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I. Introduction

Over the last quarter of a century there has been a growing interest in testing for unit roots,

starting with the seminal paper by Dickey and Fuller (1979). The importance of determinis-

tic components was recognized early on and Dickey and Fuller (1981) introduced likelihood

ratio statistics for joint tests of unit roots and an intercept or a linear trend. Smith and

Taylor (1999) generalize their results in a seasonal context. In these tests, it is implicitly

assumed that a researcher apriori knows the structure of the deterministic component. The

uncertainty about existence of a trend is explicitly considered in Perron (1988)3 and more

thoroughly in Ayat and Burridge (2000). In a seasonal time series, the deterministic compo-

nent can be quite involved and may include a constant term, seasonal dummies, a common

trend or a seasonal trend. The present work offers a systematic treatment of the significance

of a particular combination of fixed regressors while testing for seasonal unit roots.

Dickey, Hasza, and Fuller (1984), henceforth DHF, proposed the test statistics to test for

unit roots at seasonal lags and also provided the percentiles of the distributions of these test

statistics. Their methodology is an extension of unit roots testing (see Dickey and Fuller

1979) to seasonal time series. DHF statistics tests the joint hypothesis of both seasonal and

non-seasonal unit roots. In a quarterly series, the DHF t-statistics tests the null of roots of

eiθ at θ = 0, Π/2, Π and 3Π/2 simultaneously. Hylleberg, Engle, Granger and Yoo (1990),

henceforth HEGY, offer a generalization of this approach, which enables one to distinguish

among the hypothesis of a zero frequency unit root (i.e., the non-seasonal unit root), the

hypothesis of unit roots at frequencies different from zero (i.e. seasonal unit roots), and the

joint hypothesis of unit roots at both zero and non-zero frequencies.4 HEGY generate critical

values for their statistics and also show that the asymptotic results from Dickey and Fuller

3See Section 2.6 of his paper and the interpretation of his testing strategy given in Ayat and Burridge
(2000), Section 3.5.

4Both DHF and HEGY test the null hypothesis of the presence of unit roots. An alternative is to test
the null of a stationary process as in Canova and Hansen (1995). Hylleberg (1995) compares this approach
with that of HEGY.

1



(1979) and from DHF apply in some special cases to their tests. Smith and Taylor (1998)

further extend the HEGY procedure by including the possibility of differential seasonal drift

under the null hypothesis of a seasonal unit root. Franses and Hobijn (1997) consider the

effect of increasing seasonal variation and seasonal mean shifts. Applications of the HEGY

methodology to various time series can be found for instance in Beaulieu and Miron (1993),

Franses (1995), and Paap, Franses, and Hoek (1997).

Ghysels, Lee and Noh (1994), henceforth GLN, investigate performance of the DHF and

HEGY test procedures for many cases encountered in practice. They consider autoregressive

models with seasonal dummies and seasonal ARIMA models for data generating processes

with and without seasonal dummies. To compare the DHF and HEGY tests directly, a joint

HEGY-type test is introduced which tests for the presence of unit roots at the zero as well

as all seasonal frequencies. GLN claim that the HEGY-type tests are somewhat superior to

the DHF test; however, its size deteriorates for data generating processes with a parameter

close to a unit circle.

In this study, we extend the available testing procedures by constructing the F-type

statistics, to test jointly the unit roots and the deterministic components in a seasonal

time series. These statistics are an extension of Dickey-Fuller (1981) statistics to seasonal

time series. Specifically, the tested null hypothesis is that of a unit root and the following

deterministic components: (i) seasonal dummies and a seasonal trend; (ii) seasonal dummies

and a common trend; (iii) seasonal dummies; (iv) a constant and a common trend; (v) a

constant; and finally, (vi) no deterministic components. Monte Carlo simulation is employed

to generate the percentiles of the proposed statistics. The introduced F-statistics provide an

alternative to the more complex tests proposed by Smith and Taylor (1999), which allow for

testing of unit roots at distinct frequencies.5

5Critical values for their test statistics are only available in a working paper version, see Smith and Taylor
(1998).
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Next, a sequential procedure is suggested, based on the proposed F-type statistics in

conjunction with existing tests for seasonal unit roots. In the first step, the seasonal, DF-

type F-tests are applied to a seasonally non-adjusted time series. If the joint test for a unit

root and a deterministic component in (i) is rejected, the series does not contain a unit root.

