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1 Executive Summary

A standard Consumption based Capital Asset Pricing Model (CCAPM) with Constant

Relative Risk Aversion (CRRA) preferences cannot produce equity premium which can

match the data for plausible (i.e. low) values of risk aversion. This problem is referred

to as the equity premium puzzle. Mehra and Prescott (1985) illustrate the problem by

using a partial equilibrium approach. They calibrate a consumption process to the US

aggregate consumption data and compare the model-implied moments for asset returns

with historical returns. Hansen and Jagannathan (1991) use a reverse sequence. They

start with data on returns and derive restrictions for a stochastic discount factor (SDF).

SDF for the CCAPM with CRRA utility function is the intertemporal rate of substitution,

which depends on consumption. The restrictions are known as the Hansen-Jagannathan

volatility bounds. The bounds usually are constructed using returns on stocks and risk-

free government bonds. We add real estate to the set of considered assets and use its

return to derive the bounds, which are now slightly more restrictive. The newly calculated

bounds can be used to test a specific CCAPM. A natural choice for a model to be tested

is one that explicitly treats housing both as a consumption good and as an asset. We

use the model from Piazzesi, Schneider, and Tuzel (2007). We extend and re-construct

the dataset employed in Piazzesi, et. al. (2007) from the US National Income Product

Accounts (NIPA) data. We show that the volatility of the model-generated SDF is above

the Hansen-Jagannathan bounds.

Results from Davis and Martin (2005) suggest that the empirical success of the model

from Piazzesi, et al. (2007) may be sensitive to the used data frequency. To investigate

the issue, we construct quarterly US data from NIPA. The data include per capita con-

sumption of nondurables and services, as well as consumption of housing services. We

also construct quarterly series of durables’ consumption, following Yogo (2006) and Pakoš

(2011a). The series needs to be constructed since the stock of durables is only available

annually. We calculate the quarterly stock by assuming constant depreciation in a given

year. The average quarterly depreciation is 5.2%. We then proceed to use the same al-

gorithm to construct residential stock, which we combine with imputed rents and price

indices for residential investment to calculate real estate returns. The average quarterly

residential depreciation is 0.33%. We believe that we are the first one to calculate quar-

terly housing returns with rents. We add returns on stocks (including dividends) on S&P

500 Index and US government bonds. This means we have a complete set of data for

testing various versions of the CCAPM.

We have conducted some preliminary tests with our quarterly data and CCAPM with
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consumption of nondurables and services, durables, and housing services. We have not

been able to find plausible parameter values with sufficiently high volatility of SDF to be

above the Hansen-Jaganntha volatility bounds. This seems to be the case for both power

utility and Constant Elasticity of Substitution (CES) preferences. For power utility, we

use the fact that Hansen-Jagannthan bounds imply that the ratio of standard deviation

to the expected value of SDF is greater than the maximum Sharpe ratio, i.e. the ratio of

an asset risk premium to its standard deviation. This ratio is highest for housing returns.

The power utility model can produce SDF with sufficient volatility only for risk aversion

greater then 136. Therefore, simply adding housing and durables does notresolve the

equity premium puzzle. We have estimated the CES model by GMM and rejected it using

the Hansen J test. We have also randomly searched for parameter values, which would

generate sufficient volatility of SDF but so far have not found them. This is interesting

since Piazzesi, et al. (2007) uses CES preferences with housing services (with no durables)

and the model generate sufficient variance of SDF, as we have shown. The difference is

either due to slightly different definitions of data or different data frequency. For example,

Piazzesi, et al. (2007) do not use per capita consumption while Yogo (2006) does. The

definitions of various NIPA series can be slightly different at different frequencies and

some parameters of CCAPM may have different meaning for different frequencies.

We intend to investigate this issue thoroughly. We will look at three models with con-

sumption of nondurables and services, durables, and housing services with power utility,

CES, and Epstein & Zin (1989) preferences. There will be annual and quarterly data

frequencies, and total consumption vs per capita consumption. Overall, this is 12 com-

binations. We would like to test the models using Hansen J test plus using a classical

test based on Hansen-Jagannathan bounds (e.g. see Burnside 1994). This exercise should

produce publishable results. The targeted journals will depend on the outcome of our

investigation. For example, if we do not find a plausible SDF at the quarterly data fre-

quency (and explain why it exists at annual frequency), we would submit our work to the

Journal of Monetary Economics where the original article about the equity premium puz-

zle was published. If we do find a plausible SDF we can model it individually or jointly

with stock and real estate premia using a Markov chain.1 A resulting paper might be

submitted to the Journal of Business and Economic Statistics or perhaps to the Journal

of Finance.

The rest of the report is organized as follows. Section (2) characterizes in some detail

the equity premium puzzle and volatility bounds and provides a brief update on the cur-

1We have plenty of experience with Markov switching models, e.g. see Pakoš (2011b), Zemč́ık
(2001,2006).
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rent status quo with respect to established research results. Section (3) uses the model

and extended data from Piazzesi, et al. (2007) to show that SDF from this model an be

sufficiently volatile to satisfy Hansen-Jagannathan bounds. In section (4) we construct

NIPA data at quarterly frequency. This dataset contains real estate returns including

rents. Section (5) derives moments of SDF for the power utility model and three con-

sumption processes. It illustrates that a large risk aversion coefficient is needed to generate

sufficient SDF volatility.

