Constrained Data-Fitters

an inspiration from machine learning

Larry Samuelson, Jakub Steiner

ESA Columbus 2024

The Map is Not the Territory Alfred Korzybski

2 But

- 3 Approximate Updates and Likelihood
- 4 Microfoundations
- **5** Optimal Simplicity
- 6 Misspecification and Beyond
- (not so) Rational Expectations

B Experiments

Statistical Model

Posterior Approach same model, different perspective

How are the Models Chosen?

unknown data-generating process q(y)

maximum-likelihood estimate

 $\underset{p \in \mathcal{P}}{\operatorname{arg\,max}} p\text{-likelihood}(y_1, \dots y_n)$

Wald'49:

well-specified agent learns the true distribution: $p_n \rightarrow q$

2 But

- 3 Approximate Updates and Likelihood
- 4 Microfoundations
- **5** Optimal Simplicity
- 6 Misspecification and Beyond
- (not so) Rational Expectations

8 Experiments

People Aren't Bayesian Benjamin'19, Ortoleva'24

People are Misspecified

true process is not included in the set of hypotheses

Berk'66, White'82:

as the sample expands, the estimate converges to the least wrong model

 $\operatorname*{arg\,min}_{p\in\mathcal{P}}\mathsf{KL}\left(q\parallel p\right)$

Machines aren't Bayesian Either Variational Bayes Methods

Blei et al. '17:

One of the core problems of modern statistics is to approximate difficult-to-compute probability densities. This problem is especially important in Bayesian statistics, which frames all inference [...] involving the posterior density.

the true posterior is projected on a set of tractable distributions

Machines Are Misspecified Too

how it's done:

- estimate q(x) from the training sample
- draw x_{n+1} from the estimated distribution

two frictions:

- misspecification
- fit is difficult to evaluate

generative model

VS

recognition model

Homo Economicus

2 But

3 Approximate Updates and Likelihood

- 4 Microfoundations
- **5** Optimal Simplicity
- 6 Misspecification and Beyond
- (not so) Rational Expectations

8 Experiments

Two Models

generative model $p(x, z) = p(z)p(x \mid z)$

recognition model $q(x, z) = q_0(x)q(z \mid x)$

Example

generative model:

- p(z) prior distribution of talent in population
- $p(x \mid z)$ stochastic CV of each talent type

recognition model:

- large sample of the job applicants' CVs
- $q_0(x)$ empirical distribution of the sample
- belief $q(z \mid x)$ about talent z of a candidate with CV x

Choice of the Two Models

let's proceed backwards

given the generative model, choose the recognition model

- that is most consistent with the generative model
- subject to a cognitive constraint

choose the generative model with the best subjective fit to data

• accounting for own cognitive constraint during updating

Choice of the Recognition model variational Bayes' methods, Jordan et al.'99

 $\mathsf{KL}\left(\tilde{q}(x,z) \parallel p(x,z)\right)$ min $\tilde{q}(x,z)$ $\tilde{q}(x,z) \in \mathcal{Q}$ s.t. $\tilde{q}(x) = q_0(x)$

Choice of the Recognition model variational Bayes' methods, Jordan et al.'99

 $\mathsf{KL}\left(\tilde{q}(x,z) \parallel p(x,z)\right)$ min $\tilde{q}(x,z)$ $\tilde{q}(x,z) \in \mathcal{Q}$ s.t. $\tilde{q}(x) = q_0(x)$

empirical constraint

Choice of the Recognition model variational Bayes' methods, Jordan et al.'99

 $\mathsf{KL}\left(\tilde{q}(x,z) \parallel p(x,z)\right)$ min $\tilde{q}(x,z)$ $\tilde{q}(x,z) \in \mathcal{Q}$ s.t. $\tilde{q}(x) = q_0(x)$

updating constraint

Choice of the Recognition model

variational Bayes' methods, Jordan et al.'99

 $\mathsf{KL}\left(\tilde{q}(x,z) \parallel p(x,z)\right)$ min $\tilde{q}(x,z)$ $\tilde{q}(x,z) \in \mathcal{Q}$ s.t. $\tilde{q}(x) = q_0(x)$

subjective fit

Choice of the Generative Model

variational autoencoder, Kingma&Welling'13

 $\begin{array}{ll} \min_{\tilde{p}(x,z),\tilde{q}(x,z)} & \quad \mathsf{KL}\left(\tilde{q}(x,z) \parallel \tilde{p}(x,z)\right) \\ \text{s.t.} & \quad \tilde{p}(x,z) \in \mathcal{P} \\ & \quad \tilde{q}(x,z) \in \mathcal{Q} \\ & \quad \tilde{q}(x) = q_0(x) \end{array}$

Information Geometry

Some Updating Constraints

no constraint:

- $\mathcal{Q} = \Delta(X \times Z)$
- \Rightarrow back to homo economicus:
 - Bayesian updates: $q(z \mid x) = p(z \mid x)$
 - standard likelihood

Some Updating Constraints

computational constraint:

• \mathcal{Q} is a family of tractable distributions

relevant in machine learning

Some Updating Constraints

causal constraint; e.g.:

• x = CV, z = (aptitude, grit)

• q must comply with a causal graph, e.g.:

 $\mathsf{aptitude} \to \mathsf{CV} \gets \mathsf{grit}$

• \Leftrightarrow a factorization constraint on q(CV, aptitude, grit)

see Spiegler'20 for review

Homo Economicus

2 But

3 Approximate Updates and Likelihood

Microfoundations

- **5** Optimal Simplicity
- 6 Misspecification and Beyond
- (not so) Rational Expectations

8 Experiments

Updating As Constrained Optimization

Kullback'59 principle of minimum discrimination information

- posterior minimizes KL-divergence from prior s.t. new information
- originates in Laplace's principle of insufficient reason

Dominiak, Kovach & Tserenjigmid'21

• axiomatization and extensions

In Machine Learning

machine evaluates fit of a model p(x, z) to observable data x

• intractable marginalization $p(x) = \sum_{z} p(x, z)$

instead, the machine evaluates evidence lower bound

Sanov's Theorem

draw a large sample from p

suppose the empirical distribution q is in Q

then, it is

 $\operatorname*{arg\,min}_{ ilde{q}} ext{ KL}(ilde{q} \parallel p)$ s.t. $ilde{q} \in \mathcal{Q}$

our agent reasons about the sample of (x, z) s.t. the constraints

Homo Economicus

2 But

- 3 Approximate Updates and Likelihood
- 4 Microfoundations
- Optimal Simplicity
- 6 Misspecification and Beyond
- (not so) Rational Expectations

8 Experiments

Example

x = CV, z = (aptitude, grit)

generative model:

- any *p*(aptitude, grit)
- restrictions imposed on p(CV | aptitude, grit)

recognition model:

 $\bullet \ \mathsf{CV} \to \mathsf{aptitude} \to \mathsf{grit}$

deterministic collapse

The agent models grit as a deterministic function of aptitude.

grit has no explanatory power at the recognition stage \Rightarrow it is not used in the generative stage

Generalization

deterministic collapse

The agent models variables from outside the Markov Boundary as a deterministic function of the variables from within the boundary.

Homo Economicus

2 But

- 3 Approximate Updates and Likelihood
- 4 Microfoundations
- **5** Optimal Simplicity
- 6 Misspecification and Beyond
- (not so) Rational Expectations

8 Experiments

Two Frictions

		Well-specified	Miss-specified
Q	Bayes' Rationality	Wald'49	Berk'66
	Updating Friction	model-fitting	model-fitting

Correlation Neglect

x = (IQ score, education) and z = (aptitude, grit)

the true process $q_0(IQ, edu)$ exhibits correlation

agent is well-specified

ullet \Rightarrow she learns the true process if updating is unconstrained

Correlation Neglect

x = (IQ score, education) and z = (aptitude, grit)

the true process $q_0(IQ, edu)$ exhibits correlation

the updating constraint

• \Rightarrow optimal correlation neglect p(IQ, edu) = p(IQ)p(edu)

Homo Economicus

2 But

- 3 Approximate Updates and Likelihood
- 4 Microfoundations
- **5** Optimal Simplicity
- 6 Misspecification and Beyond
- (not so) Rational Expectations

B Experiments

Rational Expectations

definition

The agent has rational expectations if she isn't systematically surprised:

 $p(z) = \mathsf{E}_{q_0(x)} q(z \mid x).$

in general, our agent does not have RE

Rational Expectations result

proposition

An agent who can conceive any p(z) forms rational expectations.

standard RE is forced by the Bayes' law

• RE can fail in our framework, but hold at the optimum

a popular non-Bayesian intuition in support of RE:

ullet systematically surprised agent should adjust her prior \checkmark

Homo Economicus

2 But

- 3 Approximate Updates and Likelihood
- 4 Microfoundations
- **5** Optimal Simplicity
- 6 Misspecification and Beyond
- (not so) Rational Expectations

8 Experiments

Dean & Neligh'23:

observable information structures

Aina, Amelio & Brütt'23

- is it misspecification? Bohren & Hauser'23
- failure of Bayesian reasoning?

Narratives Andre, Haaland, Roth & Wohlfart'23

Machines and Humans

machines

variational autoencoders

humans

• predictive coding

machine as a model of humans?

- perfect fMRI: observable latent representation
- flexible design: you can deceive machine
- twin studies: copies of the same machine

Experimental Methods in Machine Learning Akhtar et al. '21

this informs about the geometry of the latent representation

Literature

non-Bayesian updating: Dominiak, Kovach & Tserenjigmid '21; Jakobsen '21; Ortoleva '12; Zhao '22

machine learning: Caplin, Martin & Marx '23; Zhao, Ke, Wang & Hsieh '20; Aridor, da Silveira & Woodford '24

Bayesian networks: Spiegler '16,'20; Sloman '05; Pearl '88; Ambuehl & Thysen '24; Andre, Haaland, Roth & Wohlfart '23

belief inconsistencies: Aina, Amelio & Brütt '23; Bohren & Hauser '23

misspecified learning: Esponda & Pouzo '16; Fudenberg, Lanzani & Strack '21; Frick, Iijima, & Ishii '23