Testing should continue using deterministic components defined in (ii), (iii), etc., until the

null hypothesis is rejected. The last accepted hypothesis determines the specification with

the smallest number of free parameters out of the accepted models. The only exception

is the case (iv) where fixed regressors consist of a constant and a common trend. Then,

the accepted null should be seasonal dummies and a common trend in (ii) rather than just

seasonal dummies in (iii). In the second step, the accepted specification is tested using DHF

and HEGY tests.

The proposed statistics are illustrated by using fifteen quarterly, seasonally unadjusted

time series. The log transformation of the data is employed. According to the seasonal

F-tests, only one series has a unit root with no deterministic regressors. In ten series, the

null hypothesis of a unit root and a constant cannot be rejected. In two cases, the accepted

specification includes seasonal dummies and a trend together with the unit root. Finally,

there are two times series with only deterministic components and no unit roots. The HEGY

tests in the second step indicate that while most of our time series contain the non-seasonal

unit root, strong evidence for presence of seasonal unit roots is only available for the United

Kingdom consumption of non-durables and services, the Swedish real per-capita non-durable

consumption and the Swedish real per-capita disposable income.

The paper is organized as follows. Section II describes our seasonal F-tests and proposes

a way of using them. Section III gives details of simulation of critical values. In Section IV,

we apply the procedure to quarterly time series. Section V concludes.
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II. Joint Tests for Seasonal Unit Roots and Deterministic Components

In this section, the Dickey and Fuller (1981) F-type statistics are extended to deal with

deterministic components of seasonal time series processes. Using these F-tests, it is possible

to formulate a general approach to test for seasonal unit roots. The generalized procedure

enables us to distinguish among integrated seasonal processes with the set of fixed regressors

which may include a constant, seasonal dummies, the time trend and the seasonal linear

trend.

Of interest is a time-series process xt of the type

φ(B)xt = εt (1)

where φ(B) is in general an n-th order polynomial with n distinct roots and ε is an i.i.d.

stochastic process with a zero mean and a constant variance. The focus of the paper is on

quarterly data frequency - consequently, the special case of (1) is the fourth-order polynomial

φ(B) = (1−B4) = (1−B)(1 + B)(1− iB)(1 + iB), (2)

with respective unit roots eiθ where θ = 0, Π/2, Π, 3Π/2, i.e. 1, −1, i and −i. 1 is the

non-seasonal, zero-frequency root (zero cycles per year) while −1, i and −i are the seasonal

unit roots. -1 corresponds to 2 cycles per year and i or −i correspond to one cycle per year.

There are two main types of tests available. The first is the DHF test, which is based on

the auxiliary regression:

xt = µt + ρxt−4 + εt (3)

where µt may contain deterministic components such as the intercept, seasonal dummies,

the regular trend and the seasonal trend. DHF use the z-type and t-type test statistics for

ρ = 1. The DHF procedure assumes that there are unit roots at some or all of the other

frequencies in (2).
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The second approach is that of HEGY, which uses the model:

φ∗(B)y4t = µt + π1y1t−1 + π2y2t−1 + π3y3t−2 + π4y3t−1 + εt (4)

where

y1t = (1 + B + B2 + B3)xt,
y2t = −(1−B + B2 −B3)xt,
y3t = −(1−B2)xt,
y4t = (1−B4)xt,

with φ∗(B) being an AR polynomial whose order is determined using diagnostic checks

ensuring that ε̂t is roughly white noise. If π1 = 0, one cannot reject the non-seasonal unit

root 1. If π2 = 0, the presence of the seasonal unit root -1 cannot be rejected. Similarly,

if π3 = π4 = 0, the seasonal unit roots i,−i cannot be rejected. HEGY propose t-tests

for each πi (t(πi), i = 1, . . . , 4) and joint F-type statistics for π3 and π4 (denoted F34;

see HEGY, Tables 1a and 1b), which are further extended by GLN F-type statistics for

the joint significance of {π1, π2, π3, π4} and {π2, π3, π4} (denoted respectively as F1234 and

