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Part I

Introduction

1 Asset Pricing: Theory and Evidence

In this section, I provide an extensive commentary to the subsequent �ve papers and a

conclusion, which form the present monograph. The main objective of the commentary

is putting this substantive body of original research in the context of literature on asset

pricing. First, I discuss empirical properties of asset returns relevant to this work, which

include stocks, bonds, and property returns. The theoretical background of the presented

research is then divided in two parts, beta pricing models and consumption based asset

pricing models, respectively. Third, a lot of attention is paid to the econometric method-

ology appearing in the �nance literature since improvements of the empirical toolbox of

a �nancial economist play an important part in all the included papers. Finally, the

articles are brie�y described and I characterize their scienti�c contribution.

1.1 Empirical Properties of Asset Returns

The primary objective of the presented work is to study economic foundation of asset

returns from the empirical perspective. Two main groups of assets will be considered:

�nancial securities and real estate. Financial securities are further divided into basic

securities such as equities (stocks) and �xed-income securities (bonds, deposits, etc.)

and into derivatives (options, swaps, futures and forwards, etc.). Here the focus will be

solely on the basic �nancial assets. The real estate market has been included in this

analysis because of its undeniable impact on performance of economies via savings and

consumption decisions of economic agents. It a¤ects not only the size of savings but

their allocation as well. Various econometric and economic models will be calibrated or
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estimated using data from the United States. This decision re�ects the scope of the US

economy, the richness of available data and the possibility to compare the results with a

large body of existing research.

Stock returns have been studied extensively. up to the 1980s, they were consid-

ered unpredictable as a result of market e¢ ciency - see Malkiel (1996) for an informal

treatment and Campbell, Lo, and MacKinlay (1997, Ch.2) for a survey of early research

regarding the random walk hypothesis. However, evidence started mounting in the 1980s

that the asset returns were in fact predictable to some extent. In particular, both in-

dividual and portfolio returns tend to be positively serially correlated in the short run

(typically in less than a year) and negatively in the long run. The former empirical

observation is indicative of the so called momentum. The latter provides the basis for

contrarian investment strategies when you buy (�nancial) assets when the market (a

stock, a portfolio, etc.) is low and sell them when it is high. Some variables such as the

dividend/price ratios and term premium have been found useful in forecasting returns

on equities (see Cochrane 1999). Also, stock market volatility changes over time, it in-

creases in recessions and falls in booms. Deviations from the random walk hypothesis

pose a challenge for the asset pricing theory. The observed patterns can be either ratio-

nalized by generalization of existing theory (e.g. via introduction of market frictions or

of a generalized class of preferences, see Campbell, Lo, and MacKinlay 1997, Ch.8) or

attributed to irrational behavior of investors (see Shiller 2001 and Barberis and Thaler

2002).

Bonds are �xed-income securities, which do not entitle their owner to any type of

ownership. Corporate bonds are typically less risky than stocks partly because of their

preferential treatment in case a company is in trouble. Government bonds are almost

risk-free as default is highly unlikely in developed countries and hence the only substantial

risk is due to in�ation. The interest rates (and holding returns) of government bonds

di¤er based on their maturity. Plotting interest rates against maturities characterizes

the so called term structure (the yield curve). Similarly to stocks returns, bond returns
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were thought to be unpredictable in the 1980s. Unpredictable bond returns correspond

to the expectations model of the term structure, in which the upward sloping yield curve

is interpreted as an expectation of higher short-term rates in the future rather than a

term premium. However, further research showed that an unusually steep yield curve

does in fact signal higher returns on long term bonds with respect to short term bonds in

the next period (see Cochrane 1999). Even though the predictability of bond returns is

not a main concern in this monograph, some of the methodology developed here can be

used to �nd whether the bond returns are statistically predictable. My primary interest

is the relationship between the stock returns and the (almost) risk-free government bond

returns. The di¤erence between the two is referred to as an equity premium and it has

been the center of attention of a large body of �nancial literature. It seems (see Mehra

and Prescott 1985 and numerous subsequent papers) that the observed equity premium

is irrationally high. In other words, it is puzzling that investors do not invest more in the

stock market, drive the stock prices up and the returns down, and reduce the empirical

risk premium of stocks over government bonds.

The last class of asset returns considered are returns on real estate i.e. the �rst-

di¤erenced real house prices. Since the mid 1990s, real house prices have been rising

around the world, in countries such as Australia, United Kingdom, Ireland, the Nether-

lands, Spain, Sweden, and in the United States. Many Central and Eastern European

countries, including the Czech Republic, have also experienced raising property values.

The bullish real estate markets may have helped to hold o¤ the worldwide recession but

there were many indicators that the high real estate prices were not entirely supported

by economic fundamentals. This proved to be the case especially for the United States

and Britain but potentially for other European countries as well. Collapsing real estate

prices can have dire consequences, which include instability on the �nancial markets and

a possible recession. Studying patterns of real estate returns and their relationship with

�nancial securities is clearly of signi�cant importance. Englund and Ioannides (1997)

list some stylized facts regarding the real returns on residential real estate. Mainly, they
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are predictable by their past values as well as by the GDP growth and the rate of change

in the real rate of interest rate. Other attributes of the housing returns are their positive

correlation with �nancial returns, mainly stocks (e.g. see Kennedy and Andersen 1994)

and with consumption (e.g. Case, Quigley, and Shiller 2001).

1.2 Beta Asset Pricing Models

The beta asset pricing models derive their name from the market beta in the Capital

Asset Pricing Model (CAPM). The origins of the CAPM start with the mean-variance

analysis of Markowitz (1952), in which he �rst characterizes the solution to a portfolio

problem by minimizing a variance (as a measure of risk) for a given expected return

on a portfolio. This solution has become known as the e¢ cient frontier. Tobin (1959)

adds a risk-fee asset to the analysis of Markowitz (1952), which simpli�es the solution.

In such a case, the e¢ cient frontier becomes a straight line and all investors hold the

same proportions of risky assets in their portfolios. This does not mean that investors�

attitudes towards risk are the same; on the contrary, their risk aversion di¤ers. The only

assumptions made are concavity of the utility function (i.e. all investors are risk averse)

combined with normality of asset returns.1 Finally, it was shown (see Sharpe 1964 and

Lintner 1965) that in equilibrium, all investors hold the market portfolio. Expected

return on an asset in excess of the risk free rate in the CAPM is then given by a product

of beta and the excess market return over the risk-less rate. The beta is the measure of

risk in this model and is expressed as the ratio of the variance of the asset return with

the market portfolio relative to the variance of the market portfolio.

The CAPM has been tested extensively empirically since the beginning of its exis-

tence. Early on, during the 1960s and 1970s, the CAPM seemed to capture well both

the cross-section and time-series properties of asset returns. One of the �rst deviations

from this conclusion was the size e¤ect identi�ed in Banz (1981). The nature of the

1Alternatively, the utility function can be quadratic.
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size e¤ect lies in the observation that the returns on stocks of relatively small �rms

tend to do better than predicted by the CAPM. In other words, the market beta is not

su¢ cient to capture the cross-section of asset returns. Similar observations were made

using other �rm-speci�c characteristics. Bhandari (1988) �nds that there is a positive

relation between average returns and leverage, even after controlling for size measured

by the market equity (ME). Rosenberg, Reid, and Lanstein (1985) show that the ratio

of a �rm�s book value of equity (BE) to size is also positively related to average returns.

Controlling for size and the market beta, Basu (1983) documents that earnings-price

ratio (E/P) adds to the explanatory power of cross-section of returns. All such evidence

was brought together in Fama and French (1992). In a univariate setting, they con�rm

a strong relationship between the average returns and the market beta, ME, leverage,

E/P, and BE/ME, respectively. In multivariate regressions, it is ME and BE/ME, whose

relation with average returns persists.

Results summarized in Fama and French (1992) led to the conclusion that ratio-

nally priced assets (mainly stocks) were related to multidimensional risks. A number

of factors were considered as proxies for these risks. The standard economic factors

in multivariate regressions include the market return and consumption, which are both

crucial elements in equilibrium asset pricing models. Other variables characterizing the

state of an economy or the default premium, term structure, industrial production and

money supply. A seminal paper that uses macroeconomic risk factors is Chen, Roll, and

Ross (1986). Some researchers have instead focused on statistical factors typically based

on the principle-components analysis - see for example Lehman and Modest (1988) and

Connor and Korajczyk (1988). Predictions based on statistical factors do not outperform

predictions based on macro variables (see Ferson and Korajczyk 1995).

Widely popular are two new factors constructed in Fama and French (1993) which

were inspired by the results from Fama and French (1992). The �rst factor captures the

excess returns on stocks with high BE/ME over stocks with low BE/ME while controlling

for size. The other factor is the return on stocks of small �rms over the return on
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stocks of large �rms while controlling for BE/ME. The former factor is often referred

to as HML �high-minus-low") and the latter as SML (�small-minus-big"). Recently, the

Fama and French factors have been related to macroeconomy. For example Vassalou

(2003) emphasizes business cycle information of the Fama-French factors while Lettau

and Ludvigson (2001) link the factors to consumption. The macroeconomic factors are

therefore in some sense substitutes for the Fama-French factors. Also, considering the

turmoil on the �nancial markets since August 2007, they may be more important than

factors related to properties of individual stocks.

1.3 Consumption Based Asset Pricing Models

The CAPM is essentially a single-period model which obviously restricts the analysis of

an individual�s consumption and portfolio choices. To �nd the individual�s optimal life-

time savings and investment strategies, one needs to solve an individual�s multi-period

consumption and portfolio choice problem. The multi-period model of consumption and

portfolio choice characterizes demand for assets in a general equilibrium-setting. The

supply side can be fully determined by an explicit model of �rm production technologies.

Lucas (1978) introduces the so called �tree�model where he refers to production assets

as trees. A consumer can purchase shares which entitle her to ownership of a tree (trees)

and the fruit it produces. This is a modelling analogy of a stock market where trees

correspond to �rms and fruit to dividends. The amount of fruits (production) each year

is determined exogenously by a stochastic process. This model will be referred to as the

Consumption based Capital Asset Pricing Model (CCAPM).

Using the exogenous law of motion for production leads to an endowment economy,

which will be the basis of a subsequent analysis in the presented work. While the trees

represent risky assets, it is also assumed that there is a risk-free asset. To solve for the

law of motion for asset prices (and hence returns on the assets), it remains to specify

preferences over the consumption process and the exact nature of the stochastic process
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driving the output. Benchmark examples are a power utility function for preferences and

a Markov state process for the output. Once all the necessary ingredients are available,

the stock price process is determined by equaling supply and demand for both assets.

This characterizes the returns on both stocks and bonds and the resulting process can

be compared with the real-life data.

The Lucas tree-model is a full-equilibrium model whose predictions can be easily

tested against the observed asset returns. Mehra and Prescott (1985) assumed consumers

had a utility function with constant relative risk aversion. This is a power utility function

for which the curvature parameter is equal to the relative risk aversion coe¢ cient, which

is in turn the reciprocal of the intertemporal elasticity of substitution. They also assumed

that the law of motion for the endowment process was a two-state Markov chain. The

intuition behind the Markov process was fairly simple - there were two states of the world,

in one there is a booming economy and hence faster growing consumption and in the

other there is a recession and slowly growing consumption. Specifying the endowment

process as a Markov chain also enables one to discretize the �rst order conditions of the

consumer optimization problem. This solution method is a special case of a gaussian

quadrature rule (see Tauchen and Hussey 1991 for details).

Mehra and Prescott (1985) calibrated the parameters of this process to match data

on the US per consumption of non-durables and services from 1989 to 1978. The combi-

nation of the utility function parameters and the parameters of the consumption process

was then used to solve for the expected value of the equity premium which was con-

trasted to about 6% observed on the US stock market using in�ation adjusted stock and

bond returns. Then Mehra and Prescott considered a wide range of values of the risk

aversion parameter to see which values can generate returns with moments matching the

data. This only occurred for high values of risk aversion, above 10. To put this result

in perspective, let us consider risk aversion of 25, a number often found in various other

empirical studies, which is needed to generate and equity premium around 6% (e.g. see

Burnside 1994). With this risk aversion, a consumer would prefer an 18% reduction in
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consumption to a 50-50 % chance bet of gaining or loosing 20% of consumption. Clearly,

this is not how investors behave when facing such a bet. This issue has been labelled

the equity premium puzzle.

To summarize, the intertemporal consumption based asset pricing model with power

utility can generate expected equity premium matching the data only for an unrealisti-

cally high risk aversion. To take a di¤erent perspective, it is puzzling that stocks have

had such a high premium over risk-free bonds in the last 100 years. If the stocks were

such a bargain, why do investors not purchase them, driving the prices up and the risk

premium down? Hansen and Jagannathan (1991) o¤er a di¤erent perspective on the

equity premium puzzle. Rather than assuming an exogenous law of motion for the en-

dowment process, they start with moments of asset returns. They use these moments

to derive restrictions on the intertemporal marginal rate of substitution, or more gen-

erally, a stochastic discount factor. Given an expected value of the stochastic discount

factor, its model implied variance is lower for reasonable risk aversion coe¢ cients than

the bound re�ecting sample moments of asset returns.2

In general, there are at least two ways in which the equity premium puzzle can be

resolved. The �rst is introducing market frictions. The second possibility is to generalize

preferences, which is the route taken in this study. Constantinides (1990) suggests con-

sidering habit formation as a part of preferences. Habit persistence re�ects the notion

that a consumer values the changes in her utility rather than the level. A real life ex-

ample would be eating in fast food restaurants by students, later on replaced by higher

quality restaurants thanks to higher income in a �rst job. If the consumer had to go back

to the fast food places due to a negative income shock (perhaps being �red), the utility

drawn from them would be much lower than in the student years. A related concept is

durability of services, which tends to appear in a somewhat shorter horizon than habit

persistence. If the consumer gets a haircut, she will not need it in the subsequent weeks,

2Cecchetti, Lam, and Mark (1994) and Burnside (1994) construct some of the �rst tests, which take

into account the sampling error due to estimation of the various moments.
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still drawing positive utility from the recently consumed service. Constantinides (1990)

demonstrates that habit persistence drives a wedge between the risk aversion coe¢ cient

and the stochastic discount factor, hence resolving the the equity premium puzzle by

increasing the volatility of the intertemporal marginal rate of substitution while keeping

the risk aversion constant.

Cecchetti, Lam andMark (1990) consider predictability of asset returns in the CCAPM

with the standard power utility function. They assume that the endowment process is a

Markov chain and have two means conditional on the current state of the world - say, an

economic expansion and an economic recession/slowdown. In the CCAPM, consump-

tion, dividend payments, and output can be all viewed as the empirical counterpart of

the endowment process. Bonomo and Garcia (1994) argue that this result is solely due

to a miss-speci�cation of the endowment process. They carefully study the properties of

the US consumption, dividends, and GNP, and conclude that the proper Markov model

includes switching variance rather than the mean due to heteroskedasticity present in

the data. They further show that the CCAPM with the two-variance Markow switching

process for endowment generates returns, which are not statistically predictable i.e. they

follow a random walk. One can then ask the question if a CCAPM with a more general

utility function can in fact produce predicable asset returns with a proper speci�cation

of the endowment process. Empirical evidence suggests that durability prevails for data

frequencies quarter of a year and smaller (see Eichenbaum and Hansen 1990) while habit

persistence dominates for longer data periods (see Ferson and Constantinides 1991 and

Heaton 1995). This empirical �nding indicates that habit persistence and/or durability

may be able to provide rationalization of predictable asset returns in the context of the

CCAPM.
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1.4 Econometric Methodology

Random Walk for Stock Returns

There is a direct mapping of the �nancial theory of e¢ cient markets into statistical

methodology. The so called weak-form market e¢ ciency states that a current stock price

summarizes all the available information and is the best forecast of a future stock price.

This is essentially a de�nition of a martingale, a stochastic process of a variable with

the same property. The martingale property captures the notion of a fair game where

the expected pay-o¤ is zero. In other words, the expected change in the stock price is

zero. The famous random walk hypothesis imposes somewhat stronger restrictions by

assuming in addition that the price increments are independent i.e. any linear or non-

linear function of the price changes are not correlated. If an error term in the random

walk process for the stock price is normal then the stock price follows an arithmetic

Brownian motion. This implies that stock returns follow a geometric Brownian motion.

Therefore, the returns also follow a random walk in a discrete form.

There is a large number of tests of the null hypothesis of a random walk. The tests

typically fall into three groups: parametric, semi-parametric, and non-parametric. In

the present work, the exclusive focus is on classical parametric tests. Autocorrelation

coe¢ cients between returns at di¤erent periods are a basis of numerous parametric tests,

including the variance ratio test. The variance ratio test is based on the implication of

the random walk hypothesis that variance of price changes is a linear multiple of the

number of periods. This means that the variance of returns for k periods is equal k

times the variance in a single period. Hence the ratio of the two should equal 1 under

the random walk hypothesis. The variance ratio can also be expressed in the terms

of autocorrelations of returns up to the k-th order. Lo and MacKinlay (1988) derive

the asymptotic distribution of the variance ratio statistic, which is robust to presence

of heteroskedasticity in returns. Variance ratios are used as means of documenting

predictability of asset returns in both Cecchetti, Lam, and Mark (1990) and in Bonomo

and Garcia (1994). Variance ratios are typically signi�cantly greater than one for data
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frequencies shorter than one year and signi�cantly smaller than one for longer frequencies.

This is consistent with autocorrelation patterns in stock returns. The variance ratios for

di¤erent time periods k can also be estimated jointly using GMM.

Empirical evidence regarding stock returns suggests that an econometric model char-

acterizing their behavior should encompass heteroskedasticity and autocorrelation. Sim-

ilarly, the same holds true for consumption and property returns. Bonomo and Garcia

(1994) examine carefully aggregate per capita consumption in the United States and

conclude that at annual frequency, the consumption process should be modelled using

a two-variance one-mean Markov chain. Therefore, a joint process for consumption and

the stock and real estate returns can be formulated as a two-mean two-variance process

for individual series. Assuming there are only two states of the world for each series,

there are eight states for the joint tri-variate process with the corresponding correlation

matrix for the three variables.

Testing Factor Asset Pricing Models

The initial tests of the CAPM were based on a simple time series regression of individual

asset (excess) returns on a constant (alpha) and the (excess) return of the market port-

folio. If the CAPM is in fact a good model for asset returns then the constant should

be insigni�cantly di¤erent from zero while the coe¢ cient of the market portfolio (our

CAPM beta) should be signi�cant. The beta is then our measure of exposure to the

systematic risk. The regression results re�ect the underlying assumptions of individu-

ally independent returns. However, we typically allow for contemporaneous correlation

across assets, which is likely to be non-zero. Asset returns can be organized in a panel.

In such a case, the maximum likelihood estimation (MLE) yields the same results as

equation-by-equation regressions assuming joint normality of returns. If we are not will-

ing to make the assumption of joint normality, we can estimate the regression coe¢ cients

in our panel data set using the Generalized Method of Moments (GMM) from Hansen

(1982). In the panel (or in a system of equations), we can test the null hypothesis of
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zero alphas using a Wald, Likelihood ratio, Langrange Multiplier and Hansen J tests.

Gibbons, Ross, and Shenken (1989) show that the multivariate tests can be interpreted

as a measure of distance from the e¢ cient frontier.

Aside from time series considerations, the CAPM has cross-sectional implications

as well. It states that di¤erences in mean returns in a cross-section of assets depend

linearly and entirely on the corresponding asset betas. This relationship is referred to

as the Security Market Line (SML). However, there are several issues when we attempt

to test validity of the cross-sectional CAPM hypothesis. The �rst problem is a high

volatility of asset returns which results in our frequent inability to reject the hypothesis

that average returns across di¤erent assets are the same. The solution to this problem

involves sorting assets (mainly stocks) into portfolios to maximize di¤erences in average

returns. The stocks can be sorted based on characteristics, which are known empirically

and/or theoretically to a¤ect the returns, such as size, book-to-market ratios, and the

asset betas.

The second problem in testing the SML stems from the fact that asset betas have

to be �rst estimated in a time-series �rst-pass regression. Then, the average returns

are regressed on the beta estimates. Signi�cant coe¢ cients of betas (lambdas) in this

second-pass regression indicate that betas do explain the cross-sectional variation in

mean returns. In this case, asset betas are measured with an error, implying an errors-

in-variables problem. Due to this problem, lambdas are biased downward and can be

wrongly deemed insigni�cant and thus refuting predictions of the CAPM. Fama and

MacBeth (1973) o¤er methodology that helps to solve the errors-in-variables problem.

They propose using rolling cross-sectional regressions. Every period (say a year), they

estimate the asset betas using a time-series regression based on the previous �ve years

of data. The betas are then used to estimate lambdas in the cross-sectional regression.