2 Equity Premium Puzzle and Volatility Bounds for

SDF

The equity premium puzzle arises in the context of the CCAPM. This model imposes

restrictions on the covariance between the stochastic discount factor and asset returns.

The stochastic discount factor is given by the marginal utility growth of consumers. The

restrictions are captured by the Euler equation (see Guvenen and Lustig 2007a for a

summary of theoretical arguments):

Et[mt,t+1R
j
t,t+1] = 1, (1)

where mt,t+1 = β
Uc(Ci

t+1,Wt+1)

Uc(Ci
t ,Wt)

. Ci
t is the optimal consumption of consumer i and Rj

t,t+1 is

a return on asset j. W denotes items other than consumption, which enter the utility

function. The equation (1) can be understood using simple intuition. By investing a

small amount ξ, the investor reduces consumption today in return for extra consumption

ξRt+j tomorrow. For time-separable preferences, this translates into an optimality condi-

tion −Uc(C
i
t ,Wtξ+Et[βUc(C

i
t+1,Wt+1)ξR

j
t,t+1] which can be rearranged, yielding equation

(1). Rubenstein(1976) and Lucas (1978) derived the Euler equation in discrete time and

Breeden (1979) in continuous time.

The equity premium puzzle was identified by Mehra and Prescott (1985) who demon-

strated it using CRRA preferences. The puzzle was also inherently behind the rejection

of the same model by Hansen and Singleton(1983) using the Maximum Likelihood Esti-

mation. Let us define returns Re
t+1 on risky assets such as equity and Rf

t+1 returns on a

risk free asset. The equity premium is then EPt+1 = Re
t+1 −Rf

t+1. Assuming that returns

and consumption growth are jointly log-normal, it can be shown that:

E[EPt+1] = φCov(Re
t+1,∆ct+1), (2)

where φ is the coefficient of relative risk aversion and ∆ct+1 is the log consumption growth.

The covariance between equity premium and consumption growth rate was 0.0024 using
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the US data from Mehra and Prescott(1985). Since the equity premium was about 6% at

the time, this implies a risk aversion coefficient φ equal to 25. This is an unrealistically

large number: consumers with a risk aversion of this size would prefer a certain 18%

reduction in consumption to a bet with 50% chance of winning and 50% chance of loosing

20% of consumption. The puzzle appears across the world and has stood against time.

Dimson, Marsh, and Staunton (2006) show using data from 17 countries and the sample

from 1900 to 2005 that the worldwide premium is 4.5-5% even after the collapse of the

internet bubble in the early 2000s.

Hansen and Jagannathan (1991) view the Euler equation from a different perspective.

SDF can be projected on a space spanned by asset returns:

m = X ′π0 + ϵ, (3)

where X = (1 R′) is a vector of gross asset returns with R = (1 + r1, ..., 1 + rN)
′. Since

E[Xϵ] = 0, it follows that π0 = (E[XX ′])−1E[Xm]. Imposing (1) results in

π0 = P−1

(
Em
e

)
, (4)

where P = E[XX ′] and e is an (N × 1) vector of ones. Orthogonality of ϵ to R together

with non-negativity of its variance implies

V (m) ≥ π′
0E[(X − EX)(X − EX)′]π0

= (e− EmER)′Ω−1(e− EmER),
(5)

where Ω denotes the covariance matrix of R. The expression (5) can be written in the

terms of the standard deviation of the stochastic discount factor as

σm ≥ [(e− EmER)′Ω−1(e− EmER)]1/2. (6)

The restriction (6) does not require the stochastic discount factor to be specified and

parametrized. The bound depends entirely on observable moments of returns

R̄ =
1

T

T∑
t=1

Rt, Ω̂ =
1

T

T∑
t=1

(Rt − R̄)(Rt − R̄)′. (7)

The bound then can be calculated for a given Em. However, the choice of returns included

in the volatility bound is up to a researcher. Most researchers include some measure of

the US stock market performance such as the return on the S&P 500 Index. However, a

large portion of household wealth is invested in real estate and this report argues that the

return on housing should be included as well to study implications of the housing market

fluctuations for consumption. In the context of asset pricing theory summarized here by
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the volatility bounds, the impact of housing prices on consumption are both direct and

indirect. The direct impact is via equation (1), which captures the interaction between

the housing return and the discount factor. The indirect impact is via its effect on the

stock market return. It manifests itself in the off-diagonal terms of the variance-covariance

matrix of returns Ω. There is also the question of whether a risk-free return should be

included. If the risk-free rate rf exists, the equation (1) implies that Em = 1/(1 + rf ).