F234; see GLN, Tables C1 and C2).6 Smith and Taylor (1998, Tables 1a, 1b, and 1c)

are the first ones to include seasonal time trend in µt. The F-type statistics for the joint

significance of {π1, π2, π3, π4} tests the same hypothesis as the DHF statistics but, according

to GLN, has better power properties against common alternatives. Also, the HEGY test

statistics enable one to test for a particular unit root and simulated critical values are

available for all combinations of deterministic elements in µt. Consequently, we use HEGY

tests in combination with the proposed F-type statistics.

The shortcoming of both the DHF and HEGY type tests is the implicit assumption of

knowing the exact composition of the deterministic component of µt. However, the distribu-

tion of these components is affected by the potential presence of unit roots. In a non-seasonal

context, Dickey and Fuller (1981) tabulate critical values for statistics testing various hy-

potheses regarding the intercept, the time trend and the autoregressive coefficient in the

6Most of the critical values from HEGY and GLN are also available for different sample sizes in Franses
and Hobijn 1997.
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regression xt = µt + ρxt−1 + εt. Smith and Taylor (1999) extend this line of research in the

seasonal context. Perron (1988) and Ayat and Burridge (2000) suggest strategies of systemic

approach to uncertainty about the non-stochastic trend. We construct tests similar to ones

in Dickey and Fuller (1981), which are suitable for our general auxiliary regression and pro-

vide a simple alternative to tests in Smith and Taylor (1999). We then suggest how to use

them in a sequential procedure.

Consider the auxiliary regression:

xt =
4∑

i=1

αiDit +
4∑

i=1

βiDitt + ρxt−4 + εt (5)

where x is the time series of interest, Dit’s are the seasonal dummies, t the time trend,

and α’s, β’s, and ρ are the corresponding coefficients. This formulation encompasses all the

possible combinations of deterministic elements in µt. We now formulate the null hypotheses,

which aim at deciding on the deterministic part of the seasonal stochastic processes:

H01 : (α1, α2, α3, α4, β1, β2, β3, β4, ρ) = (α1, α2, α3, α4, β1, β2, β3, β4, 1)
H02 : (α1, α2, α3, α4, β1, β2, β3, β4, ρ) = (α1, α2, α3, α4, β, β, β, β, 1)
H03 : (α1, α2, α3, α4, β1, β2, β3, β4, ρ) = (α1, α2, α3, α4, 0, 0, 0, 0, 1)
H04 : (α1, α2, α3, α4, β1, β2, β3, β4, ρ) = (α, α, α, α, β, β, β, β, 1)
H05 : (α1, α2, α3, α4, β1, β2, β3, β4, ρ) = (α, α, α, α, 0, 0, 0, 0, 1)
H06 : (α1, α2, α3, α4, β1, β2, β3, β4, ρ) = (0, 0, 0, 0, 0, 0, 0, 0, 1)

The above listed null hypotheses do not include all the possible combinations of fixed re-

gressors. Their choice is driven by availability of critical values of the HEGY type tests.

However, the missing hypotheses are not very useful anyway. For instance, it is unlikely for

a time series to have zero intercepts and four different seasonal time trends. Also, note that

H0i’s are ordered according to the increasing number of restrictions on the parameters.