The result is a time-series of lambda estimates. It can be tested using a simple t-statistic

whether a mean of the lambda series is di¤erent from zero. If it is, beta is priced. Shanken

(1992) o¤ers a newer version of the Fama and MacBeth (1973) method that improves
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its �nite sample properties. Alternatively, one can jointly estimate cross-sectional and

time-series equations using GMM.3

CCAPM Estimation

The majority of empirical papers estimate the parameters of the CCAPM in two ways

- using MLE or GMM. Hansen and Singleton (1983) derive the maximum likelihood

function for the CCAPM under the assumption of joint normality and homoskedastic-

ity of asset returns and consumption. The risk premium in this case is proportional

to a relative risk aversion coe¢ cient and the covariance between an asset return and

an aggregate consumption growth. Also, the risk-free rate depends linearly on the ex-

pected consumption growth. The model is often not rejected in the original Hansen

and Singleton (1983) set-up since the risk premium is viewed as a constant. Hansen

and Singleton (1982) derive the moment restrictions on asset returns implied by the

CCAPM and estimate its parameters using GMM. The moment restrictions consist of

�rst and second order moments. GMM is based on minimizing the objective function of

optimally weighted deviations of the model implied moments from the sample moments.

The minimized objective function is chi-square distributed with the degrees of freedom

equal to the number of over-identifying restrictions i.e. the number of restrictions minus

the number of parameters. This is the Hansen J test. The results of the estimation when

both a risky and risk-free assets are used are re�ective of the equity premium puzzle. The

Hansen J test of over-identifying restrictions indicates a strong rejection of the CCAPM.

Since the GMM estimation is robust with respect to both heteroskedasticity and au-

tocorrelation, the model rejection provides powerful evidence against the CCAPM. In

principle, GMM can be used using other �rst and second order moments.

3Wang (2005) o¤ers a comprehensive summary of tests of asset pricing models.
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1.5 Research Outcome

The main body of this habilitation work consists of �ve papers and a conclusion. The

papers roughly follow the previously outlined structure of the asset pricing literature.

The �rst article focuses on the time series regression of excess returns on a number

of explanatory variables, which proxy for the underlying economic risk. The center of

attention is the uncertainty in the beta estimation. This uncertainty causes the errors-in-

variables problem in the cross-sectional regression of expected returns on betas, which

is relevant for the Fama and MacBeth method. Interestingly, this issue has not been

addressed in detail in �nancial literature in spite of its importance. The beta estimates

are mostly treated as the true betas and hence exact measures of the underlying risk.

However, we for example cannot conclude that two stocks with betas say 1 and 1.5 have

di¤erent levels of risk (as it would appear) if the betas are not di¤erent from each other

statistically.

We study the importance of this consideration using the size sorted portfolios of US

stocks. The realized returns on portfolios of small and large �rms should be su¢ ciently

di¤erent even after accounting for the variation in returns. In reality, they are di¤erent

only prior to 1982 but not since. This indicates disappearance of the size e¤ect. The

size e¤ect refers to empirical observation that expected returns for small �rms tend to be

greater then predicted by the CAPM. The empirical evidence and potential theoretical

explanations regarding the size e¤ect are extensively and comprehensively summarized

in Fama and French (1992). Joint inter-asset beta equality tests are used to �nd a

potential cause of this empirical observation. While the market sensitivities in the time

series regression are signi�cantly di¤erent in the two sub-samples, this is not the case for

a default premium and consumption growth. Sensitivities of these two variables became

statistically di¤erent only after 1982. An o¤ered conjecture is that the di¤erent loadings

of the two variables in�uence the expected returns in such a way that they eliminate the

di¤erences due to market betas. Therefore, the expected returns on portfolios of small

and large �rms are statistically indistinguishable but the sensitivities are di¤erent.
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The second article also enhances the empirical methodology and extends evidence

regarding the factor models for expected returns, of which the CAPM is a special case.

The considered empirical model includes four asset returns. The �rst two are (excess)

returns on portfolios of the top and bottom 50% �rms traded on the US stock market

based on capitalization. The choice of the size related stock returns enables one to

comment on existence of the often discussed size e¤ect. The other two considered returns

in the factor model from the �rst article are the interest rates for long-term and short-

term US government bonds. Their presence in the model makes it possible to study two

phenomena appearing in the �nancial literature, the existence of a term premium and

the risk free rate puzzle. Combining them with the stock returns addresses the issue of

the equity premium and attempts to �nd the factors that drive its behavior. Explanatory

factors included in the model are based on the variables used in Chen, Roll, and Ross

(1986) i.e. the stock market return, consumption, money supply, industrial production,

and the unexpected in�ation. These factors proxy for underlying economic risk, which

has proved to be important during the �nancial crisis starting in August 2007. Economic

risk may matter more than the �rm speci�c factors prevailing in explanation of the time

series and cross-sectional properties of asset returns during the 1990s and the early 2000s.

The main objective in this case is to �nd the number of factors, which drive asset

returns. It is of interest to know if the stock and bond returns are driven by the same

underlying latent factors. The underlying factors are not observable and we only have

information regarding variables such as the stock market return, consumption, etc. To

�nd the number of latent factors a new test is constructed. It is based on the distance

between an OLS estimate of the unrestricted model of returns with either two or four

dependent variables (excess asset returns) and up to �ve explanatory variables. The test

is robust to both autocorrelation and heteroskedasticity and outperforms the Hansen J

test used in this context. The results indicate that at least two factors are needed to

explain the cross-sectional and time series behavior of bond returns and hence con�rm

the existence of a term premium. Also, at least two factors are necessary in the case of
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returns for portfolios consisting of large and small �rms, respectively. This outcome is

consistent with a size e¤ect. Finally, at least four factors are needed in a joint model

of stock and bond returns. In other words, di¤erent factors drive the bond and stock

markets. This result is representative of the equity premium puzzle.

The third paper analyzes implications of the CCAPM with habit formation for pre-

dictability of stock returns. There are two main elements of the CCAPM, which are

combined together. The �rst is the appropriate process for endowment, which in this

setting can be real per capita consumption, GDP, and dividends. The second is a time

non-separability parameter. If positive, it illustrates durability of services, such as draw-

ing positive utility from a vacation taken not long ago or a recent haircut so a fresh one

is not necessary. If the parameter is negative, the utility contains habit persistence, in

which a representative values positive changes in the utility rather then its level. The

results demonstrate that the time non separability parameter is related to predictabil-

ity of model implied asset returns. The CCAPM calibrated to monthly data generates

positively autocorrelated returns for durable utility. The CCAPM based on the annual

data produces negatively autocorrelated stock returns for habit persistence.

The fourth paper formulates a new statistic based on a joint estimation of variance

ratios and simple mean returns for several periods by GMM. The statistic is therefore for-

mulated in such a way that it simultaneously captures both the autocorrelation structure

and the levels of returns for several holding periods. Analogically to the previous paper,

the CCAPM is calibrated using the two-mean two-variance Markov switching process

for endowment. Also, the CCAPM contains the time non-separability parameter. The

results con�rm �ndings regarding the non-separability parameter, favoring habit per-

sistence for annual data, time non-separability for quarterly data, and durability for

monthly data. Power of the newly designed test is examined as well. It is found that

the power is greater for alternative hypotheses formulated by a varying risk aversion as

compared with a varying time non-separability parameter. Relative lack of sensitivity

to the changes in this parameter suggests its smaller importance relative to the relative
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risk aversion, which plays a crucial role in the equity premium puzzle.

The last paper focuses on interaction of stock returns, real estate returns, and con-

sumption. Clearly, modelling such interaction is a very useful exercise, especially con-

sidering the recent development on the �nancial markets with collapsing housing prices

in the US quickly followed by a severe global decline on the stock markets. It seems that

a global recession is inevitable and the reduced output will be accompanied by reduced

consumption. In the early 2000s, a bursting dot com bubble did not a¤ect consump-

tion mainly due to a wealth e¤ect of ever higher real estate prices. The econometric

methodology generalizes the univariate two-mean two-variance process for endowment

to a tri-variate Markov chain with eight states of the world. The eight states correspond

to various combinations of two states for each of the three variables: a recession (or a

mere slowdown) and an expansion. For example, stock returns tend to be more volatile

during a period with falling stock prices. The tri-variate model is estimated using data

up to May 2004. The state with the declining stock prices, rising property prices and

slowly increasing consumption resembling the beginning of the 21st century does have

a positive probability though the state corresponding to the current situation does not.

This is perhaps not surprising since the real estate prices have not collapsed as much

and as fast as they have in the last year or say at any point in time prior to 2004.

The conclusion then discusses the presented results from the perspective of the cur-

rent global economic and �nancial crisis. The time separable power utility CCAPM is

estimated using GMM to �nd if there is still an equity premium puzzle with depressed

stock prices in recent months. The issue of future research is addressed in this light as

well, especially the role of housing in �nancial models.
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Part II

Inter-Asset Comparisons of Betas

and Returns to Small and Large

Firms�Stocks

In �nance, di¤erences among assets�mean returns are often accounted for by di¤erences

in betas in asset return regressions. We test whether betas and groups of betas di¤er

statistically across assets in a multifactor asset pricing model. We use the individual

and joint inter-assets beta equality tests to analyze why expected returns on portfolios

of small and large �rms di¤ered prior to 1982 but not since. The disappearance of the

di¤erence is due to di¤ering sensitivities to variables other than the market e.g. default

premium or consumption growth.

2 Introduction

The main purpose of asset pricing models is to explain di¤erences in expected returns

among stocks and other risky assets. In the tradition of the Sharpe (1964) and Lint-

ner (1965) capital asset pricing model (CAPM) and its generalizations via the Merton

(1973) and Breeden (1979) intertemporal equilibrium models and the Ross (1976) arbi-

trage pricing theory (APT), such performance di¤erences arise due to di¤ering sensitiv-

ities (�betas�) to some economic variables, either some explicit source(s) of risk or some

underlying state variable(s). We illustrate how formal tests of equality of betas across

assets can be used to interpret time series and cross sectional behavior of expected re-

turns. We focus on the model of returns in the spirit of Chen, Roll and Ross (1986) and

combine beta equality tests with point beta estimates and tests for zero intercepts (see

Gibbons, Ross, and Shanken 1989) to account for di¤erences between large and small
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�rms�stock returns.

There is a vast number of studies involving beta estimation and some of the studies do

take into account standard errors of beta estimates. To our surprise though, we have not

been able to �nd a study, which compares formally betas across assets. The present work

attempts to �ll this gap in the literature. While informal comparison of point estimates

maybe su¢ cient in some applications, it is not when we attempt to evaluate the e¤ect

of a group of factors rather then just that of the market beta (market vs. non-market

factors, economic vs. statistical, etc.). Rather then merely stating that a multifactor

model is needed to explain time series and cross-sectional behavior of expected returns,4

we would like to uncover more about the nature of these di¤erences. Hence we propose

various joint tests for equality of factor sensitivities across assets. Applying these tests to

portfolios of stocks of large and small �rms yields new insights. Namely, we are able to

explain the somewhat puzzling recent disappearance of a measurable di¤erence in mean

returns on stocks of small and large �rms.

To test formally for di¤erences among particular betas, we make use of panel (time-

series + cross-section) regression models of excess returns. This is a standard mod-

elling framework for de�ning and discussing sensitivities of excess returns on covari-

ates/regressors, e.g. risk factors and/or state variables. For example, estimation of such

a model using panel data is the main focus of the in�uential papers by Fama and French

(1993, 1996). With sensitivities de�ned via the slope parameters in the model, di¤erences

in sensitivity are clearly in the domain of formal, testable hypotheses. The �nancial data

typically contain some form of heteroskedasticity and autocorrelation (see for example

French, Schwert, and Stambaugh 1987 and Campbell, Lo, and MacKinlay, 1997, Ch. 2),

which calls for the use of robust tests. The heteroskedasiticity and autocorrelation con-

sistent methods (HAC) built on earlier work by White (1980) are developed in Newey

and West (1987, 1994), Andrews (1991) and Andrews and Monahan (1992), and are

further studied by den Haan and Levin (1996, 1997).

4Cochrane (1999) lists this observation as one of the consensual results in recent �nancial research.
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Robust tests often su¤er from distortions arising due to the test rule, which relies

on the asymptotic distribution of test statistics, and which generally di¤ers from rules

based on the exact (but unknown) �nite-sample distribution.5 To �nd limitations of

these methods in our testing framework, we examine performance of Wald and Hansen

(1982) tests with HAC estimates of covariance matrices of residuals and compare it with

that of classical F tests. In simulation the HAC Hansen tests distort less than the F test

and HAC Wald tests, and simple pre-whitening is as good or better than other methods

of handling serial correlation. Consequently, we report results of estimation conducted

using the Hansen method with simple pre-whitening (see den Haan and Levin 1996,

1997).

We use the afore-mentioned methods to test for di¤erences in the economic sensitivity

of small and large �rm excess returns measured by the top and bottom deciles of the

CRSP Capitalization Indices since 1959. The potential for such di¤erences has long

been recognized,6 and as covariates we include standard economic risk factors (market

return and consumption growth) as well as other standard economic variables (default

premium, term structure, industrial production, in�ation, and money growth) related

to the economy. Some researchers use instead covariates consisting of size and book-to-

market related portfolios (see Fama and French, 1993, and Chan and Chen, 1991), or

other statistical factors (Lehmann and Modest, 1988, and Connor and Korajczyk, 1988),

but since statistical and economic covariates appear to have similar predictive power

with respect to stock returns (see Ferson and Korajczyk, 1995), we use just the latter,

5MacKinnon and White (1985) acknowledge the distortions problem for heteroscedasticity-robust

tests, proposing corrective methods, and Ferson and Foerster (1994) examine the importance of distor-

tions for heteroskedasticity-robust tests of some �nancial models. den Haan and Levin (1997) report on

test distortions for a variety of HAC tests in a single equation context (see also Cushing and McGarvey,

1999) and Cochrane (2001, Ch. 15) studies the zero intercepts hypothesis in the multi-equation context,

using HAC methods of Newey and West.

6See Schwert (1983) for a review of early theories, and Fama and French (1992, 1993) and Cochrane

(1999) for further discussion.
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similarly to Chen, Roll and Ross (1986).

We �rst focus on the standard CAPM. Prior to 1982, the sample mean returns for

small and large �rms are statistically di¤erent, indicative of the size e¤ect. We then

test for equality of market betas and �nd that this di¤erence in performance can be in

part accounted for by the di¤erence in the level of risk of the two considered portfolios

measured by the market beta. The remaining part is due to the positive intercept for

small �rms�stock returns and corresponds to rejection of the CAPM by the test for zero

intercepts, con�rming the small size e¤ect. Since 1982, the mean excess returns for the

small and large returns are formally indistinguishable with returns on small �rms�stocks

being smaller. However, the market betas are statistically di¤erent and the market beta

for stocks of small �rm is actually the smaller one. With the CAPM not rejected, this

suggests that investment in small �rms is less risky and has the same (or greater if

one considers only the point estimates) return, making it clearly the better investment

opportunity.

In the next step, we investigate bivariate models with the market as one factor and

one of the above mentioned macroeconomic variables as the other. We also consider a

model with all seven risk factors. Implications of the bivariate and multivariate models

are similar. The point estimates of the market betas in both sub-periods do not change

much as compared with the CAPM. The formal test of their equality also shows that

they are statistically di¤erent at both sub-samples. Before 1982, test results lead to

similar conclusions as in the CAPM. Namely, the small �rms�stocks are somewhat riskier

mainly due to di¤ering market betas and the risk premium is greater than it would be

accounted for by the multifactor asset pricing model. Since 1982, implications of our

tests are very di¤erent from those of the CAPM. Consistent with �ndings of Horowitz,

Loughran and Savin (2000) and Fama and French (1993), we �nd that the size e¤ect has

either disappeared or has been reversed in favor of the large �rms. Results of the joint

test of beta equality for all variables but the market return signal that there are other

sources of risk di¤erences than market beta. This impression is con�rmed by individual
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tests of beta equality; more speci�cally, all our variables with the exception of industrial

production have statistically di¤erent sensitivities for the two portfolios. A brief look at

point estimates indicates higher sensitivity of large �rms to the market but smaller to

the other economic variables, which explains why mean returns are similar since 1982.

Our analysis indicates that formal testing of betas, jointly and individually, can be

a useful source of information for a �nancial economist in addition to tests for zero

intercepts and point beta estimates. A possible strategy for comparison of groups of

assets would be: (i) Get point beta estimates and test for zero intercepts; (ii) Formally

compare market betas; (iii) Formally compare sensitivities of other available factors,

jointly and individually. Using this approach, we can draw conclusions regarding the

disappearance of the statistical di¤erence in expected returns on stocks of small and

large �rms since 1982. The disappearance is due to previously minor but lately signi�cant

di¤erences in sensitivities of expected returns to variables other than the market. Since

the early 1980�s, the risk exposure to those variables works in the opposite direction than

market risk. Consequently, the mean returns on portfolios of small and large �rms are

similar.

The rest of the paper is organized as follows. Section 3 presents the formal test of

equality of betas in a time-series regression model and Section 4 discusses the asymptotic

properties of the HAC robust Wald and Hansen tests. Section 5 addresses the data

selection and lists data sources. Section 6 studies the �nite sample properties of the

tests in a simulation exercise. Section 7 applies the tests to the data and Section 8

concludes.

3 Model

For a collection of n risky assets, each earning a return during periods t = 1; 2; :::; T , let

rit denote the excess return to the i-th asset. We recall that a unifying implication of
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the �nance theories listed above is the following restriction (see Cochrane, 2001):

Erit = �i�; i = 1; :::; n; (1)

where �i is a 1�K vector of betas (sensitivities) for asset i with respect to risk factors, and

� aK�1 vector of risk premia. It is obvious here that if the mean values Erit; i = 1; :::; n

are not all the same then neither are the betas �i; i = 1; :::; n.

To estimate the risk premia in (1), one needs to estimate betas �rst. This �rst step is

common for both the two-pass method and for the Fama and MacBeth (1973) empirical

method7. Both methods use the linear regression model of asset returns of the form:

rit = �i + �i xt + "it; i = 1; :::; n; t = 1; :::; T; (2)

where xt is aK�1 vector of covariates (risk factors and/or state variables), �i is the same

beta as in (1), �i is the i-th intercept, and the errors "it have conditional expectation

E["itjxt] = 0. In this model, �ik is the expected increase in the excess return rit, given

a one unit increase in the covariate xtk, while �i = E[ritjxt = (0; :::; 0)0], e.g. �i is

the expected excess return when each covariate equals 0. The model is linear in the

parameters � and �, but xt itself may be non-linear in some underlying variables which

themselves may be non-contemporaneous with rt, hence the model may be both non-

linear and dynamic in some underlying variables (see Ferson and Harvey, 1999, for a

recent example).

In the Sharpe-Lintner CAPM version of the model, x is the excess return on the

market portfolio, and the betas measure sensitivity to market risk. Other candidates for

x include consumption growth, as in the Breeden (1979) consumption-based CAPM, and

other variables, possibly instruments for some latent factors (see Section 6 for a detailed

discussion). Such models o¤er an explanation of di¤erences among average returns for

various assets, provided that sensitivities di¤er among assets. Informal comparisons

7Shanken (1992) relates the time-series and cross-sectional regressions (2) and (1) with respect to

these two methods.
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of betas across assets are widespread in the industry, facilitated by point and interval

estimates, but formal comparison via hypothesis tests has not received attention in the

literature.

The hypotheses of present interest take the form of linear restrictions on �. To

concisely express such hypotheses for the purpose of testing, for each equation i we

denote by �[i] the (K + 1) � 1 vector (�i; �i1; :::; �iK)0, and let � be the n(K + 1) � 1

vector (�0[1]; �
0
[2]; :::; �

0
[n])

0. The intercept �i will be unrestricted with the exception of our

simulation exercise. With 0p the column vector consisting of p entries each equal to 0,

and with A some user-speci�ed p�n(K+1) matrix, each linear restriction on the model

parameters takes the form:

H0 : A� = 0p:

For testing di¤erences in slopes across equations, and the relevant restriction is of the

form:

D �[i] = D �[j]; i; j = 1; :::; n; (3)

for some r � (K + 1) matrix D, some number r of restrictions, and all assets i; j. The

appropriate form of the matrix A in H0 is then:

A = Jn 
D; (4)

where Jn is the (n � 1) � n matrix with entries Jni1 = 1, Jn;i;i+1 = �1, and Jnij = 0

otherwise, and 
 is the Kronecker product operator. For example, for the test of equality

of slopes across equations for n = 2 and K = 1, we have p = 1, A =
�
0; 1; 0; �1

�
,

D = [0; : 1], and J2 = [1; : �1].

