, x_{n}\right)$
via marginalization:

- $p(x)=\sum_{z} p(x, z)$
- $\ell=\prod_{i} p\left(x_{i}\right)$
via sample extension:
- extended sample $\left(x_{i}, z_{i}\right)_{i=1}^{n}$
- frequencies of $(x, z)$ : frequencies of $x$ observed $\& z \mid x \sim p(z \mid x)$
- $\ell=\prod_{i} p\left(x_{i}, z_{i}\right) \times$ no. of distinct permutations
updating and fit evaluation are related


## Constrained updating

estimate frequencies $q(x, z)$ in the extended sample

$$
\begin{array}{ll}
\underset{\tilde{q}(x, z)}{\max } & \text { p-likelihood } \\
\text { s.t. } & \tilde{q}(x)=q_{0}(x) \\
& \tilde{q}(x, z) \in \mathcal{Q}
\end{array}
$$

## Estimation

$p$-likelihood of an extended sample with frequencies $q(x, z)$ is

$$
\prod_{i=1}^{n} p\left(x_{i}, z_{i}\right)=\prod_{x, z} p(x, z)^{q(x, z) n}
$$

p-likelihood of all such extended samples

$$
\ell_{n}(q):=\prod_{x, z} p(x, z)^{q(x, z) n} \times \mathcal{N}_{n}(q)
$$

the estimate:

$$
q_{n}(x, z) \in \underset{\tilde{q} \in \mathcal{Q}_{n}}{\arg \max } \ell_{n}(q)
$$

## Permutations

## Illustration

$x \in\{r, b\}$
$z \in\{0,1\}$
$x^{4}=r b r b$
consider $q(x, z)$ uniform on $\{r, b\} \times\{0,1\}$
four possible extended samples:

| $x^{4}$ | $r$ | $b$ | $r$ | $b$ |
| :--- | :--- | :--- | :--- | :--- |
| $z^{4}$ | 0 | 0 | 1 | 1 |
| $z^{4}$ | 1 | 0 | 0 | 1 |
| $z^{4}$ | 0 | 1 | 1 | 0 |
| $z^{4}$ | 1 | 1 | 0 | 0 |

## Limit

let $\mathcal{Q}_{n}$ approximate $\mathcal{Q}$ deails

## proposition

$$
\begin{aligned}
q_{n}(x, z) & \rightarrow \text { recognition model } q(x, z) \\
\frac{1}{n} \ln \ell_{n}\left(q_{n}\right) & \rightarrow \text { constrained likelihood }+ \text { const. }
\end{aligned}
$$

because

$$
\begin{aligned}
\frac{1}{n} \ln \quad & \prod_{x, z} p(x, z)^{q(x, z) n} \quad \times \mathcal{N}_{n}(q) \\
\rightarrow \quad & \mathrm{E}_{q(x, z)} \ln p(\hat{x}, \hat{z}) \quad+\mathrm{H}(q(x, z))-\mathrm{H}\left(q_{0}(x)\right)
\end{aligned}
$$

(1) Approximate Updates and Likelihood
(2) Microfoundations
(3) Model Fitting

4 Optimal Simplicity
(5) (not so) Rational Expectations

6 Posterior Approach
(7) Misspecification and Beyond
(8) Tricks from Rational Inattention
principle
Choose the generative model that maximizes constrained likelihood.

$$
\begin{array}{cl}
\min _{\tilde{p}(x, z), \tilde{q}(x, z)} & \operatorname{KL}(\tilde{q}(x, z) \| \tilde{p}(x, z)) \\
\text { s.t. } & \tilde{p}(x, z) \in \mathcal{P} \\
& \tilde{q}(x, z) \in \mathcal{Q} \\
& \tilde{q}(x)=q_{0}(x)
\end{array}
$$

(1) Approximate Updates and Likelihood
(2) Microfoundations
(3) Model Fitting

4 Optimal Simplicity
(5) (not so) Rational Expectations
(6) Posterior Approach
(7) Misspecification and Beyond
(8) Tricks from Rational Inattention
$z=\left(z_{1}, z_{2}\right)$
recognition model restricted to a chain: $x \rightarrow z_{1} \rightarrow z_{2}$
$\mathcal{P}$ has unconstrained margin:

- all $p(z)$ are feasible
- a constraint on $(p(x \mid z))_{z}$ independent of $p(z)$


## deterministic collapse

The agent forms a partially deterministic model:

$$
z_{2}=d\left(z_{1}\right)
$$

a.s. under both $p$ and $q$, for some deterministic function $d$.
(1) Approximate Updates and Likelihood
(2) Microfoundations
(3) Model Fitting

44 Optimal Simplicity
(5) (not so) Rational Expectations
(6) Posterior Approach
(7) Misspecification and Beyond
(8) Tricks from Rational Inattention
we identify rational expectations with

$$
p(z)=\mathrm{E}_{q_{0}(x)} q(z \mid \hat{x}) \equiv q(z)
$$

in general, our agent will not form RE because she

- isn't Bayes' rational
- is misspecified
yet, under a condition, the agent forms RE


## Rational Expectations

## proposition

If $\mathcal{P}$ has unconstrained margin, then agent forms rational expectations.
proof: optimize over $\tilde{p}(z)$,

$$
\operatorname{KL}(q(x, z) \| \tilde{p}(x, z))=\operatorname{KL}(q(z) \| \tilde{p}(z))+\sum_{z} q(z) \operatorname{KL}(q(x \mid z) \| p(x \mid z))
$$

## Discussion

standard Bayes' plausibility is forced by the Bayes' law

- it can fail in our framework, but holds at the optimum
a popular non-Bayesian intuition in support of RE:
- systematically surprised agent should adjust her prior
- indeed, $p(z)$ is chosen to match $q(z)$
(1) Approximate Updates and Likelihood

2) Microfoundations
(3) Model Fitting

44 Optimal Simplicity
(5) (not so) Rational Expectations
(6) Posterior Approach
(7) Misspecification and Beyond
(8) Tricks from Rational Inattention

## Posterior Approach

posterior representation: $q(z),(q(x \mid z))_{z}$, and $(p(x \mid z))_{z}$

- specifies both models $p(x, z)$ and $q(x, z)$


## lemma: posterior-separable objective

If $\mathcal{P}$ has unconstrained margin, then the model-fitting problem becomes

$$
\begin{array}{cl}
\max _{\tilde{q}(z),(\tilde{q}(x \mid z))_{z},(\tilde{p}(x \mid z))_{z}} & \mathrm{E}_{\tilde{q}(z)}\left[\mathrm{E}_{\tilde{q}(x \mid \hat{z})} \ln \tilde{p}(\hat{x} \mid \hat{z})+\mathrm{H}(\tilde{q}(x \mid \hat{z}))\right] \\
\text { s.t. } & (\tilde{p}(x \mid z))_{z} \in \mathcal{P}^{\prime} \\
& \tilde{q}(z) \tilde{q}(x \mid z) \equiv \tilde{q}(x, z) \in \mathcal{Q} \\
& \mathrm{E}_{\tilde{q}(z)} \tilde{q}(x \mid z)=q_{0}(x) .
\end{array}
$$

## Posterior Approach

posterior representation: $q(z),(q(x \mid z))_{z}$, and $(p(x \mid z))_{z}$

- specifies both models $p(x, z)$ and $q(x, z)$


## lemma: posterior-separable objective

If $\mathcal{P}$ has unconstrained margin, then the model-fitting problem becomes

$$
\begin{aligned}
\max _{\tilde{q}(z),(\tilde{q}(x \mid z))_{z},(\tilde{p}(x \mid z))_{z}} & \mathrm{E}_{\tilde{q}(z)} \mathrm{KL}(\tilde{q}(x \mid \hat{z}) \| \tilde{p}(x \mid \hat{z})) \\
\text { s.t. } & (\tilde{p}(x \mid z))_{z} \in \mathcal{P}^{\prime} \\
& \tilde{q}(z) \tilde{q}(x \mid z) \equiv \tilde{q}(x, z) \in \mathcal{Q} \\
& \mathrm{E}_{\tilde{q}(z)} \tilde{q}(x \mid z)=q_{0}(x) .
\end{aligned}
$$

recall the chain constraint $\mathcal{Q}: x \rightarrow z_{1} \rightarrow z_{2}$

- equivalent to $q\left(x \mid z_{1}, z_{2}\right)=q\left(x \mid z_{1}\right)$
for each $z_{1}$, optimize over $q\left(z_{2} \mid z_{1}\right)$
$z_{2}$ affects $\mathrm{E}_{\tilde{q}\left(x \mid z_{1}\right)} \ln p\left(\hat{x} \mid z_{1}, z_{2}\right)+\mathrm{H}\left(\tilde{q}\left(x \mid z_{1}\right)\right)$ only via $p$
deterministically pick $z_{2}^{*}\left(z_{1}\right)$ that maximizes this