Since rft varies over time with its return to be riskless only between periods t and t + 1,

it can be approximated by its sample mean.This determines the mean of the stochastic

discount factor as well. A typical proxy for the risk free rate is the rate of return on the

short-term Treasury Bills. Alternatively, one can treat this return as risky due to inflation

and due to a tiny but non-zero probability of default. In this case, the Treasury Bill would

be treated as another asset in addition to stocks and to real estate. Both possibilities are

explored here.

Guvenen and Lustig (2007b) summarize numerous attempts to resolve the equity pre-

mium puzzle. They classify the attempts based on what is modified: (i) preferences, (ii)

the markets and asset structure, and (iii) the endowment process. Here we focus on the

various preference specifications designed to generalize the CRRA utility function in a

way which allows to generate a larger equity premium without using an unreasonably

high relative risk aversion parameter.

A popular approach to resolve the puzzle is based on the following specification of the

utility function:

Ut =
(Ct −Wt)

(1−φ)

(1− φ)
, (8)

where Wt is a function of the investor’s past consumption or of consumption of some

reference group. We speak of internal habit in the former case (see Sundaresan 1989

and Constantinides 1990) and catching up with the Joneses or external habit in the

latter case (see Abel 1990 and Campbell and Cochrane 1999). Recent research considers

preferences generating dynamics of the SDF similar to those produced by the external

habit formulation. We would like to concentrate on the inclusion of housing services into

the utility function in Piazzesi, Schneider, and Tuzel (2007) and of broadly defined durable

consumption in Yogo (2006). Both papers claim significant improvement of asset pricing

performance of their model.
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3 Housing Services and Volatility Bounds with Real

Estate Returns

This section first derives the restrictions on the moments of a stochastic discount factor.

The bounds are calculated using not only the stock market returns but also the returns on

housing. The restrictions are then applied in a special case where the stochastic discount

factor is specified using a model with housing consumption. The restrictions are used to

find parameters of this model satisfying the volatility bounds.

3.1 Parametrization of the Pricing Kernel

While the stochastic discount factor (the pricing kernel) does not have to specified for the

volatility bound to be computed, including real estate returns raises the issue of a proper

treatment of housing. A house is not only an asset but it also affects the utility of a

consumer by providing housing services. Therefore, rather then focusing on implications

of the Hansen-Jagannathan bounds for a general pricing kernel, the discount factor is

specified here using an asset pricing model with housing. Piazzesi et al. (2007) supplies

a convenient framework for this type of analysis.

The utility function in an economy with many identical agents is given by

E

[ ∞∑
t=0

βtu(Ct)

]
(9)

where Ct is aggregate consumption and

u(Ct) =
C

1−1/γ
t

1− 1/γ
. (10)

γ represents the intertemporal elasticity of substitution. 1/γ = φ is the relative risk

aversion coefficient. β characterizes the time preference. The aggregate consumption is a

function of nonhousing consumption of nondurables and services ct and shelter st:

Ct = w(ct, st) = (c
(λ−1)/λ
t + ϕs

(λ−1)/λ
t )λ/(λ−1). (11)

λ denotes the intratemporal elasticity of substitution. Shelter captures consumption of

housing services. The life-time utility is maximized subject to the budget constraint

pctct + pstst + qet ξ
e
t + qht ξ

h
t + qft ξ

f
t = (qet + pet c̄t)ξ

e
t−1 + (qht + pst s̄t)ξ

h
t−1 + ξft−1, (12)

where ξet , ξ
h
t , and ξft are asset holdings for equity, housing stock, and a risk-free asset,

respectively. The corresponding asset prices are qet ,q
h
t and qft , respectively. p

c
t and p

s
t are
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prices for nonhousing consumption and for shelter, respectively. In equilibrium, ct = c̄t,

st = s̄t, ξ
e
t = ξht = 1 (positive net supply), and ξft = 0 (zero net supply).

The Euler equation for the agents’ optimization problem is again

1 = E[mt+1(1 + ri,t+1)], i = 1, 2, 3, (13)

where r1,t+1 = ret+1 = (qet+1 + kt+1)/q
e
t − 1, r2,t+1 = rht+1 = (qht+1 + st+1)/q

s
t − 1, and

r3,t+1 = rft+1. kt and st are dividends and rents, respectively. The pricing kernel is given

by:

mt+1 = β
u′(Ct+1) w1(ct+1, st+1)

u′(Ct) w1(ct, st)
= β

(
ct+1

ct

)−1/γ
1 + ϕ( st+1

ct+1
)(λ−1)/λ

1 + ϕ( st
ct
)(λ−1)/λ

(γ−λ)/(γ(λ−1))

.