4 Tests

In this section we describe methods of hypothesis testing based on HAC Wald and

Hansen tests which we later study as alternatives to the F test. The HAC robust tests

are prone to small sample distortion and we can only use them in our models since we
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focus on just two portfolios. In the standard modelling framework where a large number

of assets is studied, these robust methods would be impractical. Typically, a researcher

attempting HAC estimation would have to assume a certain form of heteroskedasticity

and autocorrelation.

4.1 HAC Test Statistics

To conduct generalized Wald tests we let �̂ denote the ordinary least squares (OLS)

estimator, and we let V̂�̂ denote an estimator, further described below, of the variance-

covariance matrix for �̂. For each given choice of V̂�̂, the test statistic is:

W = �̂
0
A0
�
AV̂�̂A

0
��1

A �̂: (5)

The statisticW measures the distance ( in Rp, with norm jjvjj = v0(AV̂�̂A
0)�1 v) between

the vector A �̂ and the value 0p hypothesized under H0, hence larger values ofW suggest

larger departures of the data from H0. Under the null hypothesis, W is distributed as

chi square asymptotically, with p degrees of freedom.

To conduct generalized Hansen tests, for any parameter values �i and �i de�ne the

regression residuals for the model (2):

eit = rit � �i � �i xt; i = 1; :::; n; t = 1; : : : ; T:

The relevant sample moments comprise the n(K + 1)� 1 vector m(�), given by:

m(�) =
1

T

TX
t=1

zt 
 et;

where zt is the (K+1)�1 vector (1; x0t)0. Denoting by V̂m an estimator (speci�ed below)

of the variance-covariance matrix of m(�̂), the Hansen test statistic is:

S = min
�2H0

m(�)0 V̂ �1
m m(�): (6)

The Hansen test measures the distance (in Rn(K+1), with the norm jjvjj = v0V̂ �1
m v)

between the vector m(�) of sample moments and the value 0n(K+1) hypothesized under
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H0, hence larger values of S suggest larger departures from H0. Like the Wald statistic,

S is distributed chi square (asymptotically) under the null hypothesis, with p degrees of

freedom.

For econometric testing of linear restrictions H0 on linear regression systems, Hansen

tests are seldom used while F andWald tests are popular, whereas for nonlinear problems

the Hansen test is common, as in Hansen (1982) and Ferson and Foerster (1994). Yet

our simulations (reported later) suggest a useful role for HAC Hansen tests of parameter

equality across equations in linear systems.

4.2 Computation

To compute the test statistics we apply formulas (4), (5) and (6), with various speci�-

cations for the covariance matrix estimators V̂�̂ and V̂m. For the HAC Wald and Hansen

tests, we use a variety of HAC covariance estimators. Among these are the Bartlett

kernel and the data-dependent Newey and West (1994) bandwidth, with and without

pre-whitening (denoted NW and NW-P, respectively), the quadratic spectral kernel with

the Andrews (1991) data-dependent bandwidth (without prewhitening, denoted A), and

the Andrews and Monahan (1992) method (denoted AM) with pre-whitening. Further,

we include the simple pre-whitening method (denoted VARHAC) with parametric, vector

autoregressive, adjustment for serial correlation, studied by den Haan and Levin (1996,

1997). Finally, for comparison purposes we include the White covariance estimator (WH)

which is robust to heteroskedasticity but not serial correlation. Since the technical details

of covariance estimators are neatly summarized in Campbell, et al: (1997) and Cushing

and McGarvey (1999), we omit them for brevity.

To carry out the minimization (6) required for the Hansen statistic S, we use the

GMM (simultaneous-iteration) routine, which at each iteration stage simultaneously

solves for updated parameter and covariance matrix estimates, as in Hansen, Heaton
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and Yaron (1996).8

5 Data

We examine excess returns on stocks of �rms ranked by capitalization. We use the

industry standard CRSP Stock File Capitalization Decile Indices, monthly time series

based on portfolios rebalanced annually. To limit the number of dependent variables

(and the potential for test distortions, reported later), we use one return for Decile 1

portfolio and one for Decile 10 portfolio, respectively corresponding to the largest and

smallest companies. In all cases, we calculate excess returns using the 30-Day Treasury

Bill return, also provided by CRSP. We denote the excess returns as rLARGE and rSMALL,

respectively.

Summary statistics, for monthly excess returns in the period 1959:02 - 2003:12, are

in Table 1. The starting period of the data series is determined by availability of the

consumption series (de�ned below). We further split the sample in two sub-samples,

1959:02-1982:10 and 1982:11-2003:12, enabling us to examine stability of regression pa-

rameters. October 1982 marks the approximate ending of Paul Volcker�s war on in�ation

in the early eighties. In all considered sample periods, the excess return on small caps

tends to be more volatile, in accord with Malkiel and Xu (1997). A comparison of the

sample means for excess returns reveals that the excess return on the large capitaliza-

tion portfolio is greater than the excess return on the small-cap portfolio (by 9.93%

annually) but the gap is much smaller in the second sub-sample (2.07% annually), con-

sistent with Fama and French (1993) and Horowitz, at al. (2000) (in fact, for the Cap

based portfolios, the large �rms have actually outperformed the small ones in the second

sub-sample). To con�rm the impression based on a simple comparison we also conduct

formal t-tests for di¤erences in means, which account for the covariance between the two

8We use the econometrics software Eviews 3.1 for all our calculations. The relevant code is available

upon request.
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portfolios. The t-statistics and p-values are respectively 2.29/0.02 overall, 2.43/0.02 for

the �rst sub-sample, and 0.59/0.55 for the second sub-sample, which substantiates our

conclusions.

As covariates in the model (see Table 1 for summary statistics of covariates, and Table

2 for correlations with dependent variables), we choose ones likely to a¤ect the stochastic

discount rate and/or the expected stream of cash �ows. We follow Chen, Roll and Ross

(1986) and use data on the stock market, bond market, the business cycle and in�ation,

and we augment the dataset by the growth of monetary base to address the issue of

asymmetric reaction of �rms of di¤erent capitalization to restrictive monetary policy

(see Gertler and Gilchrist, 1994, Li and Hu, 1998, and Perez-Quiros and Timmermann,

2000).

To describe the stock market we use the CRSP NYSE value-weighted index. Again,

we use returns in excess of the 30-Day Treasury Bill, denoting the results by rVW . The

correlation with the large-cap return is close to one (see Table 2), and since the large-cap

�rms account for most of the market value, this is not surprising.9

We consider two bond market variables. The e¤ect of unanticipated changes in bond

risk premia is measured by the di¤erence (denoted rDEF ) between interest rates on the

low grade bonds and long-term government securities. The low grade bond interest rate

is measured by the Seasoned Baa Corporate Bond Yield, collected by Moody�s Investors

Service. The long-term government bond return-to-maturity is from the 5-year Treasury

Bonds, obtained from the web site of the Board of Governors of the Federal Reserve

System (BGFRS). To describe the term structure we use the di¤erence between the one-

period holding return on the 5-year Treasury Bond, collected by CRSP, and the �rst lag

of the return on a 30-Day Treasury Bill. This term premium (rTERM) proxies for the

in�uence of changes in the term structure on equity returns.

As measures of real economic activity, we include the growth rates of industrial pro-

duction (gIP ) and real per capita consumption (gCONS). We obtain industrial production

9Fama and French (1996) report a similar correlation.
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data (series INDPRO, seasonally adjusted) from the BGFRS web site, and we obtain

consumption data (series PCEND, non-durables, series PCES, services, POP, popula-

tion, series CPIAUCSL, Consumer Price Index For All Urban Consumers, All Items

1982-84=100, all series are seasonally adjusted), from the Bureau of Economic Analysis.

The consumer price index is used as an in�ation variable. Since the null hypothesis

of the unit root cannot be rejected in some sub-samples of this series, we use the �rst

di¤erence in our analysis. For money growth, we use the growth rate of the seasonally

adjusted monetary base (gMON), obtained from the St. Louis Fed�s web site (series

AMBSL, seasonally adjusted).

6 Simulation

In this section, we attempt to �nd the limit of a sensible employment of the HAC

methods to see exactly what level of model complexity they can handle. We use computer

simulation, based on a calibrated model of asset returns, to assess test performance. Of

interest are rejection rates under the null hypothesis and under the alternative. If the

nominal distribution (F distribution for the F test, chi square distribution for the HAC

tests) is an accurate approximation then the tests should reject under H0 at a rate near

the theoretical test size; otherwise, the tests will exhibit noticeable distortions.

To set up the simulation, we de�ne a �rst-order vector autoregressive (VAR) process

for covariates xt:

xt = c+ �xt�1 + ut; (7)

where c is a K � 1 vector of constants, � is an K � K matrix of coe¢ cients, and ut

is a K � 1 vector of random variables which are independent over time and normally

distributed with zero mean and cross-sectional variance-covariance matrix �.

To see what range of values might be realistic for the parameters of the xt process, we

estimate (7) for K = 4 by OLS using xt = (rVWNY ; rTERM ; gCONS; gMON)
0. Estimates of

elements the matrix � range from -0.30 to 0.43. We also try several other combinations of
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explanatory variables and while estimates di¤er to a large extent, the diagonal elements

tend to be greater than o¤diagonal ones, which are often close to 0. Therefore, for

our simulation we set �ij = 0:10 for i = j and �ij = 0 for i 6= j. Estimates of the

constant term tend to be small relative to elements of �, and we set c = 0:002 in our

simulation exercise. The diagonal elements of the estimated residual covariance matrix

�̂ are typically of order 0.0001, and the o¤-diagonal elements are typically much smaller,

hence we let � be a diagonal matrix with each diagonal entry equal to 0.0001.

For the regression errors "it in (2), we posit a dynamic model with serial correlation

and generalized autoregressive conditional heteroskedasticity (GARCH), as follows:

"it =  1"i;t�1 +  2

q
1 +  3 "

2
i;t�1 �it; i = 1; : : : ; n;

with � standard normal noise. Parameter  1 speci�es the autocorrelation, and para-

meters  2 and  3 specify the conditional heteroskedasticity. We choose  so that the

autocorrelation of the error term "it, as well as its variance relative to that of x�s, cor-

responds to what we observe in historical data series, with r1t and r2t excess returns on

portfolios of small and large �rms, respectively. In this case, we set  1 = :1,  2 = :003

and  3 = :2. The cross-sectional empirical covariance of �it is sometimes positive and

sometimes negative, and we specify the population covariance between �1t and �2t to be

0.

To get a sense for the behavior of the F test and �robust�HAC tests, we �rst generate

results for the case n = 2, with K = 2 and, alternatively, K = 4, using 500 simulated

time series for rit, i = 1; 2, with 250 and 500 observations, roughly corresponding to one

half of our sample and the whole sample of our historical monthly data, respectively. We

conduct a Monte-Carlo experiment based on a calibrated model, rather than a bootstrap

method as in Ferson and Foerster (1994), for two reasons: First, the calibrated model

allows us to identify the source of test success or failure; second, the regression errors

have posited dynamics which would not be replicated by standard bootstrap sampling.10

10Alternatively, one could employ a block-bootstrap method, as in Cochrane (2001, Ch. 15).
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We record the number of rejections of the null hypothesis using the chi square critical

values at the 5% level of signi�cance.

Table 3 reports rejection rates under the null hypothesis of cross-equation equality

for all coe¢ cients, e.g. the case where the restriction de�ning matrix D in Section II

equals the p � p identity matrix. We calibrate all � values to equal to 1, and all �

values to equal 0. Our simulations show a serious tendency for distortion in most but

not all tests. Speci�cally, the F test and the HAC Wald tests over-reject11, and two

of the Hansen tests (Newey-West and Newey-West with pre-whitening) under-reject the

null hypothesis. On the other hand, three of the Hansen tests (VARHAC, Andrews and

Andrews-Monahan) show minimal distortion, and of these three the VARHAC test is by

far the simplest to compute and interpret. We have examined the Hansen VARHAC test

in numerous other simulations exercises: For n = 2, we gradually increase the number of

covariatesK by two up toK = 8, and rejection rates fall toward 0.03 and 0.04 for sample

sizes 250 and 500. Since many studies consider decile indices, we also look at n = 10 and

increase the number of covariates from two to eight, in which case the rejection rates for

the VARHAC Hansen tests are respectively 0.01 and 0.02 for the two sample sizes. For

no other test method do we �nd less distortion than for the VARHAC Hansen test, and

our results suggest that a researcher attempting to investigate the relationship between

various variables and asset returns is �safer�when the number of assets is smaller since

the asymptotic and �nite sample distributions of the test statistic are closer.

To describe performance under the alternative hypothesis, we generate simulated

time series for excess returns via:

r1t = x1t + x2t + : : :+ xKt + "1t;

r2t = x1t + x2t + : : :+ xK
2
;t + (1 +

0:2
K
)(x(K

2
+1);t + x(K

2
+2);t + : : :+ xKt) + "2t:

Table 4 reports rejection rates under the alternative hypothesis for K = 2 and K = 4,

with relatively high rejection rates for the F test, and with higher rejection rates for the

11For similar results see Cushing and McGarvey (1999) and Cochrane (2001, Ch. 15).
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HAC Wald test than for the corresponding HAC Hansen test. Among the HAC Hansen

tests, the Andrews, Andrews-Monahan and VARHAC methods reject more frequently

than the others. These results describe the frequency with which an economist would

correctly reject the null hypothesis, using the nominal (F or chi square) distribution of

the relevant statistic. A related, but di¤erent, issue is the frequency of correct rejection

for an economist who knows and uses the exact test distribution. The latter power

calculations are not interesting here because the economist does not know the exact

distribution, and it is impossible to concisely report on this distribution in a way that

would be broadly useful for asset return regression. We have nevertheless done such

power calculations, with the same rankings described above, for the various tests.

Overall, the simulations reveal some serious problems with the F test and with the

�robust�HAC Wald tests, in terms of over-rejection under the null hypothesis, whereas

three of the HAC Hansen tests avoided serious distortions and were also best among the

Hansen tests under the alternative hypothesis. Among these favored three we recommend

the VARHAC Hansen test, with it�s simple, parametric pre-whitening approach to serial

correlation adjustment. For the range of sample sizes under study, the VARHAC Hansen

test performance under null and alternative hypotheses suggests that for a small number

of assets, n = 2, we can have as many as 8 covariates and still avoid major test distortions.

In cases of n = 10 asset returns, the number of covariates in a restricted econometric

model should be kept small, perhaps no more than 4 or 6. In cases where larger models

and a greater number of restrictions are desired, larger sample sizes (weekly rather than

monthly data, for example) may be necessary for satisfactory results.

7 Empirical results

Having scrutinized a variety of test methods, we turn now to the problem of testing for

di¤erences in sensitivity among �rms of di¤erent size. As our simulations warn against

the use of overly large models, we only use up to seven explanatory variables in our

37



two-asset model. To save space we report only the Hansen-type tests with parametric

VARHAC adjustment for residual serial correlation and heteroskedasticity, as these tests

showed relatively little distortion in simulation, and are generally in agreement with the

other tests for the models we analyze. The tests are formulated by de�ning the matrix

D in Section II accordingly.

We �rst examine the CAPM. Table 5 gives results for the full monthly sample (1959-

2003) and two sub-samples. The test of equality of market betas suggests signi�cant

di¤erence in risk exposure, for large and small �rms, in both sub-samples but not overall.

This is a result of changing beta for small �rms, which is 1.28 in the �rst but only 0.81

in the second sub-sample. We also test for whether the intercepts are each 0; since

the only factor in the CAPM is the market excess return, the test of zero intercepts is

essentially a HAC robust version of the standard F-test commonly applied in testing

the CAPM.12 The CAPM is rejected overall and in the �rst sub-sample but not in the

second sub-sample.

In our discussion of the results, we will focus on the two sub-samples since the results

for the whole time period are (more) likely to re�ect changing betas over time. The

theory, on which CAPM is based, o¤ers the following interpretation. Higher betas in the

�rst sub-sample are not su¢ cient to explain higher mean returns for the same period. The

CAPM is rejected and the intercept for small �rms is signi�cantly positive, suggesting

that investment in small �rms delivers a premium higher than accounted for by the

CAPM. This is in fact the so called �rm size e¤ect. In this case, statistically di¤erent

betas do not provide us with information that makes a di¤erence. The recommendation

here is clear: invest in small �rms. The theory of CAPM gives no such recommendation

for the second sub-sample, where any di¤erences in expected returns are simply due to

di¤ering market betas. However, statistically di¤erent betas (at 10% level of signi�cance)

12As pointed out in Gibbons, Ross, and Shanken (1989), the test of the CAPM is equivalent to the

test of ex-ante mean-variance e¢ ciency of a particular portfolio and the test statistic (either F , S or

W ) can then be interpreted as a measure of distance from the mean-variance frontier.
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are in contrast with mean returns, which do not di¤er for small and large �rms from a

statistical point of view. In other words, the mean returns are approximately the same

but the large �rms are riskier (recall that small �rms�beta is now 0.81). Using this

interpretation, the recommendation is again clear: buy stocks of small �rms.

We next examine bivariate models, with covariates given by the market return and

one of the remaining �ve economic variables, with results reported in Table 6. The

properties of the market betas are not changed with addition of another covariate, i.e.

the market slopes di¤er in the �rst sub-sample as well as in the second one. Sensitivity

to the second covariate shows in each case no signi�cant di¤erences in the �rst sub-

sample. In the second sub-sample, there are now signi�cant di¤erences in slopes for the

default premium and consumption. We also conduct the joint test for zero intercepts,

which can be loosely interpreted as a test of our asset pricing model13 In the �rst period,

three out of six models have non-zero intercepts and all have either an insigni�cant or

positive intercept for small �rms. In the second period, only one out of six indicates

non-zero intercepts (the default premium being the second variable), in this case with

a positive intercept for large �rms. The recommendation for the period from 1959:02

till 1982:10 stands: statistical di¤erences in mean returns are driven by di¤erences in

market betas and there is extra premium on investment in small �rms, which dominates

investment in large ones. For the second period, the situation has become more complex.

We have statistically undistinguishable mean returns and statistically di¤ering market

betas. The smaller market beta for small �rms indicates a better investment opportunity.

However, we also have other variables whose beta di¤er, namely the default premium

and consumption. The results with default premium even indicate that it might be the

large �rms, which have become a bargain. So, while performance of the two portfolios is

similar in the second sub-sample there are signi�cant di¤erences in risk exposure between

the large and small �rms in addition to previously identi�ed di¤erences in market betas.

These di¤erences indicate that returns on small �rms�stock is more sensitive (i.e. riskier)

13Loosely because not all the variables can be interpreted as asset returns.
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to variables other than the market excess return.

Results from bivariate models call for a model with more explanatory variables. We

examine the model in which all seven covariates are included at once. Table 7 reports

parameter estimates and their standard errors, computed via the VARHAC method.14

To further describe the model we report in Table 8 residual diagnostic tests. As indicated,

there is strong evidence of both residual heteroskedasticity and autocorrelation, in which

case our use of HAC test methods is highly appropriate.15 Finally, Table 9 reports results

of tests of cross-section restrictions.

Table 7 indicates that market betas still di¤er in both sub-periods and the point

estimates are similar to those in the uni- and bivariate regressions. For other sensitivities,

with the exception of the monetary slope, the di¤erences in the point estimates have

grown in the second sub-sample. The test for zero intercepts interestingly indicates non-

zero intercepts in the second rather then the �rst sub-period. Table 9 shows slopes for

the default premium and consumption betas statistically di¤erent in the period from

1982:11 to 2003:12 and they are joined, for this sub-sample, by sensitivities to the term

premium, in�ation and money supply. Consumption betas di¤er also for the �rst period.

In addition, a joint test of beta equality for all but the market variables results in rejection

of the null in the second sub-sample.

We will now attempt to interpret our results. Let us start with the period from

1959:02 to 1982:10. Risk measured by betas is di¤erent mainly due to di¤erences in the

market beta, which partly explains di¤ering mean returns. Stocks of small �rms appear

underpriced, and hence are a better investment opportunity. The situation is more

complex in the period from 1982:11 to 2003:12 where the recommendation based solely on

14The reported estimates are also in accord with other studies on �rm-size e¤ects, which use multi-

factor models - see Fama and French (1993, market beta, betas for the default and term premia), Chan,

Chen, and Hsieh (1985, all but the money supply beta), and Li and Hu (1998, industrial production

and money supply betas).

15We found similarly strong evidence of conditional heteroskedasticity and serial correlation in a

majority of the univariate and bivariate models we studied.
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market betas is essentially reversed when one uses additional factors. While investment

in small �rms appears less risky based on market betas, it is riskier as measured by other

betas. Being underpriced, the large �rms seem to be the bargain here.