The F-statistics are calculated as

Fi =
(RSSi

0 −RSS1)/ν
i
0

RSS1/ν1

, i = 1, . . . , 6, (6)

where SSEi
0 and SSE1 denote respectively the residual sum of squares in the restricted

model (under the null hypothesis i) and in the unrestricted regression (5). Similarly, νi
0 and
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ν1 denote degrees of freedom. νi
0 = 9 − k with k being the number of regressors in the

restricted models and ν1 = T − 13 with T the number of observations. The critical values

for these F statistics are calculated using simulation in the next section.7

The first step of the proposed testing strategy is to conduct the F-tests to identify the

joint hypothesis of a unit root and a certain combination of deterministic components, which

cannot be rejected. H01 is tested first using F1 defined in (6). If the null hypothesis is rejected,

there are no unit roots and one can use standard F tests to find the right combination of

deterministic variables. If the null cannot be rejected, we continue by testing H02 and so

on, until we reject H0i for some i. Then the specification defined by H0,(i−1) is tested for the

seasonal (and non-seasonal) unit roots using the HEGY type test with critical values from

HEGY, GLN, and Smith and Taylor (1998).8 When H04 is the first rejected hypothesis, the

adopted specification is defined by H02 since H03 does not encompass H04.

III. Percentiles of Proposed Statistics

The details of the Monte Carlo experiment to tabulate the empirical distributions of the F-

statistics in (6) are discussed next. The data generating process (DGP) used is xt = xt−4 +εt

where ε follows the standard normal distribution. In the simulations, the first four values of

xt are set equal to zero, 32 observations (eight years of data) are generated, and then another

T observations, with T respectively equal to 48, 100, 160, and 200. To eliminate the impact

of initial values, only the last T observations are employed in the computations.

Using the generated time series, the unrestricted regression equation (5) is estimated

with the trend variable t = 1, 2, . . . , T . Second, the estimation of the restricted regression of

7The power of the proposed tests could be increased by sequential alternation of the unrestricted regres-
sion. For instance, to test H06, the unrestricted regression would contain only a constant besides the lagged
x variable. However, we opt for a more convenient, unifying framework with the unrestricted regression (5).

8For example, for the null H06, one can use the Tables 1a and 1b in HEGY for the t-test of whether
π1 = 0 in the auxiliary regression (4) with µt = 0 and listed under “no intercept, no seas. dum., no trend”.
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xt − xt−4 on µt is conducted where

µt =
∑4

i=1 αiDit +
∑4

i=1 βiDitt for H01,
=

∑4
i=1 αiDit + βt for H02,

=
∑4

i=1 αiDit for H03,
= α + βt for H04,
= α for H05.

(7)

To compute Fi, we simply use RSSi from these regressions for i = 1, . . . , 5. For H6
0 , RSSi

0 is

simply
∑T

t=5(xt−xt−4)
2. We repeat these steps 50,000 times and report the resulting critical

values in Table 1.9

IV. Applications

In this section, the data sources are described in detail and tests for seasonal unit roots are

conducted using the proposed F-type statistics and the HEGY tests.

Fifteen non seasonally adjusted quarterly time series either used elsewhere in the lit-

erature or available in the public domain are analyzed. We used three data sources: the

Web site of Bureau of Economic Analysis, Franses (1998) and Smith and Taylor (1998).

The detailed description of time sries analyzed is given in Table 2. One of the series, the

UK nondurables consumption from Smith and Taylor (1998), has been widely used in the

literature on seasonal integrated processes, notably in HEGY.

Typically, log transformation of variables is used to test for non-seasonal unit roots to

justify the use of a linear trend variable. In the seasonal roots literature, the actual time

series tested can be in levels, in logs or various differences of the two. For instance, HEGY

use the logs of the UK consumption of nondurables while Smith and Taylor (1998) use the

first difference in levels. To compare results across series, the log transformation is used in

this study. The unrestricted regression (5) is estimated first by OLS with results reported

9Since the joint F-tests are by construction different from both the HEGY and DHF-type tests, no power
calculations are conducted. Power comparison in this situation would be similar to comparing the Dickey
and Fuller (1979) t and z tests with Dickey and Fuller (1981) F-tests.

8



in Table 3. The results indicate several tendencies. The seasonal dummies do not seem

to differ much for any of the time series and the same observation applies to the seasonal

time trend. Moreover, the time trend looks negligible as compared to the seasonal dummies.