(14)

The stochastic discount factor (14) is expressed in real terms for ct and st, which are

difficult to measure precisely. The static first-order conditions imply that the marginal

rate of substitution between housing and nonhousing consumption is equal to their price

ratio, i.e.

pct
pst

=
w1(ct, st)

w2(ct, st)
= ϕ−1

(
ct
st

)−1/λ

. (15)

Using (15), the expenditure ratio is obtained as follows:

zt =
pctct
pstst

= ϕ−1
(
ct
st

)1−1/λ

= ϕ−λ

(
pct
pst

)1−λ

. (16)

The expenditure share on non-housing consumption is defined as

αt =
zt

1 + zt
. (17)

The intertemporal marginal rate of substitution (14) then can be expressed in terms of

nonhousing consumption and the expenditure share on nonhousing consumption:

mt+1 = β
(
ct+1

ct

)−1/λ (αt+1

αt

)(λ−γ)/(γ(λ−1))

. (18)

Given historical asset returns and observed consumption and nonhousing consumption,

the parameters needed to calculate the expected value and variance of the pricing kernel

(18) are β, γ, and λ. The objective is to find values for which the Hansen-Jagannathan

bound (6) is satisfied, assuming such values exist.
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3.2 Results

In this section, the empirical Hansen-Jagannathan bound is calculated using various com-

binations of the US stock, housing, and risk-free returns. Then we generate the time

series for the stochastic discount factor implied by the housing model from above and

the US housing and nonhousing consumption data. The Intertemporal Marginal rate of

Substitution (IMRS) is parametrized to satisfy the bound with all three returns. Finally,

the interaction of asset returns and the pricing kernel is discussed. The data used in this

report are annual from 1929 to 2008. This time period includes the most recent cycle of

the boom and a collapse on the housing market, as well as the decline of the stock market

in the early 2000s.

The housing return is constructed using data from National Income Product Accounts

(NIPA). The value of the housing stock is given by the depreciation-adjusted current-cost

of residential structures. The real estate-related cash-flow is represented by the aggregate

rental income. The return is adjusted to property tax. It is the only available return

on housing in the US, which takes into account the rental cash-flow. The exact source

series for this return and all the other data are described in detail in Data Appendix.

The peaks and troughs of the nominal housing return are displayed in Figure 1, which

shows high property returns after the end of the World War II, in the late 1970s and in

the early 2000s. There is also a peak in the mid 1980s, which is relatively small. Note

that high-returns do not necessarily coincide with high real estate prices. This is due to

the rental income as well as due to the fact that prices have to grow fast to generate high

returns but they do not have to be high in absolute terms.

The NIPA real estate return is compared to all major US housing returns used else-

where in literature (see the Data Appendix for details). Flavin and Yamashita (2002) use

the average risk-free rate to substitute for the lack of rental income in their definition. We

calculate the property return according to their definition but employing the NIPA data.

In addition, other nominal returns are used, which simply define the housing return based

on a real estate price appreciation. Sources for these are the website of Robert Shiller,

the Federal Housing Finance Agency (FHFA), and the National Association of Realtors

(NAR), respectively. Summary statistics comparing these series using a common sample

from 1976 to 2008 are in Table 1 and the series are plotted in Figure 1. The series have

all very similar properties with returns based on the Shiller data being a potential outlier.

The graph however illustrates that it moves with the other series most of the time even

though the time of peaks and troughs is somewhat different.

Performance of the stock market is measured by returns on the S&P 500 index. The re-

turns on three-months T-Bills approximate the risk-free rate. Finally, all nominal returns
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are adjusted to inflation, which is measured by the difference in growth rates between

nominal and real non-housing consumption from NIPA. The summary statistics for real

returns are shown in Table 2. The mean values for returns are as expected, with the

equity risk premium at about 7%. The housing return is smaller than the stock market

return but it seems also less risky based on its standard deviation. Interestingly, the

mutual correlations are fairly low.

The real returns are used to construct the volatility bounds for the stochastic discount

factor. The bounds are calculated for all seven combinations of the three considered

returns for Em=0.80 to 1.20 in intervals of 0.01. Only three combinations are displayed

in Figure 2 - these sufficiently illustrate the relevant pattern. Adding one asset at a time

gradually restricts the subset of plausible combinations of σm and Em. The minimum for

the Hansen-Jagannathan bound for the three returns is close to the point of 1

1+rft
= 0.9979

which equals to Em assuming there is a risk-free asset. This turns out to be relevant for

the parametrization of the pricing kernel.

The objective is now to find parameter values for the stochastic discount factor (18),

for which the volatility bound (6) is not violated. Rather than attempting to estimate

preference parameters subject to the volatility restriction, a simple grid search is con-

ducted over the set of ‘reasonable’ parameter values. This search sets the rate of time

preference β to 0.99. Plausible levels of the risk aversion γ are typically considered to be

between 0 and 5. For the risk-aversion of 5, a consumer with the standard power utility

function is willing to pay 9% to avoid facing a bet, where she has 50-50 chance of winning

or loosing 20% of her wealth. Piazzesi et al. (1997) set the elasticity of substitution be-

tween housing services and nonhousing consumption λ to 1.05 and 1.25, respectively. The

data for consumption and housing expenditures (shelter) are from NIPA tables. Details

are in Data Appendix. Summary statistics as well as correlations with the three returns

are given in Table 2. The expected value of the stochastic discount with λ = 1.06 and

γ = 4.66 is 0.9981 and its standard deviation is 0.7603, which is greater than 0.6998, the

Hansen-Jagannathan bound for our three assets. This stochastic factor has the expected

value closest to 1

1+rft
= 0.9979 for the defined subset of parameters. Figure 3 depicts

the relationship between Emt+1 and the standard deviation of mt+1 for λ = 1.06 and

γ = 0.01, 0.02, ..., 5.00. For illustration, we also show a similar curve for λ = 1.12 and

γ = 7.10, 7.11, ..., 12.10. This indicates that higher values of the elasticity of substitution

require higher levels of risk aversion to generate a pricing kernel satisfying the volatility

condition.