Markov boundary of $A$ : minimal set that contains all information about $A$
e.g. in $x \rightarrow z_{1} \rightarrow z_{2}$

- $z_{1}$ is in the Markov boundary of $x$
- $z_{2}$ isn't


## General Simplicity Result

fix DAG
$z^{B}$ - the latent variables from Markov boundary of $x$

- $q(x \mid z)$ depends only on $z^{B}$
say $q^{\prime}$ is simpler than $q$ if
- $q^{\prime}\left(x, z^{B}\right)=q\left(x, z^{B}\right)$, and
- $z^{-B} \mid z^{B}$ is deterministic under $q^{\prime}$

Q: $q$ compatible with the DAG and any $q^{\prime}$ simpler than $q$

## deterministic collapse

A solution exists such that latent variables from outside of the Markov boundary of $x$ are deterministic functions of the variables from within the boundary.
(1) Approximate Updates and Likelihood
(2) Microfoundations
(3) Model Fitting

44 Optimal Simplicity
(5) (not so) Rational Expectations
(6) Posterior Approach
(7) Misspecification and Beyond
(8) Tricks from Rational Inattention

Well-specified Miss-specified

| $\mathcal{Q}$ | Bayes' Rationality | Wald'49 | Berk'66 |
| :---: | :---: | :---: | :---: |
|  | Updating Friction | model-fitting | model-fitting |

## Information vs Moment Projection

moment projection: sample $\rightarrow$ model
White'82/Berk'66:
agent observes sample and chooses model $\tilde{p}(y) \in \mathcal{P}$

$$
\min _{\tilde{p} \in \mathcal{P}} \mathrm{KL}\left(q_{0}(y) \| \tilde{p}(y)\right)
$$

information projection: model $\rightarrow$ sample
Sanov's Theorem:
agent holds model $p(y)$ and reasons about sample

$$
\min _{\tilde{q} \in \mathcal{Q}} \mathrm{KL}(\tilde{q}(y) \| p(y))
$$

## Example: Analogy-Based Reasoning

a measurability constraint on conditional distributions
moment projection $\Rightarrow$ arithmetic mean (Jehiel'05)

$$
p(z \mid x) \propto \sum_{\tilde{x} \in X(x)} q_{0}(\tilde{x}) q_{0}(z \mid \tilde{x})
$$

information projection $\Rightarrow$ geometric mean

$$
q(z \mid x) \propto\left(\prod_{\tilde{x} \in X(x)} p(z \mid \tilde{x})^{q_{0}(\tilde{x})}\right)^{\frac{1}{q_{0}\left(x_{k(x)}\right)}}
$$

## White/Berk As a Special Case

what model $p(x)$ of the observable variable the agent chooses?

## proposition

If updating is unconstrained, then $p(x)$ is the moment projection

$$
p(x) \in \underset{\tilde{p}(x) \in \mathcal{P}^{\prime}}{\arg \min } K L\left(q_{0}(x) \| \tilde{p}(x)\right) .
$$

follows from the chain rule
$\operatorname{KL}(\tilde{q}(x, z) \| \tilde{p}(x, z))=\operatorname{KL}\left(q_{0}(x) \| \tilde{p}(x)\right)+\sum_{x} q_{0}(x) \operatorname{KL}(\tilde{q}(z \mid x) \| \tilde{p}(z \mid x))$

Simple Model Preferred for Constrained Updating
$x=\left(x_{1}, x_{2}\right)$ and $z=\left(z_{1}, z_{2}\right)$
the true process $q_{0}\left(x_{1}, x_{2}\right)$ exhibits correlation