8 Conclusion

As �nance theory suggests, di¤ering sensitivities (betas) of economic factors translate in

di¤ering asset performance (unless they a¤ect expected returns in opposite directions).

While this connection is widely recognized, almost no attention has been paid to formal

di¤erences in betas. The present work explicitly acknowledges this link by testing for

statistical di¤erences of betas across assets and by considering implications of these

di¤erences for mean excess returns.

We �rst provide a general regression framework, which can be easily used to test

for equality of betas across equations. A number of methods can be used to conduct

such tests. We consider the standard F, Wald, and Hansen tests. The advantage of the

Wald and Hansen methods is relatively simple accommodation of robustness to general

forms of autocorrelation and heteroskedasticity, often present in the �nancial data. The

price for generality in this case is potential distortion of the tests in larger regression

systems. In a simulation exercise tailored to our data application, we �nd that �nite

sample distortions are relatively minor and that the Hansen method with parametric

pre-whitening outperforms the other methods.

We illustrate the usefulness of formal comparison of betas in application to stocks

sorted by �rm capitalization. Namely, a simple t-test indicates that small �rms out-

performed the larger �rms prior to 1982:10 but not since then. We attempt to shed

some light on this empirical observation by carefully analyzing betas of several economic

factors. We �nd that the market beta di¤erence is the main source of di¤ering mean

returns before 1982:10. However, while the market beta di¤er also since 1982:10, the

mean returns do not. Moreover, it is the small �rms, which appear safer. Testing of beta
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equality of factors other than the market reveals the reason behind this seeming incon-

sistency. The other sensitivities (especially to the default premium) also di¤er but are

higher (in absolute value) for the small �rms, making them riskier from this perspective.

Overall, our empirical analysis suggests that formally comparing, individually and

jointly, market betas and betas of other macroeconomic variables can be helpful in ex-

plaining behavior of expected returns and can lead to investment recommendations.

While individual statistical comparison of betas may be redundant at times, joint com-

parisons are useful in any case as they summarize information contained in a number of

point beta estimates. They can be combined with mean returns, regression intercepts

and point beta estimates to form a clearer basis for judging investment opportunities.

A by-product of our calculations is con�rmation of the now widely accepted need for

multi-factor models. Default premium and consumption growth seem to be two impor-

tant sources of risk di¤erences other than the market.

There are several directions for future research. As our results indicate, any two

assets or a group of assets can be compared by formally testing equality of betas across

equations. For instance, one could revisit the in�uential Fama and French (1993) paper

to evaluate whether the stocks sorted by size and book-to-market ratios really di¤er as

the point beta estimates suggest. The importance of formal comparison of betas across

assets also leads to the possibility of uncertainty in betas being priced by the market.

This possibility could be investigated by the Fama and MacBeth (1973) method using

some measure of uncertainty in the market beta as one of the factors in the time-series

regression. One such measure could be the di¤erence in publicly available beta estimates.

The cross-sectional regression would then reveal whether this factor is priced or not.
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Table 1

Summary Statistics

rSMALL rLARGE rVW rDEF rTERM gIP gCONS � gMON

1959:02-2003:12
Mean 11.22 4.98 5.67 23.76 3.15 3.16 2.02 4.12 6.60
Median 8.25 6.83 9.32 22.68 2.39 3.52 2.16 3.57 6.48
Max 694.93 210.29 195.37 57.36 113.86 71.98 21.63 21.53 47.03
Min -367.96 -241.97 -266.66 1.68 -86.59 -43.36 -21.58 -6.58 -32.16
St.Dev. 78.56 49.92 50.98 10.87 19.48 9.81 5.24 3.65 5.49
Skewness -0.29 1.20 -0.39 0.38 0.22 0.03 -0.18 0.97 0.67
Kurtosis 4.73 15.61 4.98 2.62 6.58 9.67 4.54 4.64 18.38

1959:02-1982:10
Mean 11.84 1.91 3.21 18.29 0.74 3.22 1.95 5.13 5.98
Median 6.86 4.63 4.69 15.84 0.57 3.60 2.29 3.99 6.08
Max 694.93 210.29 195.37 47.16 113.86 71.98 21.63 21.53 23.48
Min -321.65 -157.32 -145.90 1.68 -86.59 -43.36 -21.58 -3.90 -5.56
St.Dev. 89.24 49.51 51.84 9.50 21.11 12.07 6.01 4.26 3.96
Skewness 1.61 0.06 0.00 0.74 0.47 0.00 -0.17 0.69 0.01
Kurtosis 15.40 4.25 3.90 2.70 7.98 7.77 3.95 3.16 4.04

1983:11-2003:12
Mean 10.51 8.44 8.43 29.90 5.85 3.09 2.10 2.99 7.30
Median 9.77 10.93 12.20 28.56 5.81 3.51 2.00 2.94 7.09
Max 291.21 156.09 149.07 57.36 56.35 23.83 16.03 11.35 47.03
Min -367.96 -241.97 -266.66 13.92 -40.34 -14.49 -14.78 -6.58 -32.16
St.Dev. 64.68 50.24 49.95 8.84 17.12 6.42 4.22 2.34 6.74
Skewness -0.19 -0.67 -0.87 0.72 -0.06 0.15 -0.10 -0.20 0.56
Kurtosis 9.53 5.48 6.58 2.97 3.06 3.31 4.71 5.14 16.29

Notes: rSMALL and rLARGE denote respectively the excess returns on the small-cap and large-cap

portfolios, rVW is the excess return on the market portfolio, rDEF and rTERM are the default and

risk premium, respectively, gIP and gCONS are growth rates of industrial production and per capita

consumption, respectively, � measures the in�ation rate and gMON the growth rate of the money supply,

respectively. All reported numbers are annualized, in percentages.
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Table 2

Correlations

rSMALL rLARGE

1959:02-2003:12 rVW 0.69 0.99

rDEF 0.16 0.12

rTERM 0.11 0.19

gIP -0.01 0.00

gCONS 0.20 0.16

� -0.12 -0.18

gMON -0.07 -0.01

1959:02-1982:10 rVW 0.74 0.98

rDEF 0.21 0.21

rTERM 0.18 0.22

gIP 0.05 0.07

gCONS 0.20 0.18

� -0.13 -0.19

gMON -0.05 -0.01

1982:11-2003:12 rVW 0.63 0.99

rDEF 0.19 -0.03

rTERM -0.01 0.13

gIP -0.18 -0.14

gCONS 0.22 0.14

� -0.12 -0.13

gMON -0.10 -0.03

Notes: See notes in Table 1 for variable de�nitions.
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Table 3

Rejection Rates Under the Null Hypothesis

Covariance Matrix Estimator

K Sample Size Test WH NW NW-P A AM VARHAC

2 250 F 0.08

Hansen 0.07 0.03 0.02 0.05 0.05 0.05

Wald 0.08 0.08 0.07 0.07 0.07 0.07

2 500 F 0.07

Hansen 0.07 0.05 0.05 0.06 0.05 0.05

Wald 0.08 0.08 0.07 0.07 0.06 0.06

4 250 F 0.07

Hansen 0.05 0.02 0.01 0.04 0.04 0.04

Wald 0.10 0.13 0.13 0.10 0.08 0.08

4 500 F 0.06

Hansen 0.05 0.03 0.03 0.04 0.04 0.04

Wald 0.06 0.08 0.08 0.06 0.05 0.05

Notes: We simulate 500 times the series rit = x1t + x2t + : : :+ xKt + "it; i = 1; 2; t = 1; :::; T; T = 250

or 500, K = 2 or K = 4. xjt = 0:002 + 0:10xj;t�1 + ujt; j = 1; 2; : : : ;K, where u1t; :::; uKt are

mutually independent and i.i.d. normally distributed with zero mean and variance 0:0001. "it =

0:1"i;t�1+0:003�
q
1 + 0:2 "2i;t�1�it; i = 1; 2, with � standard normal noise. We test the null hypothesis

of equality of all parameters across the two assets.
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Table 4

Rejection Rates Under the Alternative Hypothesis

Covariance Matrix Estimator K

K Sample Size Test WH NW NW-P A AM VARHAC

2 250 F 0.89

Hansen 0.87 0.78 0.77 0.85 0.84 0.84

Wald 0.90 0.89 0.89 0.88 0.87 0.87

2 500 F 1.00

Hansen 0.99 0.99 0.99 0.99 0.99 0.99

Wald 1.00 1.00 1.00 1.00 1.00 1.00

4 250 F 0.58

Hansen 0.51 0.26 0.26 0.43 0.48 0.48

Wald 0.61 0.62 0.61 0.61 0.58 0.58

4 500 F 0.89

4 500 Hansen 0.86 0.76 0.74 0.82 0.84 0.84

Wald 0.89 0.87 0.87 0.88 0.88 0.88

Notes: We simulate 500 times series

r1t = x1t + x2t + : : :+ xKt + "1t;

r2t = x1t + x2t + : : :+ xK
2 ;t
+ (1 + 0:2

K )(x(K2 +1);t
+ x(K2 +2);t

+ : : :+ xKt) + "2t;

t = 1; 2; : : : ; T , T = 250 or 500, K = 2 or K = 4. xjt = 0:002 + 0:10xj;t�1 + ujt; j = 1; 2; : : : ;K, where

u1t; :::; uKt are mutually independent and i.i.d. normally distributed with zero mean and variance

0:0001. "it = 0:1 "i;t�1 + 0:003
q
1 + 0:2 "2i;t�1 �it; i = 1; 2, with � standard normal noise. We test the

null hypothesis of equality of all parameters across the two assets.
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Table 5

Tests of the CAPM

Hypothesis Years rVW

equal slopes 59:02-03:12 1.16

(0.28)

59:02-82:10 5.32

(0.02)

82:11-03:12 3.25

(0.07)

zero intercepts 59:02-03:12 5.07

(0.08)

59:02-82:10 5.73

(0.06)

82:11-03:12 1.94

(0.38)

Notes: The model is rit = �i + �ixt + "it; i = 1; 2, where �i is the i-th intercept, �i is the i-th

slope, r1t = rSMALL, r2t = rLARGE , xt is rVW (see notes for Table 1 for variables�de�nitions) and "it

is the regression error. Reported are HAC Hansen statistics (VARHAC method) for testing equality of

slopes and zero values for intercepts. p-values are in parentheses.
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Table 6

Tests of Assorted Bivariate Models

independent variable (in addition to market return)

Hypothesis Years rDEF rTERM gIP gCONS �� gMON

equal slopes 59:02-03:12 0.83 1.23 1.16 0.62 1.17 1.15

(market) (0.36) (0.27) (0.28) (0.43) (0.28) 0.28

59:02-82:10 5.28 4.90 5.09 4.63 5.15 5.04

(0.02) (0.03) (0.02) (0.03) (0.02) (0.02)

82:11-03:12 3.34 2.71 4.02 3.90 3.04 3.59

(0.07) (0.10) (0.04) (0.05) (0.08) (0.06)

equal slopes 59:02-03:12 1.82 3.13 0.06 7.67 0.00 0.68

(other) (0.18) (0.08) (0.81) (0.01) (0.98) (0.41)

59:02-82:10 0.64 0.01 0.04 0.80 0.19 0.02

(0.42) (0.92) (0.85) (0.37) (0.66) (0.88)

82:11-03:12 13.42 2.61 1.52 5.15 0.04 0.27

(0.00) (0.11) (0.22) (0.02) (0.84) (0.60)

Notes: The model is rit = �i + �ixt + "it; i = 1; 2, where �i is the i-th intercept, �i is the

i-th vector of slopes, r1t = rSMALL, r2t = rLARGE , elements of xt are rVW and of one the following

variables: rVW , rDEF , rTERM , gIP , gCONS , ��, gMON (see notes for Table 1 for variables�de�nitions)

and "it is the regression error. Reported are HAC Hansen statistics (VARHAC method) for testing

equality of slopes. p-values are in parentheses.
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Table 7

Estimated Model with Seven Covariates

independent variable

Years Size Intcpt. rVW rDEF rTERM gIP gCONS �� gMON

59:02-03:12 small -0.005 1.036 0.660 -0.185 -0.097 1.442 1.139 -1.058

(0.005) (0.079) (0.248) (0.138) (0.269) (0.499) (0.713) (0.608)

large 0.000 0.973 -0.081 -0.005 0.047 -0.156 0.123 0.171

(0.001) (0.011) (0.036) (0.022) (0.035) (0.071) (0.107) (0.067)

59:02-82:10 small 0.003 1.247 0.584 -0.125 0.014 0.985 0.643 -1.342

(0.007) (0.126) (0.495) (0.209) (0.304) (0.548) (0.874) (1.870)

large 0.000 0.950 -0.048 -0.058 0.036 -0.109 0.071 0.007

(0.001) (0.018) (0.063) (0.030) (0.041) (0.088) (0.141) (0.206)

82:11-03:12 small -0.022 0.778 1.260 -0.387 -1.042 2.306 2.554 -0.909

(0.010) (0.099) (0.405) (0.232) (0.759) (1.071) (1.031) (0.484)

large 0.004 1.000 -0.219 0.067 0.096 -0.218 0.116 0.201

(0.001) (0.011) (0.059) (0.027) (0.064) (0.119) (0.154) (0.058)

Notes: The estimated model is: rit = �i+�ixt+ "it; i = 1; 2, where �i is the i-th intercept, �i is

the i-th vector of slopes, r1t = rSMALL, r2t = rLARGE , xt = (rVW ; rVW , rDEF , rTERM , gIP , gCONS ,

��, gMON )
0 (see notes for Table 1 for variables�de�nitions) and "it is the regression error. Reported

are OLS estimates of the model parameters with VARHAC standard errors in parentheses.



Table 8

Tests for Residual Heteroskedasticity and Correlation

Residual Property Size Test from 59:02 59:02 82:11

to 03:12 82:10 03:12

correlation across equations Pearson �0.70 -0.70 -0.57

(0.14) (0.02) (0.03)

across time small Q 98.11 66.42 45.47

(0.00) (0.00) (0.00)

large Q 41.47 25.14 14.80

(0.000) (0.01) (0.25)

heteroskedasticity small White 4.61 5.88 3.35

(0.00) (0.00) (0.00)

large White 4.77 6.17 2.17

(0.00) (0.00) (0.01)

Notes: The estimated model is: rit = �i+�ixt+ "it; i = 1; 2, where �i is the i-th intercept, �i is the

i-th vector of slopes, r1t = rSMALL, r2t = rLARGE , xt = (rVW ; rVW , rDEF , rTERM , gIP , gCONS , ��,

gMON )
0 (see notes for Table 1 for variables�de�nitions) and "it is the regression error. Residuals are

calculated using OLS estimates, equation by equation; Pearson = chi-square test for correlation; White

test = F test with no cross terms; Q = Q statistic for testing 12 lags of autocorrelation; p-values in

parentheses.
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Table 9

Tests of Seven Covariate Model

period

Hypothesis 1959:02 2003:12 1959:02 1982:10 1982:11 2003:12

equal slopes:

rVW 0.51 3.84 4.78

(0.48) (0.05) (0.03)

rDEF 6.84 1.16 10.57

(0.01) (0.28) (0.00)

rTERM 1.36 0.08 2.81

(0.24) (0.78) (0.09)

gIP 0.24 0.00 1.88

(0.62) (0.95) (0.17)

gCONS 7.77 3.01 3.59

(0.01) (0.08) (0.06)

�� 1.86 0.37 4.39

(0.17) (0.54) (0.04)

gMON 2.99 0.40 3.52

(0.08) (0.53) (0.06)

equal slopes: 14.99 5.60 20.89

(all but mkt.) (0.02) (0.47) (0.00)

Notes: The model is rit = �i+�ixt+"it; i = 1; 2, where �i is the i-th intercept, �i is the i-th vector of

slopes, r1t = rLARGE , r2t = rSMALL, xt = (rVW , rDEF , rTERM , gIP , gCONS , �UI , gMON )
0 (see notes

for Table 1 for variables�de�nitions) and "it is the regression error. Reported are respectively statistics

for the Hansen tests (VARHAC method) of equality of slopes across equations for a given covariate and

of equality of all slopes with the exception of the market. p-values are in parentheses.
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Part III

Testing for Latent Factors in Models

with Autocorrelation and

Heteroskedasticity of Unknown

Form

This paper considers the problem of testing for �latent factors�or �reduced rank�in a

broad class of (multivariate linear stationary) time series models, wherein model errors

have autocorrelation and heteroskedasticity of unknown form. It is easy to motivate

these models and methods in the context of �nance models, and we illustrate with a

familiar macro model of asset returns, proposed by Chen, Roll and Ross (1986). Unfor-

tunately, previously used tests for reduced rank are not su¢ ciently robust, so we examine

two heteroskedasticity and autocorrelation consistent (HAC) methods: A HAC version

of Hansen�s (1982) GMM test, and a lesser known but more user-friendly �minimum

distance�or �ratio of asymptotic densities�(RAD) test. We recommend the RAD test,

for which we supply computer code. In application the tests lend more (HAC) robust

support to the hypothesis that multiple factors drive the link between the macroeconomy

and the returns on bonds and stocks.

9 Introduction

Empirical research in �nancial economics frequently suggests the existence of few latent

factors driving the systematic component of asset returns. Existence of such latent

factors makes it easier to understand the e¤ect on asset returns of the many variables

that comprise the systematic component. Results depend on the number and type of
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assets used and the number and types of instruments, which themselves serve as proxies

for the latent factors (for examples see Campbell 1987, Zhou 1995, and Costa, Gardini,

and Paruolo 1997). In econometric terms, the existence of latent factors translates into

a reduced rank restriction on the (array of) coe¢ cients in an asset return regression

system.

The present work considers the problem of testing for latent factors in a broad class

of (multivariate linear stationary) time series models, wherein model errors have auto-

correlation and heteroskedasticity of unknown form. The generality of error dynamics

is well suited to �nancial models of bond and stock returns, as in the macro model of

Chen, Roll and Ross (1986). To deal with such generality we consider heteroskedasticity

and autocorrelation consistent (HAC) methods, a HAC version of Hansen�s (1982) GMM

test, and a lesser known but more user-friendly minimum distance or ratio of asymptotic

densities (RAD) test.

The primary bene�t of using a HAC-type test of economic hypotheses, in time series

models, is a certain kind of increased robustness relative to tests that rely on parametric

assumptions about error dynamics. This robustness implies that stated signi�cance

levels of HAC tests are frequently closer to their true values, at least in su¢ ciently

large samples. So, for the �nancial economist who wants to know: �Are there really

multiple factors driving the link between the macroeconomy and the returns on bonds

and stocks?�, HAC tests (and the underlying mental exercise regarding error dynamics)

give added insight. HAC tests may or may not agree with less robust tests. In our

application, the HAC test results agree with the results of simpler (and more popular)

implementation of Hansen�s (1982) test for reduced rank, but the crucial point is that

stated signi�cance levels in the popular version of Hansen�s test are not correct, in

statistical terms, when the data have dynamics that cause residual serial correlation.

Hence, to say that the HAC tests �agree�with the popular version of Hansen�s test is

really too liberal an interpretation; more accurate is to say that the nominal (but likely

invalid) conclusions from the popular test coincide with that of the autocorrelation-robust
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tests.

The HAC Hansen test and the RAD test each require some special calculation, and

for this we do some programming. The computational complexity is due partly to the

presence of corrections for residual autocorrelation and heteroskedasticity, and if instead

we assumed that model errors were independent and identically distributed then we could

test for reduced rank via Anderson�s (1951) convenient likelihood ratio (LR) test (see

Reinsel and Velu [1998] for discussion and Zhou [1994] for a related test couched in GMM

terms). It is of course possible to extend Anderson�s LR test to (parametric) probability

models with autocorrelated errors (see Reinsel and Velu 1998), but this approach relies on

a correctly speci�ed error dynamic. We instead take the non-parametric HAC approach,

allowing a wider variety of error dynamics.

Is special calculation really necessary for our testing purposes? In application to asset

pricing models, Zhou (1994) gives an interesting modi�cation of Hansen�s (1982) testing

approach, with an analytic (hence computationally convenient) test for latent factors

in asset returns. However, to implement his analytical test Zhou relies on parametric

assumptions about the model�s error dynamics. Speci�cally, he considers the case of

white noise errors and also the case of errors which are uncorrelated but have a known

(parametric) form of conditional heteroskedasticity. The method can, in principle, be

extended to models with a parametric form of error autocorrelation, and while this is also

the case with Anderson�s analytical LR test, both methods are necessarily parametric.

Since we pursue instead a nonparametric HAC objective, we undertake a computationally

harder problem.