The autoregressive coefficient is close enough to 1 to warrant a closer look at the possible

presence of unit roots, either seasonal or non-seasonal. Since the fixed set of deterministic

regressors is included in the regression equation, the unit root remains the only potential

source of seasonality.

Next, the seasonal F-type statistics proposed for the joint hypothesis regarding the fixed

regressors and the autoregressive coefficient are employed. We test the null hypotheses H0i

using the Fi-tests, i = 1, . . . , 6 and the critical values available in Table 1. All the tests

are conducted even though this is not necessary in some cases according to the sequential

procedure proposed in Section II. Table 4 presents the results for all time series together

with the corresponding number of observations to determine the appropriate critical values

in each case. The results reflect the tendencies already identified using the unrestricted

OLS regression. The most parsimonious unit root model for ten out of fifteen time series

contains only the intercept as a fixed regressor. The exceptions are canun, ukimp, ukinv,

and swecon. There is nothing surprising in the United Kingdom imports series since the

unit root hypothesis is rejected for all considered sets of fixed regressors. Interestingly,

in all the remaining series, the joint hypothesis of a unit root and some combination of

deterministic components is rejected only to be accepted with a smaller set of fixed regressors.

All these series have a relatively small estimate of the autoregressive coefficient (under 0.75,

see Table 3) and small standard errors for seasonal dummies. In addition, the F-statistics

are very close to critical values for all hypotheses tested. Therefore, it is sensible to use the

last accepted unit root model before the rejected one.

Having identified the right combination of deterministic components, the HEGY tests

can be applied to the time series. The regression (4) is estimated with φ∗(B) = 1 and µt
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indicated in Table 5. To test for the unit roots 1 and -1, we use one-sided t-type tests for π1

and π2 to test H0 : π1 = 0, HA : π1 < 0 and H0 : π2 = 0, HA : π2 < 0. To test for the

presence of the complex unit roots one can use the F34 test. Alternatively, one can conduct

a two-sided test for π4 = 0 - if the null cannot be rejected, follow up with a one-sided test

of π3 = 0 against π3 < 0. Finally, the F1234 tests whether the (1−B4) filter is appropriate.

Results of the HEGY tests are reported in Table 5.

Note that the HEGY tests are redundant for the Canadian unemployment and United

Kingdom public investment since the most general unit root model is rejected using the joint

F-statistics. For illustration purposes, we conduct the HEGY tests anyway. The HEGY tests

indicate that there are no seasonal unit roots in either case. While the zero-frequency unit

roots are not rejected, the t-statistics are negative and not far from their critical values.

Therefore, there is a possibility that presence of the non-seasonal unit root is not rejected

due to the lack of power of the HEGY tests. To investigate this possibility, the standard DF

t-statistics are used with a constant and a trend. The null hypothesis is rejected in both

cases, thus confirming the outcome of the seasonal F-tests. If a researcher wants to use the

two series in a regression, no differencing is necessary provided that the regression includes

seasonal dummies and a seasonal trend.

With the exception of gergnp and sweinc, all the remaining series contain the non-seasonal

unit root. Seasonal unit roots are present only in three time series - ukndc, swecon, and

sweinc, respectively. Out of these series, just in the case of sweinc the complex unit roots

cannot be rejected. Let us consider the series gergnp and swecon to illustrate how the results

should be interpreted. The German GNP is stationary and no differencing is necessary,

assuming that a regression on gergnp includes a constant. To use swecon properly in a

regression, this regression should contain seasonal dummies and a linear trend and the series

should be differenced using the (1−B)(1 + B) filter.
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V. Conclusion

This study takes a step further the current methodology of testing seasonal unit roots by

taking into account the uncertainty about the deterministic components. Specifically, we

propose a set of F-type statistics to test jointly seasonal unit roots and deterministic compo-

nents in quarterly series. These components may include the intercept, seasonal dummies, a

common trend or a seasonal trend. The percentiles of the proposed statistics obtained by the

Monte Carlo methods are reported. A series of the joint null hypotheses is proposed to be

used. The last accepted null hypothesis encompassing the first rejected hypothesis identifies

the appropriate combination of the deterministic regressors. Finally, DHF or HEGY type

tests are conducted using this set of fixed regressors, where the HEGY procedure distin-

guishes among the potential non-seasonal and seasonal unit roots.