$\mathcal{Q}$

agent is well-specified

- $\Rightarrow$ learns the true process $q_{0}$ if updates are unconstrained
the updating constraint
- $\Rightarrow$ optimal correlation neglect $p\left(x_{1}, x_{2}\right)=p\left(x_{1}\right) p\left(x_{2}\right)$ proof
(1) Approximate Updates and Likelihood
(2) Microfoundations
(3) Model Fitting

44 Optimal Simplicity
(5) (not so) Rational Expectations
(6) Posterior Approach
(7) Misspecification and Beyond
(8) Tricks from Rational Inattention

## Rational Inattention

- payoff state $x \sim q_{0}(x)$
- agent chooses experiment $q(z \mid x)$
- maps the observed signal to action a
- maximizes $\mathrm{E} u(a, x)+\mathrm{EH}(q(x \mid z))$
plot $\rho \mapsto \max _{a} \mathrm{E}_{\rho(x)} u(a, \hat{x})$



## Rational Inattention

- payoff state $x \sim q_{0}(x)$
- agent chooses experiment $q(z \mid x)$
- maps the observed signal to action a
- maximizes $\mathrm{E} u(a, x)+\mathrm{EH}(q(x \mid z))$
plot $\rho \mapsto \max _{a} \mathrm{E}_{\rho(x)} u(a, \hat{x})+\mathrm{H}(\rho)$



## Rational Inattention

- payoff state $x \sim q_{0}(x)$
- agent chooses experiment $q(z \mid x)$
- maps the observed signal to action a
- maximizes $\mathrm{E} u(a, x)+\mathrm{EH}(q(x \mid z))$
find the optimal posteriors



## Connection

$\mathcal{P}$ and $\mathcal{Q}$ are posterior separable if

- $p$ and $q$ are feasible iff $p(x \mid z) \in \overline{\mathcal{P}}$ and $q(x \mid z) \in \overline{\mathcal{Q}}$
primitive distributions are "actions" $\overline{\mathcal{P}}=\left\{p_{a}(x)\right\}_{a}$
writing $\ln p_{a}(x)=u(a, x)$, our problem becomes the RI problem:

$$
\max \quad \mathrm{E}[u(a, z)+\mathrm{H}(\tilde{q}(x \mid \hat{z}))]
$$

with additional constraint: posteriors $\in \overline{\mathcal{Q}}$

## Concavification of the Augmented Value Function


no updating constraint

generative model employs 1 , 2 , or 3 primitive distributions

- accompanied by a recognition model of the same complexity


## Base-Rate Neglect

comparative statics w.r.to true process

## local invariance

Let true process $q_{0}^{*}(x)$ induce posteriors by $p^{*}(x \mid z)$ and $q^{*}(x \mid z)$. For all processes $q_{0}(x)$ in the convex hull of $\left(q^{*}(x \mid z)\right)_{z}$ :

$$
\begin{aligned}
& p(x \mid z)=p^{*}(x \mid z) \\
& q(x \mid z)=q^{*}(x \mid z)
\end{aligned}
$$

## Hallucination

optimal recognition model may hallucinate:

- there may exist $z$ and $z^{\prime}$ such that

$$
\begin{aligned}
& p(x \mid z)=p\left(x \mid z^{\prime}\right) \\
& q(x \mid z) \neq q\left(x \mid z^{\prime}\right)
\end{aligned}
$$

this cannot happen when $\overline{\mathcal{Q}}$ is convex

- akin to the recommendation lemma in RI
- beneficial randomization over $q(x \mid z)$
machine learning $\rightarrow$ economics:
- updating and likelihood evaluation are hard
- two distinct statistical models are handy
- tractable constrained updating and model-fitting problems
economics $\rightarrow$ machine learning:
- relaxed constraints may generate solutions with interesting structure
- optimal models are often simple


## Approximation

correspondence $\mathcal{Q}(\theta), \theta \in[0,1]$
$\mathcal{Q}(0)=\mathcal{Q} \cap\left\{\tilde{q}(x, z): \tilde{q}(x)=q_{0}(x)\right\}$
$\mathcal{Q}(\theta)=\mathcal{Q}^{\left\lfloor\frac{1}{\theta}\right\rfloor}$ for $\theta>0$
continuity at $\theta=0$
back

## Proof: Correlation Neglect



## Proof: Correlation Neglect



Proof: Correlation Neglect


## Proof: Correlation Neglect



## Proof: Correlation Neglect