Comparing the HAC robust Hansen-type and RAD tests for reduced rank, the latter

is much easier to implement with full �exibility regarding the reduced rank form, e:g:

the selection of linearly independent matrix rows in the reduced-rank coe¢ cient ma-

trix. For this reason, the RAD test is more user-friendly than the robust Hansen test,

and with it we obtain conclusions robust to the form of reduced rank, as well as the

form of error dynamics. Both are calculated by minimizing a quadratic form with the
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optimal weighting matrix given by the inverse of a relevant covariance matrix. Covari-

ance matrix estimation is made robust to both heteroskedasticity and autocorrelation

via various non-parametric and parametric methods. We consider several kernel-based,

heteroskedasticity and autocorrelation consistent (HAC) procedures, with various com-

binations of kernel, bandwidth selection, and pre-whitening �lter (see Newey and West

1987, 1994, Andrews 1991, Andrews and Monahan 1992). We also implement a simple

parametric procedure with pre-whitening, advocated by den Haan and Levin (1997).

For the Hansen test we follow Hansen, Heaton and Yaron (1996), simultaneously iter-

ating over both the weighting matrix and model parameters. For the RAD test such

simultaneous iteration is unnecessary.

Our empirical study, like the in�uential work of Chen, Roll and Ross (1986), looks

at the link between asset markets and macroeconomic fundamentals. As dependent

variables in our regression system, we choose a set of excess returns broadly characterizing

the U.S. bond and stock markets over the last four decades. Speci�cally, we use monthly

excess returns on the Treasury securities of maturities of 90 days and 5 years. To capture

the main features of the U.S. stock markets, we sort returns by �rm size and use excess

returns on the CRSP small capitalization and large capitalization portfolios. There are

many candidates for our explanatory variables. Given our dependent variables (a small

number of both stock and bond returns), we do not consider size and book-to-market

related portfolios of Fama and French 1993 (henceforth FF) and term and default premia

(FF, Chen, Ross and Ross 1986). The size related variables are mostly used in studies

focusing on stocks; also, in those studies, a large number of assets is involved. The

problem with bond related factors is that we might run into econometric problems with

term structure related dependent and independent variables.16 Moreover, while the FF

factors do a good job in explaining cross-sectional and time-series variation of stock

returns, they are somewhat ad hoc. Hence, we focus on macroeconomic variables which

can be theoretically linked (at least loosely) to expected returns. We are left with a subset

16This is to some extent true for the size related factors as well; see FF for a detailed discussion.
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of risk factors similar to Chen, Roll, and Ross (1986), consisting of the stock market,

consumption, industrial production, money supply, and the unexpected in�ation rate.

The models of asset returns with macroeconomic explanatory variables are well spec-

i�ed statistically, provided that the used time series are stationary. From the theoretical

perspective, the models used can be considered to be examples of the inter-temporal

Capital Asset Pricing Model (CAPM), in which case the test for reduced rank is the test

for the number of latent risk factors inherent in this model.17 If we wanted to interpret

the test of our model as a test of the Arbitrage Pricing Theory, all the explanatory

variables would have to be excess returns on assets. Interpreting the growth rate of

consumption and the expected in�ation rate literally as asset returns is problematic but

the return on the stock market is obviously an asset return, the industrial production

growth rate may be viewed as a return on physical assets, and the growth rate of money

as a (negative) return on cash holdings (due to in�ation).

We analyze the reduced rank structure in the bond and stock markets, both separately

and jointly. We �rst document the presence of autocorrelation and heteroskedasticity in

residuals of all unrestricted regression systems, using a battery of tests. Then we apply

the RAD and the Hansen tests (as a benchmark) with several HAC robust covariance

matrix estimators. We �nd that the one-factor hypothesis is rejected both in the bond

market and the stock market. A joint estimation and tests of the stock and bond mar-

kets does not alter these results - statistically, at least four factors are needed for an

accurate description of both markets. The sources of di¤erences between bonds of dif-

ferent maturity can be traced to signi�cantly di¤erent market and industrial production

betas, suggesting (consistently with existing theory, see Campbell [1999] for a survey on

stylized facts regarding various premia) that there is a term premium mainly due to a

higher sensitivity to the market risk and to business cycles. For stocks of di¤erent �rm

size such di¤erences can be traced to consumption and monetary betas. This con�rms

17A special case of this model uses the stock market return as the only explanatory variable is the

standard CAPM.
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that there are di¤erences between stocks of di¤erent sizes but in a sense diverging from

the literature since the returns in our sample actually do not statistically di¤er,18 only

the betas do. Presence of consumption in our data is motivated by the consumption

based CAPM and the higher consumption beta suggests that small �rms are riskier from

this perspective. Di¤ering monetary betas may be due to greater sensitivity to tighter

monetary policy of small �rms (see Gertler and Gilchrist 1994). The di¤erences between

bonds and stocks con�rm the equity premium puzzle. However, the prospective is rather

novel in this case as we combine reduced rank tests with cross-sectional Wald tests.

The paper is organized as follows. Section 10 introduces the unrestricted and re-

stricted asset pricing models, Section 11 describes the Hansen tests and the generalized

Wald tests, Section 12 discusses the data selection and data sources, Section 13 reports

our results and Section 14 concludes.

10 Model

We are interested in testing for latent factors in a broad class of multivariate linear

models. However, to make the exposition more readable for the general economist we

will couch our discussion in the speci�c context of asset pricing models. The formal

setup in Equation 8 is still quite general, representing as it does a multivariate linear

relationship between some (dependendent) variable y and other variables (x), so the

same formal model and methods can be applied to other kinds of economic data.

For a collection of assets, let y1t; : : : ; ynt denote the (excess) returns to holding each

asset from time t� 1 to time t. The regression model of interest is:

yt = � xt + "t; t = 1; : : : ; T; (8)

where � is an n�K coe¢ cient matrix, with n < K, and "t is an n�1 vector of regression

18Similar �ndings of the diminishing �rm size e¤ect are reported by FF and by Horowitz, Loughran

and Savin 2000.
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errors for which E["tjxt] = 0. xt is a K � 1 vector of observables which may include

a constant and such factors as the market excess return, consumption growth, etc: (see

section 3 for details). The series yt, xt, "t are presumed stationary and conformable to

standard central limit theory, and the errors "t can exhibit conditional heteroskedasticity

and/or autocorrelation, in the usual manner described in White (1984) and Davidson

(1994, 2000), for example.

Consider, in addition to the regression model (8), the following latent factor speci�-

cation of the conditional mean of asset returns:

E[yitjxit] = iE[ztjxit]; i = 1; : : : ; n; t = 1; 2; : : : ; T; (9)

where zt is a q � 1 vector of unobserved latent factors, for some q < K, and i; i =

1; : : : ; n, are their 1� q coe¢ cient vectors. One can likewise specify a linear relationship

between z and x:

E[zjtjxt] = �j xt; j = 1; :::; q; t = 1; : : : ; T (10)

for some 1�K vectors �1; :::; �q. In this case, the observable variables in vector xt serve

as proxies of the underlying latent factors zt. The general null hypothesis is reduced

rank q < K for the matrix �. This reduced rank hypothesis is, equivalently, expressible

as:

H0 : � =  � for some n� q matrix  and some q �K matrix �: (11)

To testH0 via the Hansen (1982) approach, it is common to impose further parameter

identi�cation, as in Campbell (1987) and Ferson and Foerster (1994). We will follow

this approach to implementing the Hansen test, due to the tremendous computational

simpli�cation it a¤ords. At the same time, we will avoid these additional identi�cations

when using the alternative RAD testing approach.

To further identify parameters under H0, we can optionally specify  = [I �]0�, with

I the q � q identity matrix and � some (n� q)� q matrix, in which case the specialized

null hypothesis is:
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H�
0 : � = [I �]

0� for some q� q identity matrix I, (n� q)� q matrix � and q�K matrix

�.

While hypothesis H�
0 is clearly stronger than H0, it is actually a very common normal-

ization to impose in reduced-rank regression models (of which our �nancial models are

special cases), and is typically invoked when reporting estimates of such models in eco-

nomics (as in the cointegration output of Eviews software). If we are worried that H�
0 is

too strong, we may prefer to put more weight on the RAD test, rather than the version

of Hansen�s (1982) test under study.

11 Tests

In this section, we describe two tests for reduced rank. We �rst de�ne the test statistics,

then describe their computation which in each case can be carried out using GMM. We

�rst de�ne the minimum-distance or RAD test of interest. The RAD test statistic is:

W = min
�2H0

(vec(�̂)� vec(�))0 
̂�1
vec(�̂)

(vec(�̂)� vec(�)); (12)

where vec(�̂) is the unconstrained OLS estimator and 
̂vec(�̂) is the associated GMM

covariance matrix estimate, both implemented via heteroskedasticity and autocorrelation

robust covariance estimators. The RAD test can be viewed as a special case of a very

interesting (but little known) general econometric test proposed by Szroeter (1983).

The RAD test is a �minimum distance� test, in that it is based on the minimum

squared �distance�between �̂ and the reduced-rank approximations to �̂. This mini-

mum squared distance can also be interpreted as (proportional to the log of) the ratio

of constrained and unconstrained approximate (normal) densities for the parameter esti-

mator �̂, with constraint given by the reduced-rank restriction (see Gilbert and Zemcik

2004). Hence, the label RAD (ratio of asymptotic densities) is �tting and also intuitive

in its similarity to the likelihood ratio (LR) test statistic. An advantage of RAD over

LR is that we can make RAD robust to error autocorrelation and heteroskedasticity of
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unknown form, via a HAC form for 
̂vec(�̂), whereas consistency of LR requires a known

form of error dynamics.

Next we de�ne the relevant Hansen (1982) tests. For each given value of � in Equation

8 de�ne:

eit = yit � �i xt; i = 1; : : : ; n; t = 1; : : : ; T: (13)

Relevant sample moments take the form:

m(�)ij =
1

T

TX
t=1

eit ujt; i = 1; :::; n; j = 1; :::; L; (14)

with ujt; j = 1; :::; L a set of instruments.

The general Hansen (1982) GMM statistic is de�ned as:

S = min
�2H�

0

vec(m(�))0 
̂�1vec(m(�)) vec(m(�)); (15)

where 
̂vec(m(�))) is the GMM covariance-matrix estimator, which we later specify in

ways robust to heteroskedasticity and serial correlation. To arrive at the solution S to

Equation 15, we iterate over repeated trials, at each stage simultaneously solving for

updated parameter and covariance-matrix estimates, as in Hansen et al: (1996).

Under the null hypothesis (H0 or H�
0 ) and suitable regularity conditions (stationarity,

�nite moments, mixing, etc., as in White [1984] and Davidson [1994, 2000], for example),

both the Hansen test S and RAD test W can be shown to be distributed asymptotically

as chi-square variables with (n�q)(K�1) degrees of freedom. Hansen (1982) shows this

result for S under general conditions (and for recent discussion see Harris and Mátyás

[1999]). For the RAD test, Szroeter (1983) provides some general (but quite abstract)

theory, and Gouriéroux and Monfort (1989) give a somewhat more streamlined and

intuitive version of this broad theory. In speci�c application to reduced-rank linear

models, Gilbert and Zemcik (2004) give an extensive theoretical description of the RAD

test.

To summarize brie�y the logic of proving the asymptotic chi-square distribution of

W : (a) By construction, the statistic W is obtained as the minimum (the Malhanobis)
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distance between an unconstrained parameter vector (consisting of �̂ elements) and a

set of candidate values � 2 H0, (b) the estimator �̂ is itself assumed to be consistent

and asymptotically normal, with a covariance matrix 
vec(�̂), (c) the consistent estimator


̂vec(�̂) of 
vec(�̂) is also the distance-de�ning matrix appearing in the Malanobis distance

function. We can then view the constrained estimator ~� of � as a function of �̂ and


̂vec(�̂), and applying the Delta (asymptotic expansion) method (see, for example, van

der Vaart [1998]) to ~�, we can readily obtain a �rst-order normal approximation to the

di¤erence ~�� �̂, and from this conclude that W is asymptotically chi square. For other,

more exhaustive proofs of the asymptotic normality of the minimized (square) distance

objective function, see Dahm and Fuller (1986), Cragg and Donald (1995), and Gilbert

and Zemcik (2004).

To compute the Hansen (simultaneous-iterated) J-type test S, we use the GMM

routine in EViews 3.1, with a variety of choices for the covariance estimation method.

To compute the RAD test W , we use a simple and convenient iterative method to get

an alternating sequence of  and � estimates, which are needed to estimate � under H0.

Appendix 1 contains a derivation of the required mathematical formulae. Alternatively,

we could use the Newton-Raphson method of Ahn and Reinsel (1988, 1990). At each

stage of the iteration, we hold �xed the current estimate ( or �) and solve the quadratic

optimization problem (12) for the remaining parameters. We start with the initial values

�̂i = �̂i; i = 1; :::; q: (16)

Holding �xed the initial choice of �̂, we solve the quadratic problem in Equation 12 in

terms of :

vec(̂0) =
h
(In 
 �̂

0
)0
̂�1

vec(�̂
0
)
(In 
 �̂

0
)
i�1

(In 
 �̂
0
)0
̂�1

vec(�̂
0
)
vec(�̂

0
): (17)

We express the solution in terms of transposes 0, �0, and �0 due to the fact that the

covariance matrix 
̂
vec(�̂

0
)
is readily obtained from standard regression packages, whereas


̂vec(�̂) is equivalent but requires extra computation.
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Next, having computed the �rst-round choice ̂; we hold it �xed and solve the

quadratic problem in Equation 12 in terms of �,

vec(�̂
0
) =

h
(̂ 
 IK)

0
̂�1
vec(�̂

0
)
(̂ 
 IK)

i�1
(̂ 
 IK)

0
̂�1
vec(�̂

0
)
vec(�̂

0
): (18)

We repeat the alternating updates of ̂ and �̂ numerous times (at least 10). To ensure

convergence, at each round of the sequence, we normalize the matrix  by diving each of

its elements by its upper left element. We carry out these computations using a program

we wrote in the EViews 3.1 environment. This program is available from the authors

upon request, and is able to handle more general reduced-rank structures where only

some of the regressors are restricted.

We estimate the covariance matrices needed to calculate S and W in a number of

di¤erent ways. While we use mainly HAC-based estimators, for comparison purposes, we

also examine the White heteroskedasticity-consistent estimator (denoted White). Ferson

and Foerster (1994) study the �nite sample properties of the Hansen/White test for

reduced rank equal to 1 and 2, as implied by various versions of the CAPM. As for

HAC methods, we include ones based on the Bartlett kernel and the data-dependent

Newey and West (1994) bandwidth, with and without prewhitening (denoted NW and

NW-P, respectively). We also include the quadratic spectral kernel with the Andrews

(1991) data-dependent bandwidth (without prewhitening, denoted A), and the Andrews-

Monahan (1992) method (denoted AM) with prewhitening. We have also examined the

simple prewhitening method studied by den Haan and Levin (1997) (VARHAC). We

have spot checked some of our EViews-based computations using a Gauss code written

by Hansen, Heaton and Okagi, and we have noticed that EViews 3.1 versions prior to

June 2000 appear to have an error in computing some of the J tests, but versions June

2000 and later do not have this problem, as con�rmed by the EViews technical sta¤.

Den Haan and Levin (1997) study �nite sample properties of kernel-based and para-

metric covariance-matrix estimators in a single equation context with complex serial cor-

relation structures. Their Monte Carlo experiments favor a simple parametric method

with prewhitening - VARHAC. In computations, which we omit here for brevity, we
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extend their simulations to systems of equations in which we study the small sample

rejection rates of the S and W statistics under the hypotheses of reduced and full rank.

Our results also support the use of the VARHAC method in most cases. In addition, we

�nd that some �nite-sample properties (including empirical size) worsen as we increase

the number of equations, increase the number of explanatory variables, increase rank

and decrease the sample size. We conclude that, for a sample size T of about 500 (our

number of observations), four equations and six explanatory variables (including a con-

stant term), the S and W statistics are reasonably close to the chi-square distribution

under the null.

12 Data

Most studies focusing on factor models of expected asset returns either assume or ulti-

mately conclude that the number of factors equals 1, 2 or 3 (see Campbell 1987; Ferson

and Foerster 1994; Zhou 1995; Backus, Foresi, and Telmer 1998; de Jong 1998; Dai and

Singleton 2000). To test for up to three factors, we need at least four asset returns.

Therefore, we choose two bond returns and two stock returns to characterize the bond

and stock markets, respectively.

Treasury 90-day Bills and 5-year Bonds seem a natural choice as representatives for

the bond market. While there is no di¤erence in the default risk, there is a di¤erence in

levels of risk due to di¤ering maturities. The data source is CRSP (indno 1000707 for

the 90-day T-bill and 1000704 for the 5-year T-bond) and we subtract the 30-day T-bill

rate (indno 1000708) to get excess returns rT90 and rT5, respectively. The data frequency

is monthly, the sample period 1959:02-2000:11 is given by the availability of per capita

consumption series (see below) and the summary statistics are in Table 10. As expected,

the rate of return on the longer maturity bond is higher and so is the corresponding risk

level as measured by the standard deviation.

To capture the basic features of the stock market, we need stock returns covering
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a wide range of stocks but with di¤erent risk characteristics. We use CRSP NYSE

Portfolio Indices ranked by capitalization, combining deciles 1-5 for the large �rms (indno

1000314) and 6-10 for the small �rms (indno 1000315). These monthly time series are

based on quarterly rebalanced portfolios. Excess returns are again calculated using the

30-day Treasury bill return and we denote them as rLARGE and rSMALL, respectively.

The summary statistics in Table 10 indicate an overall higher level of both return and

risk for small �rms. The excess return on small caps is more volatile (consistent with

Malkiel and Xu [1997], for example) and this feature is independent of the chosen time

period. On the other hand, the mean excess return is actually greater for large �rms

since 1980, a trend noticed by Fama and French (1993) and carefully documented by

Horowitz, Loughran, and Savin (2000).

As covariates, we opt for variables for which there is an established theoretical link to

expected excess returns. This excludes the size-related stock market factors (see Fama

and French 1993; Chan and Chen 1991) and term structure and default risk related bond

factors (see Chen et al. 1986; Fama and French 1993). Inclusion of these variables could

also lead to econometric problems, with �rm size and-term-structure-related dependent

and independent variables.

Both the static CAPM and the intertemporal CAPM suggest the use of the market

excess return as an explanatory variable. We use the CRSP value-weighted index of the

S&P 500 Universe (indno 1000502) in excess of the 30-day T-bill (rSP ). The time series

characteristics in Table 10 are similar to those of rLARGE due to the fact that the value

weighted index is dominated by large �rms.

The consumption CAPM and business-cycle models specify the relationship between

expected returns, consumption, and production. Hence, we include the growth rates of

industrial production (gIP ) and real per capita consumption of nondurables and services

(gCONS) as measures of real economic activity. We obtain both series from the St. Louis

Fed�s website. Speci�cally, we use the variable INDPRO to calculate gI and variables

PCEND, PCES, and POP to calculate gC . The per-capita consumption is adjusted
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to in�ation using the CRSP price index (indno 1000709). The FED series are season-

ally adjusted. Interestingly, the correlation of consumption with stock-market variables

(see Table 10) is greater than with bond-market variables, and the opposite is true for

industrial production.

We also include the monetary growth as one of the explanatory variables. The link be-

tween expected returns and money can be motivated by overlapping generations models

(see Brock [1990] for a survey), models with money in the utility function (Brock 1975),

and models with the cash-in-advance constraint (Svensson 1985)19. We use the season-

ally adjusted monetary base series from the St. Louis Fed�s website (series AMBSL)

to calculate the monetary growth rate, gM , which seems to move more closely with the

bond market than the stock market (see Table 10).

Finally, we control for the e¤ect of in�ation. Because in�ation happens to be the only

nonstationary series (the augmented Dickey Fuller test does not reject the unit root), we

use its �rst di¤erence, which is the unexpected in�ation.

13 Empirical Results

In this section, we investigate the latent variable structure of the bond market, the stock

market, and the market for both bonds and stocks. In each case, we �rst estimate

the unrestricted model of the form (8), test corresponding residuals for heteroskedastic-

ity and correlation, and then conduct tests for reduced rank. In this application, the

afore-mentioned GMM setup will reduce to a simple method of moments setup, with

u consisting of regressors x and with L = K. We report reduced-rank test results for

both Hansen and RAD tests with VARHAC covariance matrix. However, our results are

robust with respect to the choice of covariance matrix estimators described in section 11

19As Feenstra (1986) shows, the cash-in-advance models can be interpreted as a special case of the

money in utility function models.
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(i.e., besides VARHAC, we also use White, NW, NW-P, A, and AM).