9



4 Quarterly Consumption and Real Estate Returns

We construct our consumption series using the National Income Product Accounts (NIPA)

provided by the Bureau of Economic Analysis (BEA). There are three series: real per

capita consumption of nondurables and services minus housing c, real per capita con-

sumption of durables d, and real per capita housing (shelter) s, i.e. the service flow

imputed from rental values of houses. To construct the data for these series, we first

collect nominal spending from Table 2.3.5 on Personal Consumption Expenditures (PCE)

for nondurables (line 8), services (line 13), housing (line 15), and durable goods flow (line

3). To get the series in 2005 dollars, we divide expenditures by price indices from the

NIPA Table 2.3.4. with lines corresponding to the ones from Table 2.3.5. We sum up

real consumption of nondurables and services, subtract housing and divide the result by

population from the NIPA Table 7.1, line 18 (midperiod, seasonally adjusted). Similarly

for housing. The data period is limited by availability of the rent data, which starts in

1959q1. Our sample ends in 2010q3.

The process is more complicated for durables where we need to calculate the quarterly

stock of durable goods. We follow Yogo (2006). The quarterly stock of durable goods is

given by

dt+1 = (1− δdt ) dt + et, (19)

where dt is the households stock of durable goods, δdt is quarterly depreciation of the

durable goods, and et are quarterly expenditures on durable goods corresponding to the

line 3 from Tables 2.3.5 and 2.3.4, respectively. BEA only calculates net stock annually

and reports them in the Table Detailed Estimates for Fixed Assets and Consumer Durable

Goods. The real net stock of durable goods at the end of each year is given by multiplying

the Chain-Type Quantity Index by the current-cost net stock of durable goods from 2005.

Let us define t∗ as the last quarter of each year. We assume that the depreciation does

not change within the course of one year, i.e. δdt∗+1 = δdt∗+2 = δdt∗+3 = δdt∗+4It follows from

(19) that

dt∗+4 = et∗+4+(1−δdt∗+1) et∗+3+(1−δdt∗+1)
2 et∗+2+(1−δdt∗+1)

3 et∗+1+(1−δdt∗+1)
4 dt∗ . (20)

Each year, we calculate δ, which solves this equation for given stocks and expenditures.

We plot the depreciation in Figure 4. The average depreciation from 1959 to 2010 is 5.2%.

Figure 5 shows the quarterly stocks of durable goods per capita in 2005 dollars.

Figure 6 depicts growth rates of all three consumption series and Table 3 reports

their summary statistics. The growth of consumption of durables is mostly positive,

with higher rates visible prior to recessions, for example in the early 1990 and prior to
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2008. The average is twice as high as averages for the other two series, reaching 3.9% per

year. The consumption of nondurables and services typically becomes negative during

recessions. The imputed rent is very similar to c with respect the summary statistics. It

deviates from c quite often, most notably around 2006, which was the beginning of the

decline in housing prices. Normality in all series is rejected based on the Jarque-Bera

statistic at the 10% level of significance. Housing is only mildly correlated with the other

two series while the correlation between c and d is more than twice as high.

To estimate the parameters of our model and to calculate the volatility bounds, we

also need asset returns. We consider three types of assets, real estate, stocks, and a

risk-less asset. Computation of the real estate returns is not simple, mainly because the

residential stock is not available quarterly, there are property taxes, the price of land is

not available and neither is quarterly depreciation. We use the definition of a housing

return from Piazzesi et al. (2007):

qht ξht /0.64+pstst
(qht−1 ξht−1/0.64)

(ξht /ξ
h
t−1)

− (1− 0.33) ∗ 0.00625− δht − 1. (21)

Our measure of house price qh is the price index for investment in residential structures

from the Table 5.3.4. - Price Indexes for Private Fixed Investment by Type (line 18).

This index is available quarterly and Piazzesi et al. (2007) state that correlation of their

(annual) index with the index for new residential investment is about 0.80. Piazzesi et al.