The suggested algorithm is applied to fifteen seasonally non adjusted quarterly time

series. In two cases, seasonality is due to seasonal dummies and a seasonal trend. In ten

time series, adding the intercept to the HEGY or DHF type regression is sufficient. In two

cases, seasonal dummies and a simple trend are employed. In the remaining case, no fixed

regressor is necessary. In the second step, the HEGY tests are conducted. Results indicate

that while many of the series contain the non-seasonal unit root, only three of them contain

a seasonal one.

The proposed testing procedure provides a simple and well defined framework on how the

deterministic components should be handled when testing for seasonal unit roots. So far, a

battery of diagnostic tests needed to be conducted. Moreover, inference based on many of

the standard tests may have been flawed due to presence of unit roots. The F-type statistics

described in this study improve the existing methodology on both of these fronts. We see

the following extensions of the present results. First, one can easily accommodate the use

of seasonal data at different frequency, say monthly. Somewhat more demanding would be
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generalization of the present testing procedure to account for potential autocorrelation in

residuals.
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Table 1: Percentiles of F-type Statistics, DGP: xt = xt−4 + εt, εt ∼ N(0,1)

T 0.90 0.95 0.975 0.99 0.90 0.95 0.975 0.99

F1 F2

48 27.04 31.40 35.40 40.79 7.86 8.99 10.04 11.41
100 25.87 29.28 32.56 36.51 7.29 8.15 8.96 10.03
160 25.47 28.66 31.66 35.63 7.12 7.91 8.65 9.65
200 25.38 28.48 31.30 34.92 7.06 7.83 8.56 9.44

F3 F4

48 6.59 7.52 8.37 9.52 5.41 6.18 6.92 7.95
100 6.04 6.74 7.39 8.25 4.84 5.38 5.93 6.57
160 5.90 6.53 7.12 7.92 4.68 5.18 5.64 6.23
200 5.85 6.47 7.06 7.79 4.63 5.11 5.54 6.11

F5 F6

48 4.93 5.61 6.28 7.14 4.63 5.25 5.85 6.65
100 4.37 4.85 5.34 5.92 4.06 4.51 4.95 5.47
160 4.22 4.65 5.07 5.58 3.91 4.31 4.69 5.15
200 4.17 4.59 4.98 5.48 3.86 4.24 4.61 5.06

T is the number of observations.
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Table 3: Estimates from the Model: xt =
∑4

i=1 αiDit +
∑4

i=1 βiDitt + ρxt−4 + εt

series α1 α2 α3 α4 β1 β2 β3 β4 ρ

usgdp 0.28 0.28 0.28 0.28 1e-3 1e-3 1e-3 1e-3 0.94
(0.01) (0.01) (0.01) (0.01) (2e-7) (2e-7) (2e-7) (2e-7) (6e-4)

uspce 0.20 0.20 0.19 0.19 8e-4 8e-4 8e-4 8e-4 0.96
(0.00) (0.00) (0.00) (0.00) (1e-7) (1e-7) (1e-7) (9e-8) (3e-4)

usindp 1.23 1.25 1.24 1.25 2e-3 2e-3 2e-3 2e-3 0.68
(0.06) (0.06) (0.06) (0.06) (4e-7) (3e-7) (4e-7) (3e-7) (4e-3)

canun 1.78 1.70 1.63 1.64 5e-3 5e-3 6e-3 6e-3 0.69
(0.13) (0.11) (0.10) (0.11) (1e-6) (2e-6) (2e-6) (2e-6) (4e-3)