13.1 Bond Market

The estimates of the unrestricted model for expected bond excess returns are reported

in panel A of Table 11. The intercepts are small but signi�cantly di¤erent from zero,

indicating the presence of a term premium unexplained by the simplistic asset pricing

model. A Wald test for zero intercepts in both equations at once can be loosely inter-

preted as a test of an asset pricing model - see Gibbons, Ross, and Shanken (1989);

Fama and French (1993, 1996); and Cochrane (2001). The Wald test statistic is, in this

case, 17.10 and the corresponding p-value is 0, so our explanatory variables themselves

do not entirely explain the time-series behavior of bond returns, a result consistent with

the notion of the riskfree rate puzzle (see Campbell 1999, for example). Because we

can think of our risk factors as proxies for the underlying latent factors, this should not

undermine our reduced-rank analysis.

According to CAPM and the intertemporal CAPM, the beta of excess market return

is expected to be close to zero because the default risk is presumably very small for U:S:

government bonds. The beta is likely to be higher for excess returns on bonds with higher

maturity where the di¤erences in the overall risk level increase. Panel A of Table 11

con�rms this prediction with the market beta being insigni�cant for rT90 and somewhat

larger and signi�cant for rT5. The consumption growth rate is insigni�cant in both

equations, and this is consistent with �rst-order conditions of the consumer optimization

problem (in the power utility consumption CAPM) only for large risk-aversion coe¢ cients

(see Eqn. 1.16 in Cochrane [2001]). The beta for industrial production is signi�cantly

negative for both types of bonds, re�ecting the fact that industrial production is a

leading indicator for output. Because we consider a multiple regression that includes

industrial production in addition to the market excess return, the industrial production

beta characterizes reaction of returns to output �uctuations unusually large for a given
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level of market return. Bond prices are typically higher earlier in contractions, which

pushes down the next period�s interest rates and returns. Bonds with higher maturity

seem to be more sensitive to business cycles. The sign of the monetary beta is in

accord with a simple intuition of lower interest rates as a result of increasing the money

supply, but this beta is insigni�cantly di¤erent from zero. The estimate of the expected

in�ation coe¢ cient is also insigni�cantly di¤erent from zero, thus suggesting that, while

the expected in�ation a¤ects the returns according the Fisher equation, it does not

in�uence excess returns.

Preliminary to testing for reduced rank, we �rst document the need for the HAC

robust methodology by testing for heteroskedasticity and various forms of correlation in

the regression residuals of our unrestricted model. Panel B of Table 11 indicates the

residuals are correlated across equations and time and heteroskedastic, thus justifying

our HAC robust estimation methods. The Hansen and RAD tests of the null hypothesis

of rank=1 are then conducted using the VARHAC covariance-matrix estimator.

For the Hansen test (but not the RAD test), for ease of computation, we apply the

more specialized version H�
0 of reduced-rank hypothesis H0, via the speci�cation

y1t = �xt + �1t;
y2t = �y1t + �2t:

(19)

Here, the �rst asset serves as the reference asset, through which we can describe (up to

a multiple �) the dependence of y2 on x.

For data, we use the sample 1959:02-2000:11, where y1t = rT90, y2t = rT5, � is a (6�1)

vector of coe¢ cients, xt = (1, rSP , gI , gC , gM , �UI)0, �it is the regression error, and � is

the multiple coe¢ cient characterizing the di¤erent sensitivity of the second asset. We

also use the vector xt as instruments in the J-test.

Both tests strongly reject the (respective) null hypothesis - see panel C of Table

11. These results suggest that behavior is very di¤erent for the two government bonds

even though the only source of di¤erence in risk is the maturity term. More than one

macroeconomic factor is needed to explain the cross-section of expected bond returns.

Implicitly, the term premium is thus characterized by at least two underlying factors. To
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identify potential sources for di¤erences between bonds of di¤erent maturities, we run

simple Wald tests of equality of individual coe¢ cients across equations. The equality of

coe¢ cients is only rejected for the market and industrial production betas, which were

also the only sensitivities statistically di¤erent from zero in our unrestricted model.

While we focus on bond excess returns, our study is complementary to research

concentrated on the term structure of interest rates (Cochrane [1999] relates bond returns

and interest rates with respect to the yield curve and Campbell, Lo, andMacKinlay [1997,

ch. 10] provide basic formulae tying returns and yields together). For example, Backus

et al., (1998) give a survey of (multi) factor models of the term structure and Ang and

Piazzesi (2001) use a VAR model with macroeconomic and latent variables. The latent

variables are often referred to as slope, curvature, and level factors and correspond to

the shape of the yield curve. Ang and Piazzesi (2001) treat macroeconomic variables

characterizing in�ation and the business cycle as observable and argue that the slope and

curvature factors can be related to macro factors. Consistent with our results, this leaves

them with three factors needed to explain the term structure - the in�ation, business

cycle, and level factors.

13.2 Stock Market

Panel A of Table 12 reports the OLS estimates of betas in the unrestricted model.20

Neither the Wald test (with the statistic equal 0.16 and corresponding p-value 0.92) nor

individual t-tests can reject the hypothesis of zero intercepts for this stock return model.

This is rather di¤erent than the case of bonds returns mentioned earlier.

As implied by the CAPM and the intertemporal CAPM, the market beta is positive

and signi�cant. It is higher than 1 for small �rms, re�ecting a higher level of risk

associated with their returns. For large �rms, the market beta is close to 1 due to the

20The estimation of the unrestricted model is often used as the �rst step of the Fama and MacBeth

(1973) method. For example, see Chen, Roll, and Ross (1986), who also use macroeconomic variables.
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fact that the time series characteristics of the stock market portfolio are dominated by

�rms of a greater market value. The consumption beta is signi�cant for small �rms

but still too small as compared with predictions of the consumption CAPM with power

utility function (see Eqn. 1.16 in Cochrane [2001]), con�rming the equity premium

puzzle. Industrial production is again negative but insigni�cant. The money betas

are both negative but only the small-�rm money beta signi�cantly so. The expected

in�ation coe¢ cient is positive for both portfolios and signi�cant for small �rms. A

positive coe¢ cient suggests that expected in�ation a¤ects stock returns more that it

a¤ects the riskfree rate.21

Turning to tests for reduced rank, we �rst test for residual heteroskedasticity and

correlation. Results in panel B of Table 12 indicate that both are present, further

justifying the use of HAC robust methods. The restricted model for the Hansen test is

speci�ed by the system (19) with y1 = rSMALL and y2 = rLARGE. As shown in panel

C of Table 12, the null hypothesis of rank one is strongly rejected by both the Hansen

and RAD test. This results is robust to exclusion of intercepts and to the choice of

the covariance-matrix estimator. Interestingly, because the signs of all coe¢ cients are

the same, this outcome is due to disproportionately greater sensitivities for small �rms.

Speci�cally, Wald tests for equality of individual coe¢ cients across the two equations

show that only consumption, monetary, and expected in�ation betas di¤er at 5% level of

signi�cance. The market betas are statistically indistinguishable, consistent with recent

evidence suggesting that returns on stocks sorted by size may not di¤er as much as

previously thought.22 Our results suggest that, while di¤erences between small and large

�rms are more subtle, they do exist, mainly due to quantitative variation of sensitivities

to variables other than the market excess return. Therefore, at least two factors are

21Our results are consistent with studies on �rm-size e¤ects - see Fama and French (1993, market

beta), Chan, Chen, and Hsieh (1985, market and industrial production betas), and Li and Hu (1998,

industrial production and money- supply betas).

22Among others, Horowitz, Loughran, and Savin (2000) report that no consistent relationship can be

found between size and realized returns since the 1980s.
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needed to explain both the mean excess returns on small and large �rms. Similarly,

Costa, Gardini, and Paruolo (1997) consider monthly returns on common stocks listed

on the Milan stock of Exchange and use maximum likelihood inference in reduced-rank

regression models to conclude that the number of (latent) factors appears to be greater

than four.

13.3 Bond and Stock Markets Jointly

In this subsection, we consider simultaneously the bond and stock markets. Panel A of

Table 13 reports residual correlation across equations - the correlations across markets

are small and insigni�cant (the rest of the correlation matrix can be found in Tables 11

and 12). Campbell and Ammer (1993), for example, argue that the low correlation can

be explained by the real interest rate and by news about future excess stock returns and

in�ation. Because the residual heteroskedasticity and autocorrelation tests are conducted

equation by equation, they are identical to ones reported in panel B of Tables 2 and 3.

When applying the HAC-robust Hansen test (but not the RAD test), for ease of

computation, we again apply a restricted version H�
0 of the latent factor structure H0.

The restricted model uses the �rst q assets as reference assets, as follows:

yit = �ixt + �it; i = 1; 2; : : : ; q;
yjt = �1y1t + : : :+ �qyqt + �jt; ; j = q + 1; : : : ; n;

(20)

where the rank q=1,. . . ,3, and y1t = rT90, y2t = rT5, y3t = rSMALL, y4t = rLARGE. ��s

and xt are de�ned above.

For both the Hansen test and RAD test, panel B of Table 13 indicates a strong rejec-

tion of ranks 1, 2, and 3, that is, at least four latent factors are necessary to characterize

jointly the cross-sectional and time-series behavior of expected excess returns. The re-

jection of the factor models with a small number of factors is representative of problems

connected with accounting for the high risk-free rate and the term, bond equity, and

equity premia (see Campbell [1999] for a survey).
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The question arises whether this result could be anticipated given the fact that at

least two factors were needed to explain expected returns for both the bond and stock

markets. The answer is no because there is a possibility that both bond and stock excess

returns are driven by the same two latent factors. Such a possibility is rejected by the

reduced-rank analysis. The source of di¤erences lies in di¤erent patterns of sensitivities

in the two markets. While the variability in the bond returns is mostly due to di¤ering

market and industrial production betas, the variation in the stock excess returns can be

traced to betas for the growth rates of consumption and money supply, and expected

in�ation.

In a quite di¤erent modelling context, Campbell (1987) tests for reduced rank in

a VAR model with bond excess returns of several maturities and the excess return on

the market portfolio. As instruments he uses lagged yield spreads. The residuals in his

VAR model are heteroskedastic but not serially correlated and he uses the White/score

method to �nd that there are at least three latent factors. We have con�rmed his results

in a similar setup, using both the White and HAC robust score and RAD methods, the

RAD test being robust to the choice and ordering of the reference assets.23 Moreover, we

repeated his analysis for the bond market separately, later adding the only stock market

variable. In the case of the bond market, two-factor null hypothesis could not be rejected

and, in the case of the joint model, three factors could not be rejected.24 This result is

consistent with our tests in the four-variable model, that is, several (more than three)

factors are necessary to account for the cross-sectional and time-series patterns of stocks

and bonds.

Our empirical work has been directed at counting the number of latent (macro)

factors in asset returns, in the spirit of Chen, Roll, and Ross (1986). Of course, for a

given number of latent factors, it is important to understand the nature of these factors

23Of course, the autocorrelation robustness is not really needed in this case.

24For the purpose of replicating Campbell�s (1987) analysis, we extend our dataset by adding several

Treasury securities. Details regarding this data and our results are available upon request.
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and the plausible ways that they might cause events in �nancial markets. For this,

we would need to extend considerably the empirical investigation, by reporting �tted

values of coe¢ cients in the latent factor models. We leave this important work to future

research.

14 Summary

In this article, we propose tests for latent factors, or reduced rank, in multivariate linear

models, in the case where model errors exhibit error serial correlation and heteroskedas-

ticity of unknown form. We considered two types of tests, a version of Hansen�s (1982)

GMM test and a di¤erent, more user-friendly test called the RAD test. It would be inter-

esting to extend the analysis to include other tests robust to error dynamics, including

a general test of matrix rank proposed by Gill and Lewbel (1992). Their test, while

perhaps less intuitive than the RAD test, may o¤er some computational advantages,

although in simulations, we have not yet been able to show that either test is faster

to compute than the other. We provide (Eviews) programs/macros for computing the

RAD test, and a convenient stand-alone Windows program will soon be available from

the �rst author. We encourage economists to apply the RAD test for latent factors, to

many kinds of economic data (�nance, macro, micro, international, etc.).

While we have tried hard to achieve extra robustness in our tests, in terms of error

dynamics, we rely on asymptotic theory for our test signi�cance levels and decision

rules. In small samples, asymptotic signi�cance levels may be poor approximations,

and in that case bootstrap/simulation methods may be a useful substitute. Gilbert and

Zemµcík (2004) report some such simulations and, while we have not encountered serious

test distortions in simulations �t to the sample sizes and models in the present work,

we can produce big distortions by drastically reducing the sample size, or by drastically

increasing the number of (y) variables in the model.
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Appendix 1
The proposed algorithm for computing RAD test relies on two mathematical formulas,

Equations 17 and 18 in the text. To derive these formulas, �rst note that, under the

reduced-rank restriction H0 in the text we have �̂
0
= �̂

0
̂0, and applying standard rules

of linear algebra (Ruud 2000, p. 925),

vec(�̂
0
̂0) = (In 
 �̂

0
) vec(̂0) = (̂ 
 IK) vec(�̂

0
):

To derive Equation 10, note that the desired ̂ is such that, given the �xed initial estimate

9 of �, the �rst-order conditions for the quadratic problem (12) reduce to:

@ (vec(�̂
0
)� vec(�̂

0
̂0))0

@ vec(0)

̂�1
vec(�̂

0
)
(vec(�̂

0
)� vec(�̂

0
̂0)) = 0:

Using the �rst of the standard algebra rules stated above, we obtain:

@ (vec(�̂
0
)� vec(�̂

0
̂0))0

@ vec(0)
= �(In 
 �̂

0
)0;

and from these last two equations we obtain the Formula (17) in the text.

To derive (18), note that the desired �̂ is such that, given the �xed estimate ̂, the �rst

order conditions for the quadratic problem (12) reduce to:

@ (vec(�̂
0
)� vec(�̂

0
̂0))0

@ vec(�0)

̂�1
vec(�̂

0
)
(vec(�̂

0
)� vec(�̂

0
̂0)) = 0:

Applying the second of the standard algebra rules stated above, we obtain:

@ (vec(�̂
0
)� vec(�̂

0
̂0))0

@ vec(�0)
= �(̂ 
 IK)

0;

and from these last two equations we obtain the Formula (18) in the text.
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Table 10

Summary Statistics

rT90 rT5 rSMALL rLARGE rSP gC gI gM �

Mean 0.58 1.44 8.13 6.21 6.50 2.09 3.45 6.55 4.30

St. Dev. 1.21 18.69 66.54 50.49 50.85 5.56 10.47 5.56 3.92

Skewness 2.36 0.20 -0.17 -0.37 -0.36 -0.25 -0.10 0.17 0.92

Kurtosis 18.63 7.19 7.38 5.15 5.06 4.00 9.08 12.71 4.28

Correlation

rT90 1.00 0.62 0.13 0.11 0.11 -0.02 -0.20 -0.05 -0.02

rT5 1.00 0.16 0.25 0.24 0.01 -0.17 -0.06 -0.11

rSMALL 1.00 0.85 0.82 0.21 -0.03 -0.04 -0.17

rLARGE 1.00 0.99 0.15 -0.02 0.00 -0.18

rSP 1.00 0.15 -0.02 0.01 -0.17

gC 1.00 0.15 0.10 -0.45

gI 1.00 0.02 -0.12

gM 1.00 0.02

� 1.00

Sample 1959:02 2000:11, rT90 and rT5 are excess returns on 90-Day T-Bills and 5-Year T-Bonds,

rSMALL and rLARGE denote the excess returns on the small-cap and large-cap portfolios, rSP is the

excess return on the market portfolio, gI , gC and gM are growth rates of real per capita consumption,

industrial production and money supply, respectively. � denotes the in�ation rate. Reported numbers

for means and standard deviations are annualized, in percentages.
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Table 11

Bond Market

Panel A: Unrestricted Model

int. rSP gC gI gM �� R2

rT90 0.00060 0.00242 -0.00473 -0.02242 -0.01058 -0.02166 0.05807

(0.00012) (0.00182) (0.01572) (0.01069) (0.01167) (0.02428)

rT5 0.00276 0.08835 -0.00533 -0.29870 -0.21372 -0.07272 0.09216

(0.00138) (0.02322) (0.21187) (0.09078) (0.16409) (0.26758)

The estimated model is: yit = �ixt + "it; i = 1; 2, sample 1959:02-2000:11 where y1t = rT90,

y2t = rT5, �i is a (6 � 1) vector of coe¢ cients, xt = (int., rSP , gI , gC , gM , ��)0 and "it is the

regression error. rT90 and rT5 are excess returns on 90-Day T-Bills and 5-Year T-Bonds, rSP is the

excess return on the market portfolio, gI , gC and gM are growth rates of real per capita consumption,

industrial production and money supply, respectively. �� is the �rst di¤erence in the in�ation rate.

We report OLS coe¢ cient estimates and p-values in parentheses are calculated using the VARHAC

standard errors.
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Table 11

Bond Market

Panel B: Tests for Residual Heteroscedasticity and Correlation

correlation across equations Pearson 0.60

(0.02)

across time rT90 Q 35.11

(0.00)

rT5 Q 21.36

(0.05)

heteroskedasticity rT90 White 8.15

(0.00)

rT5 White 5.33

(0.00)

Residuals are calculated using OLS estimates, equation by equation ; Pearson = chi-square test for

correlation; White test = F test with no cross terms; Q = Q statistic for testing 12 lags of autocorrelation;

p-values in parentheses.
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Table 11

Bond Market

Panel C: Reduced Rank Tests

test rank 1

Hansen 30.23

(0.00)

generalized Wald 21.00

(0.00)

Calculation conducted using the VARHAC covariance matrix estimator. p-values in parentheses.
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Table 12

Stock Market

Panel A: Unrestricted Model

int. rSP gC gI gM �� R2

rSMALL 0.00342 1.05880 1.11352 -0.16953 -0.704334 -0.12976 0.68988

(0.00222) (0.05081) (0.30487) (0.17948) (0.31882) (0.46281)

rLARGE 0.00045 0.98534 -0.02430 -0.00470 -0.10313 -0.19138 0.98550

(0.00088) (0.00746) (0.04867) (0.01644) (0.15291) (0.09300)

The estimated model is: yit = �ixt + "it; i = 1; 2, sample 1959:02-2000:11 where y1t = rSMALL,

y2t = rLARGE , �i is a (6 � 1) vector of coe¢ cients, xt = (int., rSP , gI , gC , gM , ��)0 and "it is

the regression error. rSMALL and rLARGE denote the excess returns on the small-cap and large-cap

portfolios, rSP is the excess return on the market portfolio, gI , gC and gM are growth rates of real per

capita consumption, industrial production and money supply, respectively. �� is the �rst di¤erence in

the in�ation rate. We report OLS coe¢ cient estimates and p-values in parentheses are calculated using

the VARHAC standard errors.
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Table 12

Stock Market

Panel B: Tests for Residual Heteroscedasticity and Correlation

correlation across equations Pearson 0.42

(0.03)

across time rSMALL Q 70.17

(0.00)

rLARGE Q 109.45

(0.00)

heteroskedasticity rSMALL White 6.59

(0.00)

rLARGE White 12.11

(0.00)

Residuals are calculated using OLS estimates, equation by equation ; Pearson = chi-square test for

correlation; White test = F test with no cross terms; Q = Q statistic for testing 12 lags of autocorrelation;

p-values in parentheses.
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Table 12

Stock Market

Panel C: Reduced Rank Tests

test rank 1

Hansen 15.77

(0.01)

generalized Wald 18.24

(0.00)

Calculation conducted using the VARHAC covariance matrix estimator. p-values in parentheses.
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Table 13

Bond and Stock Markets Jointly

Panel A: Tests for Residual Correlation Across Equations

rSMALL rLARGE

rT90 0.07 0.07

(0.17) (0.18)

rT5 -0.08 0.06

(0.16) (0.20)

Residuals are calculated using OLS estimates from the unrestricted model (equation by equation):

yit = �ixt+"it; i = 1; : : : ; 4, sample 1959:02-2000:11 where y1t = rT90, y2t = rT5, y3t = rSMALL,

y4t = rLARGE , �i is a (6�1) vector of coe¢ cients, xt = (int., rSP , gI , gC , gM , ��)0 and "it is the

regression error. rT90 and rT5 are excess returns on 90-Day T-Bills and 5-Year T-Bonds, rSMALL and

rLARGE denote the excess returns on the small-cap and large-cap portfolios, rSP is the excess return

on the market portfolio, gI , gC and gM are growth rates of real per capita consumption, industrial

production and money supply, respectively. �� is the �rst di¤erence in the in�ation rate. p-values in

parentheses are calculated using the Pearson chi-square test for correlation.
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Table 13

Bond and Stock Markets Jointly

Panel B: Reduced Rank Tests

test rank 1 rank 2 rank 3

Hansen 87.68 31.85 15.92

(0.00) (0.00) (0.00)

generalized Wald 166.60 27.59 16.84

(0.00) (0.00) (0.00)

Calculation conducted using the VARHAC covariance matrix estimator. p-values in parentheses.
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Part IV

Mean Reversion in Asset Returns

and Time Non-separable Preferences

Time non-separable preferences are used in combination with various speci�cations of

the endowment process to calibrate the Capital Asset Pricing Model (CAPM). Time

non-separability is caused either by habit persistence or durability. It is demonstrated

that the model can indeed produce the amount of mean reversion detected in historical

returns. Speci�cally, habit persistence is required to match negative autocorrelation

of annual asset returns and durability is needed to replicate positive autocorrelation

detected in monthly asset returns. In addition, the CAPM with habit persistence can

predict negative expected returns when calibrated to monthly data.