(2007) estimate that the value of land is 36% of the total housing value. Assuming that

land prices are perfectly correlated with the price of structures, we adjust house prices to

qht /0.64). ξ
h
t is the net stock of residential housing. Similarly to the stock of durable goods,

it is only reported annually. We therefore replicate the procedure for durable consumer

goods for residential fixed assets. The current-cost net stock of residential assets and the

corresponding Chain-Type Quantity Index are from the Table for Residential Detailed

Estimates. Then we calculate the real quarterly investment in residential structures using

investment in residential structures (line 18) from Table 5.3.5. Private Fixed Investment

by Type and a price index (line 18) from Table 5.3.4. Price Indexes for Private Fixed

Investment by Type. Once we have real annual residential stock and quarterly investment,

we proceed by assuming the housing depreciation δht does not change in a calendar year

and by replicating the procedure for durable goods based on equation (20). pst is the

nominal imputed rent (price of shelter) from Table 2.3.5. (line 15), which we previously

used to calculate st. We further assume that the marginal income tax rate is 33% and the

annual property tax is 2.5%. Then we can calculate the quarterly property return using

equation (21). To the best of our knowledge, this is the first quarterly housing return in

the real estate literature, which includes cash-flows approximated by rents.
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Equity returns are returns on the SP500 index. We transform monthly value-weighted

returns inclusive of dividends (VWRETD) from WRDS into quarterly returns. The risk-

free rate is the 3-Month Treasury Bill: Secondary Market Rate (TB3MS) from Board

of Governors of the Federal Reserve System. We use the first rate in each quarter. We

adjust all returns to inflation using the price index for all consumption expenditures from

the NIPA Table 2.3.4 (line 1). Figure 7 plots all real returns and Table 3 contains their

summary statistics. The graph illustrates, among other things, episodes of low equity

returns following the burst of the Internet bubble in the early 2000s or negative property

returns after collapse of the real estate bubble n 2006. The risk-free rate increased in the

early 1980s and following the financial crisis in 2008. The property premium is 2.1% per

annum and the equity premium is 5.0% annually. The equity premium is somewhat lower

that 6% appearing in the seminal Mehra and Prescott (1985), mainly due to two major

down cycles in the last 12 years. Mutual correlation among returns is below 20% with

the exception of the correlation between property returns and the risk free rate, which

is -0.21. Otherwise stock returns are correlated with consumption of non-durables and

services while property returns are correlated with durables.

5 Sharpe Ratios, Housing and Durable Goods, Quar-

terly Data

We have only recently managed to construct our quarterly dataset and have not inves-

tigated it yet thoroughly. So, far we have not been able to find plausible combination

for parameter values of various preference specifications, which would result in moments

for SDF above the Hansen-Jagannathan volatility bound. In contrast to the results with

annual data it seems that adding housing services and/or durables does not improve the

performance of the CCAPM when quarterly data are used. We illustrate this for a sim-

ple model with a power utility function with consumption of nondurables and services c,

durables d and housing services (shelter/imputed rent) s:

U(c, d, s) =
(cwcdwdsws)1−φ

1− φ
, (22)

where wc, wd, and ws are budget shares for c, d, and h respectively. Note that ws =

1 − wc − wd. φ is the coefficient of relative risk aversion. The intertemporal rate of

subsitution is given by:

mt+1 = β
(
ct+1

ct

)wc(1−φ)−1
(
dt+1

dt

)−wdφ (st+1

st

)−φws

. (23)
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Taking logs yields:

logmt+1 = log β − (1− (1− φ))∆ct+1 − φwd∆dt+1 − φws∆st+1, (24)

where ∆’s denote growth rates.

Cochrane (2001, see eq. 5.24) shows that the following duality between SDF volatility

and Sharpe ratios holds:

max
EPi

∣∣∣∣∣ EPi

σ(EPi)

∣∣∣∣∣ ≤ σ(m)

E(m)
, (25)

where EPi is premium of a return on an asset i over the risk free rate. Let us assume

that the growth rates of the three consumption related processes are jointly normal with

mean ψ and variance-covariance matrix Υ. This means that m is lognormal and:

E(m) = exp(E(logm) + 1
2
V ar(σ(m)),

E(m2) = exp(2E(logm) + 2 V ar(logm)),
σ2(m) = exp(2E(logm) + V ar(logm))(exp(V ar(logm))− 1).

(26)

It follows that

σ(m)

E(m)
=
√
eσ2(logm) − 1 ≃

√
1 + σ( logm)− 1 ≃ σ(logm). (27)

σ2(logm) is the variance of logm which is given by ν ′Υν, where

ν = (1− (1− φ)wc,−φ wd,−φ(ws)).
′ (28)

As a first-round approximation, we set the budget shares equal to the simple average

shares in quarterly consumption per capita levels nondurables and services, durables, and

housing services respectively:

ν = (0.31, 0.60, 0.09).′ (29)

The sample is 1959q2-2010q3. Now we can write

max
EP

∣∣∣∣∣ EPi

σ(EPi)

∣∣∣∣∣ ≤ σ(logm). (30)

The Sharpe ratios for quarterly stocks and real estate returns are 0.15 and 0.40, respec-

tively. Therefore, the maximum Sharpe ratio is 0.40. The standard deviation of logm

is a function of the risk aversion coefficient φ. The value of this coefficient needs to be

at least 136 for the standard deviation to be greater than 0.40. This means that adding

durables and housing services in quarterly data does not imply resolution of the equity

premium puzzle in CCAPM with CRRA preferences. We have also estimated the param-

eteres of CCAPM with CES preferences and all three consumption series and the model

was strongly rejected using the Hansen J test. We intend to investigate CCAPM with

Epstein-Zin preferences next.

