Re-use of Collateral: Leverage, Volatility, and Welfare

Johannes Brumm, Michael Grill, Felix Kubler, Karl Schmedders

Discussion by: Ctirad Slavík (CERGE-EI)

May 8, 2017

Introduction

- Very nice and very well written paper.
- Question addressed in this paper:

What does collateral re-use (re-hypothecation) do?

- Answers:
 - 1 Increases volatility (monotonically).
 - 2 Affects welfare (non-monotonically).

Context

Similar environment as in authors' previous papers:

BGKS (IER, 2015): Collateral Requirements and Asset Prices.
The possibility of using assets as collateral increases volatility.

This paper (essentially): More generous use (re-use) of assets/collateral further increases volatility.

BGKS (JME, 2015): Margin Regulation and Volatility.
Analyzes the role of margin regulation in similar framework.

Outline

- Re-use in the data (skip).
- Model.
- Main results.
- Comments (throughout).

Model

Physical environment and agents:

- Pure exchange, ∞ horizon economy.
- Single perishable consumption good.
- Underlying sequence of shocks s^t.
- Long lived Lucas tree delivering dividends.
- Two Epstein-Zin (price-taking) agents heterogeneous in RA and beliefs.
- **Note 1:** Why irrational agents? What about learning?
- Note 2: Be more explicit about assumptions, 'agree to disagree'.

Asset markets:

- Shares in Lucas trees and riskless bond, cannot trade future endowments.
- ullet Default: agents can go short & costless default \Longrightarrow
- Collateral: if agent wants to go short in an asset, needs to put up the other asset as collateral.
- Margin requirements: $m_s(s^t)$, $m_l(s^t)$, by how much collateral value must exceed value of borrowed/shorted asset. Endogeneous (s.t. WLOG no default) or regulated (tighter).
- Re-use: at most fraction $\kappa(s^t)$ of collateral can be used in other transactions, regulated.

Question: Is re-use regulation equivalent to margin regulation?

Quantitative Analysis

• Risk one dimensional: Aggregate endowment $\bar{e}(s^t)$, dividends $0.1 \cdot \bar{e}(s^t)$, individual endowments identical: $0.45 \cdot \bar{e}(s^t) \Longrightarrow$

Paper is about risk transfer, not about risk sharing.

- Parameter choices:
 - Disasters à la Barro and Jin (2009), to get volatility(?)
 - ② High IES = 1.5 for both agents, to get smooth rfr(?)
 - 3 $\beta = 0.975$ to get rfr = 1.5% with $\kappa = 1$.
- Heterogeneity to get trade (how about survival?):
 - ① Agent 1: RA = 2 and optimistic about disasters.
 - 2 Agent 2: RA = 4 and pessimistic about disasters.
- Better justification of the choices? Explicit calibration?

Benchmark Positive Quantitative Exercise

• Analyze sensitivity to re-use, $\kappa \in \{0, 0.2, 0.4, 1\}$.

Table II: Simulation statistics for the model without re-use and with re-use

	no re-use $(\kappa = 0)$	$\kappa = 0.2$	$\kappa = 0.4$	free re-use $(\kappa = 1)$
mean excess return (in %)	0.32	0.45	0.70	1.1
mean risk-free rate (in $\%$)	2.6	2.3	2.0	1.5
STD risky returns (in %)	4.5	4.7	5.1	6.8
mean stock price	6.3	6.9	7.6	8.4
mean wealth, agent 1 (in %)	34.8	42.5	55.8	74.6
STD wealth, agent 1 (in %)	0.7	1.1	2.0	4.8
mean re-use rate (in %)	0	18.4	36.4	48.7
mean bond holding, agent 1	-4.1	-5.3	-7.0	-8.4

Questions and Comments

- Margin requirements exo or endogeneous? Does it matter?
- ② Is this a good *positive* model? Does it match the data? If so, then sensitivity to κ more relevant.
- 3 Direct data evidence for the mechanism?

Welfare

Almost all about the fact that agents irrational.

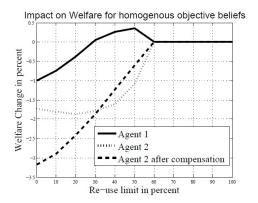
- Statement 1: If welfare evaluated using subjective belief, re-use regulation κ always bad for everybody. Obvious?
- Quantitative results for welfare
 - ① Using objective probabilities, get a hump shape in κ .
 - ② Hump shape also for convex combos of agent 1 and 2 beliefs.
 - 3 Robustness to parameterization unclear.

Comments

Two ways to go:

- Rational agents.
 - Re-use increases volatility (main result), but good for welfare (secondary result). Figure X. interesting.
 - More empirical work would be useful.
 - More explicit welfare comparison to first best possible/useful. Re-use as making markets more complete?
- ② Irrational agents.
 - Re-use still \(\gamma\) volatility, welfare analysis more interesting.
 - Interaction between beliefs (welfare criteria) and frictions interesting, alternative decompositions?
 - Almost seems like a second paper.

Note: In either case, robustness to parameterization unclear. Theoretical results in a stylized environment?


Summary

- Nice paper addressing an important question and offering interesting answers.
- Most important conclusions:
 - Asset return/price volatility larger with collateral re-use.
 - Welfare non-monotonic allow re-use, but regulate.
- Suggestions:
 - Robustness.
 - Theoretical results.
 - Tighter link to the data.
 - Add production?

Figure X.

Welfare with heterogeneous, but rational agents.

Figure X: Welfare changes as a function of the re-use parameter