15 Introduction

Various studies of the U.S. stock market report evidence that equity returns display

positive serial correlation at horizons shorter than one year and negative serial correlation

at longer horizons (see Campbell, Lo, and MacKinlay 1997, Chapter 2 for a survey).

Though autocorrelation of asset returns does not imply a violation of market e¢ ciency,

it does raise the question of whether the behavior of security markets can be explained

by a rational expectations asset-pricing model. This paper argues that it can, provided

that consumer preferences are time non-separable.

The hypothesis of serially independent returns (the random walk hypothesis) is often

tested using the variance ratio test which, according to Poterba and Summers (1988),

has a higher power than alternatives such as the likelihood-ratio test or the regression of

current returns on lagged returns. Since the volatility of asset returns changes over time,

it would be of no interest to reject the random walk model due to heteroskedasticity. Lo
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and MacKinlay (1988) thus derive the asymptotic distribution of variance ratios under

the null hypothesis of random walk allowing for changing variances. Their speci�cation

test is applied here to both annual and monthly stock market returns and the random

walk hypothesis is strongly rejected for all considered time horizons. As expected, returns

with holding periods less than one year are positively autocorrelated and returns with

longer holding periods are negatively autocorrelated.

Several studies make successful attempts to rationalize deviations of asset returns

from random walk. Typically, they employ the Lucas (1978) Capital Asset Pricing Model

(CAPM) with time separable, constant relative risk aversion utility function. Kandel and

Stambaugh (1990) use the CAPM to replicate autocorrelations of equity returns as well

as other unconditional moments. Their model is calibrated to the quarterly consump-

tion growth rate, which is assumed to follow a four-state Markov switching process.

Parameters of the Markov process are selected jointly with preference parameters to

re�ect various characteristics of the consumption and returns data. A similar approach

is adopted in Cecchetti, Lam, and Mark (1990) who model the endowment process by

a two-mean, one-variance Markov chain whose parameters are estimated using the con-

sumption data only. Cecchetti et al. (1990) generate the distribution of variance ratios

implied by the CAPM and then test the null hypothesis of the model being true us-

ing point estimates of variance ratios from historical returns. Comparison of variance

ratios of model returns with variance ratios of historical returns demonstrates that his-

torical returns could have in fact been generated by this type of a model. However,

Bonomo and Garcia (1994) use variance ratios to show that the degree of mean rever-

sion in Kandel and Stambaugh (1990) and in Cecchetti et al. (1990) is sensitive to the

choice of the Markov switching model for the endowment process. They conclude that

the CAPM cannot account for the magnitude of mean reversion observed in the data

once the proper Markov speci�cation for the endowment process is chosen, the proper

speci�cation being the two-state, one-mean, and two-variance Markov switching model

for yearly data. Based on likelihood-ratio tests, this speci�cation is considered superior
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to both the four-state process in Kandel and Stambaugh (1990) and to the two-state

process with two means and one variance in Cecchetti et al. (1990). Bonomo and Garcia

(1994) also show that the CAPM with time additive preferences is unable to generate

negative excess returns.

In this paper, I employ the Markov switching model of Bonomo and Garcia (1994)

to model endowment at annual frequency. For monthly data, a more general two-state,

two-mean, and two-variance speci�cation is used. In addition - following Cecchetti, Lam

and Mark (1994) - a �rst-order autoregressive process is considered to investigate the ro-

bustness of results at both yearly and monthly frequencies. Since the Lucas CAPM does

not provide any guidelines to distinguish among consumption, dividends and output, his-

torical series on real consumption, dividends, and GNP growth rates are all respectively

used to estimate parameters of the endowment process25.

In an attempt to account for autocorrelation patterns found in the U.S. stock market,

time non-separable preferences are introduced. Time non-separability can be brought

in the CAPM by making current utility dependent on past consumption in two ways:

either utility depends on aggregate consumption or on an individual�s own consumption.

We speak about external habit in the case of the former and about internal habit in

the case of the latter. Campbell and Cochrane (1999) use a slow-moving external habit

to replicate (among other things) the long-horizon forecastability of stock returns. In

their study, dynamics in asset returns is produced by interaction between the surplus

consumption ratio, which evolves as a heteroskedastic AR(1) and endowment, which is

assumed to follow a random walk. The current study on the other hand focuses on the

relatively more popular internal habit formulation where there is a basis for comparison

to results based on estimation (see Ferson and Constantinides 1991, Heaton 1995, and

Eichenbaum and Hansen 1990) and on volatility bounds (see Cecchetti et al. 1994 and

Balduzzi and Kallal 1997). This formulation also allows one to investigate durability in

addition to habit persistence.

25GNP data are not available at monthly frequency.
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The exact speci�cation of the preference structure is taken from Ferson and Con-

stantinides (1991). The consumer values how much more she can consume today in

comparison with how much she consumed yesterday. So, what matters is not the level

of current consumption but the di¤erence between current consumption and lagged con-

sumption. If yesterday�s consumption increases the agent�s utility - one can think of a

vacation or of a haircut - preferences display durability. If the lagged consumption lowers

utility there is habit persistence. For instance, it is hard to go back to junk food after

one has become accustomed to eating in good restaurants. There is an ongoing dispute

of which e¤ect dominates. The evidence from testing the overidentifying restrictions

is somewhat ambiguous but seems to suggest that habit prevails in the long run and

durability in the short run. Ferson and Constantinides (1991) use Generalized Method

of Moments (GMM) to test the CAPM and conclude that the complementarity e¤ect

is strong for quarterly and annual data even if time averaging is accounted for. Heaton

(1995) exploits a more complicated form of the utility function by adding more lags of

consumption. He �nds the �rst few coe¢ cients on consumption are positive, and then

the sign switches. Eichenbaum and Hansen (1990) use monthly data and GMM to show

that local substitutability dominates. Testing the CAPM based on volatility bounds

tends to favor habit persistence to durability (see Cecchetti et al. 1994 and Balduzzi

and Kallal 1997). To investigate whether either of the two e¤ects can generate mean

reversion, several versions of the model are examined: strong habit persistence, modest

habit persistence, time separability, modest durability, and strong durability.

The CAPM with a time non-separability parameter is calibrated using estimated

parameters of the corresponding endowment process. Then, the equilibrium returns

are solved for. The solution method is based on discretization of the �rst order condi-

tions using the Gaussian quadrature rule (see Tauchen and Hussey 1991) and enables

one to calculate model variance ratios without the small sample bias characteristic to

Monte-Carlo simulations. The results demonstrate that the amount of mean reversion

in historical returns can be matched by the CAPM with time non-separable preferences
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for all considered endowment models, time series and data frequencies. Speci�cally,

habit persistence generates negative and durability positive autocorrelation of model re-

turns. Therefore, habit persistence is necessary to replicate negative serial correlation

in yearly historical returns and durability is needed to reproduce positive serial correla-

tion observed at monthly frequency. As established by Bonomo and Garcia (1994), time

separable preferences do not imply mean reversion in model returns for a two-variance

Markov switching model. Finally, the CAPM calibrated to monthly data can predict

negative excepted returns when consumption is complementary over time.

The paper is organized as follows. Section 16 uses the asymptotic distribution of

variance ratios derived in Lo and MacKinlay (1988) to show that asset returns do not

follow randomwalk. In Section 17, parameters of the endowment processes are estimated.

The estimates are used to calibrate the CAPM. Section 18 describes the CAPM with

time non-separable preferences and indicates how equilibrium price-dividend ratios can

be used to calculate model variance ratios and expected excess returns. Section 19

presents results and Section 20 concludes. Appendix 2 gives a detailed account of data

sources and Appendix 3 demonstrates how the Gaussian quadrature method is employed

to solve the CAPM with time non-separable utility function.

16 Mean Reversion in Historical Returns

The random walk hypothesis of asset returns has been tested extensively in the �nancial

literature. The consensus is that asset returns tend to be positively serially correlated

for horizons shorter than one year and negatively serially correlated for longer horizons.

To test the random walk hypothesis for equity returns, I adopt the framework of Lo and

MacKinlay (1988), who develop a speci�cation test based on the asymptotic distribution

of variance ratios that is robust to the presence of heteroskedasticity.

The variance ratio test exploits the fact that if the stock return follows a random

walk, the return variance should be proportional to the return horizon. The variance
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ratio statistic is de�ned as

V R(q) =
V ar(Rqt )

qV ar(R1t )
= 1 +

2

q

q�1X
j=1

(q � j)�j ; q = 1; 2; ::: (21)

where Rqt is the simple q-period return and �j is the j-th serial correlation coe¢ cient

of returns. Alternatively, the variance ratio statistic for monthly data can be de�ned as

V R(q) =
V ar(Rqt )

q
=
V ar(R12t )

12
i.e. variances of simple returns are compared to the variation

over a one-year period (e.g. see Poterba and Summers 1988). Campbell et al. (Chapter

2, 1997) argue that this approach might be problematic if the time horizon is large

relative to the time period covered by the available data. Therefore, the formulation in

(21) is employed.

The speci�cation test in Lo and MacKinlay (1988)(see Section 1.2. of their paper)

is designed to test the random walk hypothesis allowing for dependent but uncorrelated

increments. The asymptotic distribution of the variance ratio statistic based on (21) is

derived under a compound null hypothesis that imposes rather general restrictions on

the type and degree of heteroskedasticity present. Under this null hypothesis, the vari-

ance ratio estimator still approaches unity asymptotically and importantly, estimators

of autocorrelation coe¢ cients in (21) are asymptotically uncorrelated. Consequently,

estimates of their variances can be summed up using squared weights in (21) to estimate

the variance of the variance ratio statistic. The variance then can be used for statistical

inference.

Let \V R(q) and d#(q) denote the variance ratio estimator and the heteroskedasticity-
consistent estimator of its variance, respectively26 . The statistic z(q) =

p
Tq(\V R(q)�

1)=

qd#(q) is asymptotically standard normal. The estimates of variance ratios and the
z(q) statistics are computed using both annual and monthly data on real returns for the

S&P Composite Index (see Appendix 2 for details).

Results for the yearly frequency are reported in Table 14. The variance ratios are

26See Lo and MacKinlay (1988), the second expression in (13) for the variance ratio estimator and

equation (20) for its variance.
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greater than one for the second period and they are lower than one from the third period

on. Since the variance ratios can be expressed as a function of the autocorrelations,

this means that real returns display the pattern of at �rst positive and then negative

serial correlation. A variance ratio lower than one for the time periods beyond two years

indicates very strong negative autocorrelation at long horizons. The autocorrelation

has to be large in absolute terms to make up for the �rst period when the returns are

positively serially correlated. So, long term returns are to some extent predictable. The

variance ratios are slightly higher than those reported in Bonomo and Garcia (1994)

since the sample bias is taken into account. Nevertheless, they are signi�cantly di¤erent

from one in all cases and the random walk hypothesis is strongly rejected.

Variance ratios calculated using monthly returns are displayed in Table 15. Since they

are all signi�cantly greater than one, the random walk hypothesis is again rejected in

all cases. Variance ratios greater than one indicate positive serial correlation in monthly

returns. Tables 14 and 15 con�rm stylized facts regarding equity returns. The identi�ed

autocorrelation pattern stands as a challenge for the CAPM.

17 The Endowment Process

In equilibrium of a typical representative agent economy, the consumption stream equals

the dividend stream. In addition, the output (perishable �fruits�) is equivalent to the

dividend payment. Therefore, the following time series are considered for the empirical

analysis: the real per capita consumption of non-durables and services27, the dividend

growth rate, and the real per capita GNP growth rate. Appendix 2 describes both annual

27Most studies based on monthly data employ consumption of non-durables and services to analyze

the performance of the CAPM. Non-durable and services consumption can be used under the assumption

that preferences over durables, and non-durables and services, are separable. Among the cited studies

using lower frequency data, Cecchetti et al. (1990) and Bonomo and Garcia (1994) use total consump-

tion, while Kandel and Stambaugh (1990) use consumption of non-durables and services. Hence, both

types of consumption data are used in the case of yearly frequency.
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and monthly series. Table 16 and 17 provide corresponding summary statistics. Since

the data for output are not collected monthly, only series for consumption and dividends

are used in the case of monthly frequency.

Bonomo and Garcia (1994) consider the following L-state Markov switching model

for the endowment process:

xt = �0 + �1S1;t�1 + � � �+ �L�1SL�1;t�1 + (!0 + !1S1;t�1 + � � �+ !L�1SL�1;t�1)�t; (22)

where xt is the natural logarithm of the endowment process and Si;t = 1 if whenever

the state of the economy is i and 0 otherwise. �t is an i.i.d. N(0; 1) error term.

Speci�cation given by (22) encompasses the two-state Markov switching model with

two means and one variance (2SMS2M1V) used in Cecchetti et al. (1990) as well as the

four-state Markov switching model with two means and two variances (4SMS2M2V) em-

ployed in Kandel and Stambaugh (1990). Bonomo and Garcia (1994) use the likelihood-

ratio test to reject the 2SMS2M1V model when the two-state Markov switching model

with two means and two variances (2SMS2M2V) is used as an alternative. However,

the 2SMS1M2V model cannot be rejected against the same alternative. In addition, the

2SMS1M2V model cannot be rejected neither against the alternative of the three-state,

three-mean, and three-variance Markov switching model nor against the alternative of

the 4SMS2M2V model. Therefore, for reasons of parsimony, Bonomo and Garcia (1994)

adopt the 2SMS1M2V model as the model according to which the endowment growth

rate evolves.

For the 2SMS1M2V model, L = 2 and �1 = 0. �0 is both the conditional and

unconditional mean of xt. If St = 0, the conditional variance of xt is !20 and (!0 + !1)
2

otherwise. The transpose of the transition matrix for the Markov process S is de�ned as

follows: P =
�

p00 (1� p00)
(1� p11) p11

�
. As the notation suggests, p00 is the probability

of remaining at the state 0 while p11 is the probability of remaining at the state 1. I

replicate the maximum likelihood estimation28 undertaken in Bonomo and Garcia (1994)

28The likelihood function for autoregressive processes in which the parameters of the autoregression
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(see their Table I, p. 23) and report the results in Table 1829.

For the monthly data, a more general 2SMS2M2V process is used to characterize the

endowment processes for consumption and dividends. �1 6= 0 allows for autocorrelation

in the endowment process. Estimates of the parameters of the 2SMS2M2V process are

summarized in Table 19. �1 is signi�cantly di¤erent from zero only for dividends.

Sometimes, an AR(1) model is also used to characterize the endowment process, es-

pecially for the monthly data frequency (see Cecchetti et al. 1994 for instance). Even

though the AR(1) model does not capture heteroskedasticity implied by �ndings of

Bonomo and Garcia (1994), I use it to evaluate the performance of the CAPM as well.

At annual frequency, estimates of the autocorrelation coe¢ cient by GMM are spurious

and di¤er greatly depending on what instruments are used. Thus, OLS estimates are

used instead. For monthly data, the GMM estimation is robust and GMM estimates

are used to calibrate the CAPM. Even so, the AR(1) model is rejected for consumption

using the Hansen (1982) J-statistic. The AR(1) process does not seem to capture the

time series properties of endowment series very well and consequently, its implications

will be only brie�y mentioned in the text where they are di¤erent from results based

on the Markov switching models30. An alternative to AR(1) could be a higher order

autoregressive process. However, this is prohibitive due to restrictions imposed by the

used solution method. Moreover, Cecchetti, et al. (1994) use monthly consumption data

to show that coe¢ cients on the second through twelfth lags of consumption growth are

not signi�cantly di¤erent from zero.

can change as the result of a regime-shift variable is derived for example in Hamilton (1994), Chapter

22.

29Estimates are not identical to those of Bonomo and Garcia (1994) because their dataset is updated

by two observations.

30A detailed description of results for the AR(1) model is available upon request.
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18 The Asset PricingModel with Time Non-Separability

In this section, a version of the Lucas (1978) tree model is presented where the utility

at time t depends on the utility at time t-1. The consumer maximizes

E0

1X
t=0

�tU(Ct; Ct�1);

subject to the budget constraint

Ct + PEt A
E
t+1 + P Ft A

F
t+1 � (PEt +Dt)A

E
t + AFt ;

where AEt , P
E
t , and Dt are the amount of risky assets (equity or �trees�) held, the market

price of the risky asset, and the dividend, respectively. AFt and P
F
t are the investment in

the risk-less asset and its price, respectively. Ct is consumption. The value of the utility

function depends on both consumption at time t and t-1 and is assumed to have standard

properties. � is the discount factor. Let �t and Mt denote the Lagrange multiplier of

the maximization problem connected with the budget constraint, and the Intertemporal

Marginal Rate of Substitution (IMRS), respectively. Then it follows from the �rst order

conditions that

Mt+1 =
�t+1
�t

=
�[U1(Ct+1; Ct) + �Et+1U2(Ct+2; Ct+1)]

U1(Ct; Ct�1) + �EtU2(Ct+1; Ct)
:

To make sure that the IMRS is stationary and that there exists a representative con-

sumer with the same preference speci�cation over aggregate consumption, the following

class of utility functions is adopted:

U(Ct; Ct�1) =
(Ct + �Ct�1)

1�

(1� )
:

One can think of utility being derived from a good called services where services are

linear in both current and past consumption. �Ct�1 is the internal habit. The sign of �

determines whether the consumption is substitutable or complementary over time. If the

consumption is substitutable then the utility from the �ow of services from dominates

the e¤ect of habit persistence. On the other hand, if � is negative the habit developed
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by the consumer is stronger than durability. The coe¢ cient was estimated with di¤erent

results. Eichenbaum and Hansen (1990) report a positive sign for monthly data while

Ferson and Constantinides (1991) �nd evidence in monthly, quarterly, and annual data

that habit persistence prevails. Tests based on volatility bounds also support negative

� (see Balduzzi and Kallal 1997 for a monthly frequency and Cecchetti et al. 1994 for

monthly and annual frequencies). To investigate implications of both durability and

habit persistence, performance of the model is evaluated for positive as well as negative

values of �.  is approximately equal to the expected value of the Relative Risk Aversion

(RRA) coe¢ cient and if � = 0 then  is exactly equal to the RRA coe¢ cient.

Using the utility function speci�cation, the IMRS can be expressed as

Mt+1 =
�[(1 + �X�1

t+1)
� + ��Et+1(Xt+2 + �)�]

(1 + �X�1
t )

� + ��Et(Xt+1 + �)�
X�
t+1; (23)

where Xt+1 =
Ct+1
Ct
. The Euler equation for the risky asset

PEt = EtMt+1(P
E
t+1 +Dt+1)

can be written as

Vt = EtMt+1Ht+1(1 + Vt+1); (24)

Vt is the price-dividend ratio and Ht is the gross growth rate of the dividend. The

gross return on the risky asset is de�ned as

REt+1 =
PEt+1 +Dt+1

PEt
=
Vt+1 + 1

Vt
Ht+1:

If one solves for autocorrelations of the model implied equity returns, variance ratios

can be calculated.

The Euler equation for the risk-free asset is P Ft = EtMt+1. The return on the risk-less

asset can be written as

RFt+1 =
1

P Ft
=

1

EtMt+1

:

Bonomo and Garcia (1994) argue that the CAPM with time separable preferences

cannot generate negative excess returns. To address the issue, conditional expected

93



excess returns can be expressed as

Et(R
E
t+1 �RFt+1):

The presence of time non-separability makes the model more di¢ cult to solve. To

solve for the value function of the model, a version of the method described in Tauchen

and Hussey (1991) is used. They develop a discrete space approximation to solutions of

nonlinear asset pricing models which is based on the quadrature method (also known as

Nystrom�s method).