13



References

Abel, A. B. (1990). “Asset Prices Under Habit Formation and Catching Up With the

Jones,” American Economic Review 80, 38-42.

Burnside, C. (1994).“Hansen-Jagannathan Bounds as Classical Tests of Asset Pricing

Models,” Journal of Business and Economic Statistics 12(1), 57-79.

Breeden, D.T. (1979). “An Intertemporal Asset Pricing Model with Stochastic Consump-

tion and Investment Opportunities.” Journal of Financial Economics 7, 265-296.

Campbell, J. Y., and J. H. Cochrane (1999). “Force of Habit: A Consumption-Based

Explanation of Aggregate Stock Market Behavior,” Journal of Political Economy

107(2), 205-251.

Cochrane, J. H. (2001). Asset Pricing. Princeton University Press, Princeton and Ox-

ford.

Constantinides, G. M. (1990).“Habit-formation: A Resolution of the Equity Premium

Puzzle,” Journal of Political Economy 98, 519-543.

Davis, M.A., and R. F. Martin (2005). “Housing, House Prices, and the Equity Premium

Puzzle.” Finance and Economics Discussion Series 2005-13, Federal Reserve Board,

Washington, D.C.

Dimson, E., P. Marsh, and M. Staunton (2006). “The Worldwide Equity Premium: A

Smaller Puzzle.” London Business School working paper.

Epstein, L.G. and S.E.Zin (1989).“Substitution, Risk Aversion, and the Temporal Be-

havior of Asset Returns,”Journal of Political Economy 99, 263-286.

Flavin, M. and T. Yamashita (2002). “Owner-occupied housing and the composition of

the household portfolio,” American Economic Review 92, 345362.

Guvenen, F. and H. Lustig (2007a). “Consumption Based Asset Pricing Models: The-

ory.” Social Science Research Network No. 968061.

Guvenen, F. and H. Lustig (2007b). “Consumption Based Asset Pricing Models: Em-

pirical performance.” Social Science Research Network No. 968063.

Hansen, L.P. and R. Jagannathan (1991).“Implications of Security Market Data for

Models of Dynamic Economies,”Journal of Political Economy 99, 225-262.

14



Hansen, L.P. and K. Singleton (1983).“Stcohastic Consumption, Risk Aversion, and the

Temporal Behavior of Asset Return.” Journal of Political Economy 91, 249-265.

Lucas, R. (1978). “Asset Prices in an Exchange Economy.” Econometrica 46(6), 1429-54.

Mehra, R. and E. Prescott (1985).“The Equity Premium: A Puzzle.”Journal of Monetary

Economics 15(2), 145-161.
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Data Appendix: Annual Data

The housing return is constructed using NIPA tables. Note that the numbering of NIPA

tables has changed recently and therefore there is not exact one-to-one matching of the

data series presented here to the data in Piazzesi et al. (2007). The nominal housing

return is calculated as:

rht = (qht ξ
h
t + pst st)/q

h
t−1 ξ

h
t−1 − (1− τi) τp − 1. (31)

where qht ξ
h
t is the current-cost of residential structures taken from the Fixed Assets Table

2.1. The table provides the year-end estimates (in billions of dollars) of Current-Cost Net

Stock of Private Fixed Assets, Equipment and Software, and Structures by Type. The

costs of residential structures are in line 59 of the table. Same information is given in line

1 of Fixed Assets Table 5.1, which is Current-Cost Net Stock of Residential Fixed Assets

by Type of Owner, Legal Form of Organization, Industry, and Tenure Group. The costs of

residential structures account for both depreciation and the size of the housing stock and

therefore there is no need to further adjust the formula for rht . qt st is the rental income of

persons with capital consumption adjustment from line 21 in Table 7.4.5. entitled Housing

Sector Output, Gross Value Added, and Net Value Added. τi = 0.33 and τi = 0.025 are

the marginal income tax rate, and the property tax rate, respectively.

The nominal housing return constructed according to equation (31) has been compared

to several widely used measures of appreciation of the real estate value. The first such

measure is computed following Flavin and Yamashita (2002) according to

qht
qht−1

+ r̄f + τi τp − 1. (32)

The housing price qht is calculate using the current cost of residential cost structures qht ξ
h
t

discussed above, which is divided by the the chain-quantity index for residential fixed

assets from line 1 in Fixed Assets Table 5.2 named Chain-Type Quantity Indexes for

Net Stock of Residential Fixed Assets by Type of Owner, Legal Form of Organization,
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Industry, and Tenure Group. r̄f = 0.075 is from the risk-free rate used in this paper.

τi = 0.33 and τi = 0.025 as for the NIPA housing return. Several other nominal housing

returns are calculates as a change in real estate prices, i.e. qht /q
h
t−1−1. This data are from

the website of Robert Shiller, from the FHFA, and from the NAR (Median Sales Price of

Existing Single-Family Homes), respectively.