gergnp 0.85 0.86 0.86 0.86 1e-3 9e-4 9e-4 9e-4 0.84
(0.04) (0.05) (0.05) (0.05) (1e-7) (1e-7) (9e-8) (1e-7) (2e-3)

ukinv 1.24 1.24 1.24 1.24 7e-4 6e-4 7e-4 8e-4 0.87
(0.11) (0.11) (0.11) (0.12) (1e-7) (1e-7) (1e-7) (1e-7) (1e-3)

uktcons2.44 2.45 2.45 2.46 2e-3 1e-3 1e-3 2e-3 0.76
(0.50) (0.51) (0.51) (0.51) (2e-7) (2e-7) (2e-7) (2e-7) (5e-3)

ukndc 1.65 1.66 1.66 1.67 1e-3 1e-3 1e-3 1e-3 0.84
(0.23) (0.23) (0.23) (0.23) (9e-8) (8e-8) (9e-8) (1e-7) (2e-3)

ukgdp 2.31 2.32 2.32 2.32 1e-3 1e-3 1e-3 1e-3 0.78
(0.33) (0.33) (0.33) (0.33) (1e-7) (1e-7) (1e-7) (1e-7) (3e-3)

ukexp 2.68 2.69 2.67 2.68 3e-3 3e-3 3e-3 3e-3 0.70
(0.34) (0.34) (0.33) (0.33) (5e-7) (6e-7) (6e-7) (6e-7) (4e-3)

ukimp 4.14 4.14 4.14 4.12 5e-3 5e-3 5e-3 5e-3 0.54
(0.49) (0.49) (0.49) (0.48) (7e-7) (7e-7) (7e-7) (7e-7) (6e-3)

ukpinv 1.29 1.24 1.26 1.27 -2e-4 -1e-4 -2e-4 -3e-4 0.85
(0.19) (0.19) (0.19) (0.19) (4e-7) (4e-7) (4e-7) (4e-7) (3e-3)

ukeu 0.78 0.78 0.78 0.77 1e-4 1e-4 1e-4 1e-4 0.92
(0.23) (0.23) (0.23) (0.23) (3e-9) (3e-9) (4e-9) (4e-9) (2e-3)

swecon 0.59 0.60 0.59 0.62 9e-4 7e-4 7e-4 5e-4 0.71
(0.01) (0.01) (0.01) (0.02) (6e-8) (5e-8) (4e-8) (3e-8) (4e-3)

sweinc 0.60 0.61 0.63 0.68 7e-4 6e-4 4e-4 7e-4 0.74
(0.02) (0.02) (0.02) (0.03) (1e-7) (7e-8) (6e-8) (9e-8) (4e-3)

Standard errors reported in parentheses



Table 4: Joint Tests of Seasonal Unit Roots and Deterministic Components

series n F1 F2 F3 F4 F5 F6

usgdp 208 5.57 1.44 1.15 0.84 0.73 98.90***
uspce 208 5.69 1.49 1.54 0.91 1.01 169.33***
usindp 128 24.85 6.26 6.43* 3.60 4.03 10.44***
canun 112 26.25 * 6.61 5.74 3.80 3.61 3.97
gergnp 124 14.44 3.69 5.06 2.16 3.21 26.44***
ukgdp 136 15.77 4.02 3.32 2.30 2.08 15.94***
ukinv 136 12.47 3.18 3.12 1.82 1.95 7.26***

uktcons 136 11.69 2.96 2.80 1.70 1.76 19.00***
ukc 149 11.64 2.94 2.43 1.69 1.53 28.02***

ukexp 136 20.85 5.29 4.26 3.04 2.67 11.40***
ukimp 136 34.54** 8.72** 7.23** 5.00* 4.54* 12.62***
ukpinv 136 8.40 2.14 1.76 1.23 1.10 1.13
ukeu 136 2.58 0.65 3.43 0.38 2.15 7.67***

swecon 104 22.70 5.72 6.09* 3.41 3.96 11.77***
sweinc 104 16.48 4.19 4.74 2.43 2.98 5.61***
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