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The Map is Not the Territory
Alfred Korzybski
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Statistical Model
a “map”

z x

p(x |z)

p(z)

talent
(latent)

CV
(observable)



Using the Model
a posteriori optimal choice

z x

p(z |x)



Posterior Approach
same model, different perspective

z x

p(z |x)

p(x)



How are the Models Chosen?
estimation

unknown data-generating process q(y)

maximum-likelihood estimate

arg max
p∈P

p-likelihood(y1, . . . yn)

Wald’49:

well-specified agent learns the true distribution: pn → q
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People Aren’t Bayesian
Benjamin’19, Ortoleva’24



People are Misspecified

true process is not included in the set of hypotheses

Berk’66, White’82:

as the sample expands, the estimate converges to the least wrong model

arg min
p∈P

KL
(
q ‖ p

)

q

p



Machines aren’t Bayesian Either
Variational Bayes Methods

Blei et al. ’17:

One of the core problems of modern statistics is to approximate
difficult-to-compute probability densities. This problem is espe-
cially important in Bayesian statistics, which frames all inference
[. . . ] involving the posterior density.

the true posterior is projected on a set of tractable distributions



Machines Are Misspecified Too
generative task

how it’s done:

estimate q(x) from the training sample

draw xn+1 from the estimated distribution

two frictions:

misspecification

fit is difficult to evaluate



Variational Autoencoders

z x

p(x |z)

p(z)

latent state photo



Variational Autoencoders

z x



Variational Autoencoders

z x

p(x |z)

p(z |x)

p(z) p(x)



Variational Autoencoders

z x

p(x |z)

q(z |x)

p(z) q(x)

generative model vs recognition model
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Two Models

z x

p(x |z)

p(z)

generative model p(x , z) = p(z)p(x | z)

z x

q(z |x)

q0(x)

recognition model q(x , z) = q0(x)q(z | x)



Example

generative model:

p(z) prior distribution of talent in population

p(x | z) stochastic CV of each talent type

recognition model:

large sample of the job applicants’ CVs

q0(x) – empirical distribution of the sample

belief q(z | x) about talent z of a candidate with CV x



Choice of the Two Models

let’s proceed backwards

given the generative model, choose the recognition model

that is most consistent with the generative model

subject to a cognitive constraint

choose the generative model with the best subjective fit to data

accounting for own cognitive constraint during updating



Choice of the Recognition model
variational Bayes’ methods, Jordan et al.’99

min
q̃(x,z)

KL
(
q̃(x , z) ‖ p(x , z)

)
s.t. q̃(x , z) ∈ Q

q̃(x) = q0(x)



Choice of the Recognition model
variational Bayes’ methods, Jordan et al.’99

min
q̃(x,z)

KL
(
q̃(x , z) ‖ p(x , z)

)
s.t. q̃(x , z) ∈ Q

q̃(x) = q0(x)

empirical constraint



Choice of the Recognition model
variational Bayes’ methods, Jordan et al.’99

min
q̃(x,z)

KL
(
q̃(x , z) ‖ p(x , z)

)
s.t. q̃(x , z) ∈ Q

q̃(x) = q0(x)

updating constraint



Choice of the Recognition model
variational Bayes’ methods, Jordan et al.’99

min
q̃(x,z)

KL
(
q̃(x , z) ‖ p(x , z)

)
s.t. q̃(x , z) ∈ Q

q̃(x) = q0(x)

subjective fit



Choice of the Generative Model
variational autoencoder, Kingma&Welling’13

min
p̃(x,z),q̃(x,z)

KL
(
q̃(x , z) ‖ p̃(x , z)

)
s.t. p̃(x , z) ∈ P

q̃(x , z) ∈ Q

q̃(x) = q0(x)



Information Geometry

p1 
   

q1 

p2 

q2 

p*
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Some Updating Constraints

no constraint:

Q = ∆(X × Z )

⇒ back to homo economicus:

Bayesian updates: q(z | x) = p(z | x)

standard likelihood



Some Updating Constraints

computational constraint:

Q is a family of tractable distributions

relevant in machine learning



Some Updating Constraints

causal constraint; e.g.:

x = CV, z = (aptitude, grit)

q must comply with a causal graph, e.g.:

aptitude→ CV← grit

⇔ a factorization constraint on q(CV, aptitude, grit)

see Spiegler’20 for review
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Updating As Constrained Optimization

Kullback’59 principle of minimum discrimination information

posterior minimizes KL-divergence from prior s.t. new information

originates in Laplace’s principle of insufficient reason

Dominiak, Kovach & Tserenjigmid’21

axiomatization and extensions



In Machine Learning

machine evaluates fit of a model p(x , z) to observable data x

intractable marginalization p(x) =
∑

z p(x , z)

instead, the machine evaluates evidence lower bound



Sanov’s Theorem

draw a large sample from p

suppose the empirical distribution q is in Q

then, it is

arg min
q̃

KL(q̃ ‖ p)

s.t. q̃ ∈ Q

our agent reasons about the sample of (x , z) s.t. the constraints
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Example

x = CV, z = (aptitude, grit)

generative model:

any p(aptitude, grit)

restrictions imposed on p(CV | aptitude, grit)

recognition model:

CV→ aptitude→ grit

deterministic collapse

The agent models grit as a deterministic function of aptitude.

grit has no explanatory power at the recognition stage
⇒ it is not used in the generative stage



Generalization

deterministic collapse

The agent models variables from outside the Markov Boundary as a
deterministic function of the variables from within the boundary.
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Two Frictions

P
Well-specified Miss-specified

Q
Bayes’ Rationality Wald’49 Berk’66

Updating Friction model-fitting model-fitting



Correlation Neglect

x = (IQ score, education) and z = (aptitude, grit)

the true process q0(IQ, edu) exhibits correlation

P
IQ

edu

apt

grit

Q
IQ

edu

apt

grit

agent is well-specified

⇒ she learns the true process if updating is unconstrained



Correlation Neglect

x = (IQ score, education) and z = (aptitude, grit)

the true process q0(IQ, edu) exhibits correlation

P
IQ

edu

apt

grit

Q
IQ

edu

apt

grit

the updating constraint

⇒ optimal correlation neglect p(IQ, edu) = p(IQ)p(edu)
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Rational Expectations
definition

definition

The agent has rational expectations if she isn’t systematically surprised:

p(z) = Eq0(x) q(z | x).

in general, our agent does not have RE



Rational Expectations
result

proposition

An agent who can conceive any p(z) forms rational expectations.

standard RE is forced by the Bayes’ law

RE can fail in our framework, but hold at the optimum

a popular non-Bayesian intuition in support of RE:

systematically surprised agent should adjust her prior X
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Dean & Neligh’23:

observable information structures



Aina, Amelio & Brütt’23

is it misspecification? Bohren & Hauser’23

failure of Bayesian reasoning?



Narratives
Andre, Haaland, Roth & Wohlfart’23



Machines and Humans

machines

variational autoencoders

humans

predictive coding

machine as a model of humans?

perfect fMRI: observable latent representation

flexible design: you can deceive machine

twin studies: copies of the same machine



Experimental Methods in Machine Learning
Akhtar et al. ’21

this informs about the geometry of the latent representation
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