The stock returns are from the web-site of Robert Shiller and are computed as

ret = (qet+1 + kt+1)/q
e
t − 1 (33)

where qet is the S&P 500 Index and kt is the corresponding dividend series. The risk-free

rate is from Mehra and Prescott (1985) from 1930 to 1933. From 1934 to 2008, it is

the 3-Month Treasury Bill Secondary Market Rate from the Board of Governors of the

Federal Reserve System. All nominal returns are adjusted to inflation by the difference

between the real and nominal non-housing consumption growth rates.

NIPA is the data source for consumption growth. The real aggregate consumption ct

is calculated using lines from the nominal Personal Consumption Expenditures in Table

2.3.5. adjusted to inflation by the Personal Consumption Index from Table 2.3.4. Specifi-

cally, the non-housing consumption series is given by the consumption of nondurable goods

(line 6) and services (line 13) minus clothing and shoes (line 8) and minus housing services

st (line 14). The expenditure ratio zt is the ratio of the nominal non-housing consumption

and expenditures on housing services from Table 2.3.5 (line 14). Given zt, the expenditure

share on non-housing consumption is calculated using (17). The total consumption Ct is

the sum of nondurable goods and services (i.e. lines 6 and 13).

17



Table 1: Housing Returns Statistics

Notes:
(1) Annual data, sample 1976-2008.
(2) NIPA denotes returns calculated using National Income Product Accounts; FY - stands
for returns calculated using NIPA data and the Flavin Yamashita definition of housing
returns; FHFA are real estate returns computed using data from Federal Housing Finance
Agency; and NAR - returns using the data from the National Association of Realtors.

NIPA FY SHILLER FHFA NAR
Mean 6.20 6.01 0.87 5.65 5.62
Std. Dev. 4.24 3.71 6.77 3.51 4.48

Correlations
NIPA 1.00
FY 0.99 1.00
SHILLER 0.43 0.36 1.00
FHFA 0.90 0.89 0.38 1.00
NAR 0.89 0.89 0.39 0.85 1.00
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Table 2: Data Summary Statistics

Notes:
(1) Annual data, sample 1929-2008.
(2) ct and Ct are the real non-housing and total consumption expenditures for nondurables
and services.
(4) rht , r

s
t , and r

f
t are real housing, stock, and risk-free returns.

∆ ln ct αt ∆ lnαt ln zt ∆ ln st ∆ lnCt rht ret rft

Mean (%) 3.01 82.14 0.04 153.09 3.43 3.08 2.83 7.39 0.35
St. dev. 2.30 1.74 0.71 12.36 2.04 2.16 4.08 19.38 3.90

Correlations
∆ ln ct 1.00
αt 0.41 1.00
∆ lnαt 0.46 0.14 1.00
ln zt 0.37 1.00 0.13 1.00
∆ ln st 0.48 0.57 -0.01 0.56 1.00
∆ lnCt 0.99 0.44 0.41 0.41 0.58 1.00
rht 0.24 0.19 -0.06 0.20 0.27 0.25 1.00
ret 0.13 0.02 0.07 0.01 -0.08 0.10 0.17 1.00

rft -0.39 -0.74 -0.57 -0.73 -0.48 -0.41 -0.09 0.07 1.00
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Table 3: Summary Statistics, 1959q2-2010q3

Notes: c is real per capita consumption of nondurables and services minus consumption;
d and s are real per capita consumption of durables and housing (shelter), respectively;
rh and re are real housing and equity returns, respectively; and rf is a real return on the
risk-free asset

c d h rh re rf

Mean 0.0049 0.0097 0.0051 0.0096 0.0168 0.0043
Median 0.0046 0.0105 0.0057 0.0086 0.0262 0.0044
Maximum 0.0228 0.0219 0.0172 0.0401 0.1989 0.0222
Minimum -0.0163 -0.0024 -0.0138 -0.0281 -0.3030 -0.0099
Std. Dev. 0.0053 0.0052 0.0058 0.0108 0.0818 0.0057
Jarque-Bera 27.9545 6.2240 5.2624 2.8555 32.9736 3.8323
(Probability) (0.0000) (0.0445) (0.0720) (0.2399) (0.0000) (0.1472)

Correlation

d 0.40
h 0.18 0.16
rh 0.05 0.29 0.11
re 0.24 -0.07 -0.11 -0.12
rf 0.16 -0.06 -0.04 -0.21 0.09
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Figure 1: Nominal Housing Returns
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Figure 2: Volatility Bounds
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Figure 3: Pricing Kernel Volatility

Notes:
(1) ra is risk aversion γ and elasticity is the intratemporal elasticity of substitution between
housing and nonhousing consumption λ.
(2) re rh rf is the volatility bound implied by the data on the equity, housing, and risk-free
returns, respectively.
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Figure 4: Quarterly Depreciation at Annual Frequency
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Figure 5: Per Capita Stock in 2005 Dollars
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Figure 6: Real Per Capita Consumption Growth Rates
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Figure 7: Real Returns
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