The solution method is described thoroughly in Appendix 3. Brie�y, the conditional

normal distribution from the continuous part of the 2SMS2M2V process xt is approxi-

mated using the GaussianN -point quadrature rule. The di¤erence equation is discretized

accordingly and solved for price-dividend ratios. Price-dividend ratios are used to calcu-

late equity returns and their variance ratios. Finally, conditional expected excess returns

are computed. The solution algorithm is easily modi�ed for the AR(1) process.

19 Empirical Results

The CAPM can be calibrated using consumption (both total and of non-durables and

services), dividends, and GNP as the endowment process. For the calibration to be com-

plete, preference parameters have to be set as well. The considered parameter sets have

the following structural interpretation: strong habit persistence, modest habit persis-

tence, time separable preferences, modest durability, and strong durability. It is demon-

strated that time non-separable preferences can indeed generate mean reversion of the

degree observed in the data for all endowment processes. The negative autocorrelation

detected in yearly frequency is matched when preferences exhibit modest habit persis-

tence. The positive serial correlation in monthly returns is replicated by the CAPM with

durability in utility function. The CAPM calibrated to monthly data can also produce

negative expected returns but only for preferences displaying strong habit persistence.
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The endowment parameters are �0, �1, p11, p00, !0, and !1. Their maximum likeli-

hood estimates are given in Tables 18 and 19. By de�nition, �1 = 0 for the 2SMS1M2V

process. Chosen values of the utility function parameters are in accordance with both

Cecchetti, et al. (1990) and Bonomo and Garcia (1994) i.e. � = 0:97 and  = 1:7031. In

addition to the discount factor and the RRA coe¢ cient, a time non-separability para-

meter � is introduced to evaluate the impact of time non-separability in preferences on

the (potential) autocorrelation of model returns. It can take values from -1 to 1. Neg-

ative � generates negative values at some states of the discretized IMRS process. The

appearance of negative values of the IMRS depends on the process used as the endow-

ment as well as on the particular combination of parameters. � for the large degree of

habit persistence is the lowest value that implies non-negative values of the IMRS given

� = 0:97,  = 1:70, and corresponding estimates of the parameters of the endowment

process. � is set to -0.07 for a small degree of habit persistence. For � = 0, preferences

are time separable and results from this paper should be directly comparable to those of

Bonomo and Garcia (1994). The small degree of durability is represented by � = 0:07.

Finally, � = 0:60 for the large degree of durability. Model variance ratios are calcu-

lated using (21) and (30). Means and standard deviations are calculated using equations

(27) and (28), respectively. Equity premiums are computed by taking the unconditional

expectation of (31)32.

Bonomo and Garcia (1994) argue that the CAPM cannot produce expected excess

returns that are negative. Since they only consider a model with time separable pref-

erence, introduction of the time non-separability parameter � can potentially render a

model with expected returns being negative at some states for a favorable combination

of parameters. The expected excess returns are calculated according to equation (31).

31The value for the RRA coe¢ cient corresponds to results of various empirical studies that report

estimated values of  between 1 and 2 for stocks (see for instance a maximum likelihood estimation of

the RRA coe¢ cient in Neely, Roy and Whiteman 1996).

32Equations (27)-(31) can be found in Appendix B.
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19.1 Annual Data

Table 20 reports variance ratios, means, standard deviations, and equity premiums of

the model returns for annual consumption data. The IMRS becomes negative at the

16-th state for � = �0:66 in the case of total consumption and for � = �0:67 in the case

of consumption of non-durables and services. Thus, values -0.65 and -0.66 are used, re-

spectively. The degree of mean reversion as measured by variance ratios is low compared

to that of the actual returns, especially for the consumption of non-durables and ser-

vices. This is perhaps surprising, given the magnitude of habit persistence. Nonetheless,

variance ratios for � = �0:07, which represents modest habit persistence, can in fact

generate the mean reversion observed in the data for both consumption processes. For

� = 0, the model has a structural interpretation of being time separable. The variance

ratios are equal to unity in all the cases, which con�rms results of Bonomo and Garcia

(1994) who report variance ratios in the range from 0.9987 to 0.9852 for the time separa-

ble model with identical parameter values. Their variance ratios are slightly lower than

one due to small sample bias since they are calculated for a sample size 1160 whereas

the variance ratios reported here can be thought of as asymptotic values. For � higher

than one, the model displays durability and the variance ratios are greater than one.

For strong habit persistence, the model mean return is higher than the actual mean

return and so is the standard deviation. The equity premium for the model returns is

also relatively high, mainly due to negative risk-less returns at some states. A gradual

increase of the time non-separability parameter implies a lower variation in the IMRS

and results in lower mean returns, standard deviations of returns and equity premiums,

respectively.

For yearly dividends and GNP, the results are given in Table 21. The negative values

of the IMRS �rst appear at the 16-the state for � = �0:47 and � = �0:55, respectively.

Therefore, � = �0:46 and � = �0:54 are used in calculation of the model returns for the

CAPM displaying strong habit persistence. Mean reversion for the model with strong

habit persistence is more pronounced compared to the case where consumption is used
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as the endowment process. Modest habit persistence again implies variance ratios with a

pattern resembling that of the data i.e. variance ratios are closer to one for the �rst few

periods and then they drop. The variance ratios again tend to increase with the increasing

non-separability parameter � and are greater than one for � > 0. Note that means and

standard deviations of returns are slightly lower for dividends compared to means and

standard deviations of returns resulting from using either consumption or GNP as the

endowment process. Otherwise, the model mean returns, standard deviations, and equity

premiums are again decreasing as � increases.

Equilibrium variance ratios of returns for the same parameter combinations as in

the case of the 2SMS1M2V model are calculated for the AR(1) model. Variance ratios

lower than one appear already for the power utility model for both total consumption

and consumption of non-durables and services. For GNP, strong habit persistence is

necessary to match historical variance ratios. For dividends, equilibrium variance ratios

are close to one or greater than one for all parameter combinations considered.

Table 22 reports the expected excess returns for all four endowment processes and

the values of utility function parameters � = 0:97 and � = 1:70. � takes the lowest

values admissible i.e. � = �0:65 for total consumption, � = �0:66 for consumption of

non-durables and services, � = �0:46 for dividends, and � = �0:54 for GNP. There are

16 possible states of the economy: the �rst eight correspond to the lower and the other

eight to the higher conditional standard deviation of the endowment process. As seen

in Table 22, none of the expected excess returns is negative though the expected excess

return in the 16-th state is close to zero in all the cases. The negative excess returns

appear when � = �0:66 for consumption, � = �0:67 for consumption of non-durables

and services, � = �0:47 for dividends, and � = �0:55 for GNP; that is only when the

IMRS is negative. The model calibrated using the AR(1) process is also unable of

generating negative excess returns.
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19.2 Monthly Data

Table 23 compares historical and model variance ratios for the calibration based on

monthly data. The lowest acceptable time-nonseparability coe¢ cient � is -0.84 for con-

sumption of non-durables and services and -0.77 for the dividends, respectively. The

pattern of equilibrium variance ratios is similar to the one found in annual data i.e. they

are lower than one for habit persistence, equal to unity for time separable preferences,

and greater than one for durability. Contrary to �ndings in annual data, monthly re-

turns are positively serially correlated, with variance ratios signi�cantly greater than

one. Consequently, one needs � > 0 to match model variance ratios with historical ones.

Again, habit persistence in necessary to generate su¢ ciently large equity premium.

The AR(1) model for the consumption process implies variance ratios lower than one

for both strong and modest degrees of habit persistence, time separability, and modest

durability. � = 0:60 results in variance ratios greater than one. For dividends, variance

ratios are lower than one only for � = �0:77 and greater than one otherwise.

Table 24 provides expected returns for strong habit persistence in both consumption

and dividends. Interestingly, there are negative expected rates of returns at some states.

The negative expected rates of return only appear for � << 0. When the endowment

processes are modeled by AR(1), the CAPM does not generate negative expected rates

of return for any parameter combination.

20 Summary

In this paper, I examine an equilibrium asset pricing model with time non-separable

preferences from the prospective of its ability to match the magnitude of mean reversion

detected in the data on asset returns.

The mean reversion in asset returns is documented using the variance ratio test.

The null hypothesis is that of the random walk and is rejected for all holding periods

considered. The variance ratios of long horizon returns (with the exception of the two-
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year variance ratio) imply negative autocorrelation and returns with holding periods

between one and ten months are positively autocorrelated.

Two types of models for the endowment process are considered: the Markov switching

model allowing for heteroskedasticity and the AR(1) model. At the annual frequency,

parameters of the models are estimated using data on total consumption, consumption

of non-durables and services, dividends, and GNP, respectively. Consumption of non-

durables and services are utilized at the monthly frequency. Parameter estimates of the

endowment process are employed together with utility function parameters to calibrate

the CAPM. The model variance ratios and expected excess returns are then solved for.

Evidence regarding time separability is inconclusive since implications of the CAPM

are sensitive to the choice of the endowment process. On the other hand, the results

clearly indicate that there is a connection between time non-separability in preferences

and mean reversion. A su¢ cient degree of habit persistence can produce negatively au-

tocorrelated asset returns. Similarly, strong enough durability implies positively serially

correlated returns. This result is robust across all endowment models, times series and

frequencies considered. To match the pattern of at �rst positive and then negative serial

correlation in historical returns, one needs a combination of local substitution and long

run habit persistence. Heaton (1995) �nds evidence that such a combination is also con-

sistent with Hansen and Jagannathan (1991) bounds. So, the endowment process could

be approximated by a higher order autoregressive model with the �rst few autoregressive

coe¢ cients positive and the others negative. This approach posits two problems how-

ever. First, it is di¢ cult to solve the CAPM given the current framework and second,

the autoregressive model might not be acceptable from the statistical point of view. For

example, Cecchetti et al. (1994) rule out higher order autoregressive processes in favor

of the AR(1) model using monthly consumption data.

Finally, the CAPMwith consumption complementary over time is showed to generate

negative conditional expected returns when calibrated to monthly data.
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Appendix 2
Appendix 2.1. Annual Data
The annual data considered here are those used by Cecchetti at al. (1993) and

by Bonomo and Garcia (1994). A detailed description of the data sources is given in

Cecchetti at al. (1990). The data consist of the following series:

1. Consumption: The real per capita total consumption and consumption of non-

durables and services, 1889-1987.

2. GNP: The real per capita GNP, 1869-1987.

3. CPI: Both the annual average and end of year observations from 1870 to 1987.

4. Dividends (D): The nominal dividends, 1871-1987, de�ated by the annual average

CPI.

5. Standard and Poor�s Composite Stock Price Index (P): January observations, 1871-

1988, adjusted to in�ation by the end of period CPI.

6. Risk-free yield (RF ): The nominally risk-less yields on Treasury securities, 1871-1987.

Adjusted to in�ation by the end of period CPI.

The summary statistics for growth rates of consumption, dividends, and GNP are

reported in Table 16. Real annual returns on equity are constructed using the series P

and D as REt+1 =
Pt+1+Dt

Pt
. The mean equity premium is computed as E[REt �RFt ].

Appendix 2.2. Monthly Data
The monthly data include the following series:

1. Consumption: The real per capita consumption of non-durables and services in 1987

dollars - CITIBASE series (GMCSQ+GMCNQ)=POP , 1959:02 1993:03.

2. Price Index: Calculated as (GMCS + GMCN)=(GMCSQ + GMCNQ), where

GMCS, GMCN , GMCSQ, GMCNQ are respectively nominal consumption ex-

penditures on services, nominal consumption expenditures on non-durables, real
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consumption expenditures in 1987 dollars on services, and real consumption ex-

penditures in 1987 dollars on non-durables, 1947:02 1993:03.

3. Standard and Poor�s Composite Common Stock Price Index: CITIBASE series FSP-

COM adjusted for in�ation by the above price index, 1947:02 1993:03.

4. Risk-Free Rate: Monthly collected interest rate on the three-months Treasury Bills

(CITIBASE series FYGM3) adjusted for in�ation by the above price index, 1947:02

1993:03.

5. Dividends: Calculated using the dividend yield on Standard and Poor�s Composite

Common Stock (CITIBASE series FSDXP), Standard and Poor�s Composite Com-

mon Stock Price Index, and the price index, both de�ned above, 1947:02 1993:03.

Table 17 provides summary statistics for monthly consumption and dividends. Real

returns and mean equity premium are calculated in a manner similar to annual data.
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Appendix 3
Appendix 3.1. Price-dividend Ratios
The �rst part of Appendix 3 derives price-dividend ratios implied by the joint hy-

pothesis of the CAPM and the forcing process driving endowment.

Let us construct a Markov process for xt with the number of states given by 2N and

let x be a (2N � 1) vector of values corresponding to the 2N states i.e.,

x =

�
x0

x1

�
:

x0 is an (N � 1) vector with elements:

x0i = �0 + !0�i; i = 1; 2; :::N;

where �i is the abscissa for an N -point quadrature rule for the standard normal

density.33 Similarly, x1 is an (N � 1) vector with elements:

x1i = �0 + �1 + (!0 + !1)�1; i = 1; 2; :::N:

The transpose of the transition matrix for x is:

T =

�
p00�00 (1� p00)�01

(1� p11)�10 p11�11

�
: (25)

xt is normally distributed with the conditional mean vt and the conditional vari-

ance �2t : vt = �0 for St�1 = 0 and vt = �0 + �1; otherwise. �2t = !20 for St�1 = 0

and �2t = (!0 + !1)
2; otherwise. Let us de�ne z = (xt � vt)=�t: Since z is a ran-

dom variable with the standard normal density, we can write the conditional proba-

bility density function f(xt p xt�1) as �(z)=�t, where �() denotes the standard nor-

mal density function. Also, the cumulative density function F (xt = y p xt�1) =

yZ
�1

f(xt p xt�1)
�t

dxt =

y�vt
�tZ
�1

�(z)dz = �(
y � vt
�t

); where �() denotes the standard normal

cumulative density function. So, the conditional mean of xt does not depend on xt�1

and �00 = �01 = �10 = �11 = �, where

33As N increases, the approximate solution converges to the exact solution uniformly. In most appli-

cations, accuracy does not increase much beyond N = 5. I use N = 8; which is a compromise between

desired precision and computational tractability.
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�ij = !j; i; j = 1; 2; :::N:

!j are the weights of an N -point quadrature rule for the standard normal density.

Note that the IMRS (see Eq. (23)) can be written as:

Mt+1 =
� + �2�Et+1Bt+2
1 + ��EtBt+1

Bt+1;

where Bt+1 = (
� +Xt+1

� +Xt

Xt+1)
�:

Let us de�ne elements of a (2N � 2N) matrix B as

Bij = (
� + exj

� + exi
exi)�; i; j = 1; 2; :::; 2N:

B can be used to discretize the IMRS by de�ning a (2N � 2N) matrix M with

elements:

Mij =
� + �2�E[Bij j j]
1 + ��E[Bij j i]

Bij; i; j = 1; 2; :::; 2N:

Using Eq. (25), E[Bij j j] =
2NX
j=1

BijTij: Finally, the Euler equation (Eq. (24)) can be

discretized as well:

v = K�+Kv;

where v is a (2N � 1) vector of price-dividend ratios and � is a (2N � 1) vector of

ones. Elements of the (2N � 2N) matrix K are de�ned as:

Kij =Mije
xjTij; i; j = 1; 2; :::; 2N:

Solving for v;one gets:

v = (I �K)�1K�;

where I is the (2N � 2N) identity matrix.

Appendix 3.2. Model Returns
The tomorrow�s return to the equity conditioned on today�s state is

REij =
PEj +Dj

PEi
=
vj + 1

vi
exj ; i; j = 1; :::; 2N 34: (26)

The return is implied by the model calibrated to the process of the growth rate of

endowment will be used for the derivation of the model variance ratios.

In Appendix 3.1, the endowment growth rate is approximated by a Markov chain

with 2N states where the transition probabilities are given by T . The equilibrium real

34Note that when N = 8, there are 256 values for the rate of return.
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return at time t depends on the endowment growth rates at times t and t-1 and is given

by (26). Thus, a Markov chain for the returns can be constructed where the number

of states is 4N2. Using the transition matrix of the equilibrium returns one is able to

compute autocorrelations of those returns, and consequently, the variance ratios implied

by the model.

The transpose of the transition matrix for the model returns is

Q =

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

T1;1; T1;2; ::: T1;2N ; 0; 0; ::: 0; 0; 0; ::: 0

0; 0; ::: 0; T2;1; T2;2; ::: T2;2N ; 0; 0; ::: 0

::: ::: :::

0; 0; ::: 0; 0; 0; ::: 0; T2N;1; T2N;2; ::: T2N;2N

T1;1; T1;2; ::: T1;2N ; 0; 0; ::: 0; 0; 0; ::: 0

0; 0; ::: 0; T2;1; T2;2; ::: T2;2N ; 0; 0; ::: 0

::: ::: :::

0; 0; ::: 0; 0; 0; ::: 0; T2N;1; T2N;2; ::: T2N;2N

::: ::: :::

T1;1; T1;2; ::: T1;2N ; 0; 0; ::: 0; 0; 0; ::: 0

0; 0; ::: 0; T2;1; T2;2; ::: T2;2N ; 0; 0; ::: 0

::: ::: :::

0; 0; ::: 0; 0; 0; ::: 0; T2N;1; T2N;2; ::: T2N;2N

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA
Let  denote the (4N2 � 1) vector of unconditional probabilities of the returns. The

following procedure delivers the unconditional expected value of the product of today�s

and lagged returns:

(i) Compute the unconditional expected value of returns by

E[Rt] =  
0R = �; (27)

where R is the (4N2 � 1) vector of possible values of the returns and � is the expected

value;

(ii) compute the variance of returns by

V ar[Rt] = (R:R)� �2 = �2; (28)

(iii) get the unconditional expected value of the product of the today�s and lagged

return:

E[Rt+sRt] = (R: )
0QsR: (29)
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Equilibrium values of the variance ratios are then computed using (21) and

�s =
E[Rt+sRt]� �2

�2
: (30)

The expected excess returns can be computed using the transition matrix T (Eq.

(26)) and the risk-free returns. The risk-free return is simply one over the price of the

risk-free asset and can be expressed as

RFi =
1P2N

j=1 TijMij

; i = 1; 2; : : : ; 2N:

The expected excess returns then are:

E[REi �RFi ji] =
2NX
j=1

Tij(R
E
ij �RFi ): (31)
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Table 14

Variance Ratios for Historical Returns; Yearly Data 1870-1987

q VR(q) z(q)

2 1.0275 2.9952

3 0.8891 -7.9440

4 0.8923 -6.0742

5 0.8760 -5.9204

6 0.8205 -7.5561

7 0.7918 -7.9245

8 0.8013 -6.9658

9 0.7928 -6.7778

10 0.7705 -7.0959

The random walk hypothesis allowing for

heteroskedasticity is rejected in all cases at 1% level.

Table 15

Variance Ratios for Historical Returns; Monthly Data 1947:02 1994:03

q VR(q) z(q)

2 1.2652 111.4259

3 1.3629 106.7755

4 1.4248 103.2105

5 1.4902 104.2021

6 1.5669 108.5213

7 1.6150 107.9693

8 1.6339 103.3748

9 1.6491 99.4246

10 1.6636 96.0809

The random walk hypothesis allowing for

heteroskedasticity is rejected in all cases at 1% level.
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Table 16

Summary Statistics for Growth Rates in Sample; Yearly data

Total Consumption of Dividends GNP

Consumption Non-durables and Services

Time Period 1890-1987 1890-1987 1872-1987 1870-1987

Obs. 98 98 116 118

Mean 0.0182 0.0172 0.0112 0.0178

St.Dev. 0.0374 0.0342 0.1262 0.0514

Skewness -0.4097 -0.4045 -0.8228 -0.7574

Kurtosis 3.8750 3.9773 6.3321 7.6627

Maximum 0.0990 0.0994 0.4168 0.1613

Minimum -0.0987 -0.0874 -0.4314 -0.2216

First Autocor. -0.0679 -0.1343 0.2089 0.3908

Table 17

Summary Statistics for Growth Rates in Sample; Monthly Data

Consumption Dividends

Time Period 1959:02 1993:03 1947:02 1993:03

Obs. 410 554

Mean 0.00159 0.000768

St.Dev. 0.00394 0.005666

Skewness 0.0195 1.73730

Kurtosis 3.5174 16.72803

Maximum 0.01598 0.03945

Minimum -0.010795 -0.0341

First Autocor. -0.2442 0.1992
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Table 18

Maximum Likelihood Estimates of the 2SMS1M2V Process, Yearly Data

Total Consumption of Dividends GNP

Consumption Non-durables and Services

�0 0.0197 0.0187 0.0144 0.0179

(8.087) (10.416) (2.304) (5.701)

p11 0.9897 0.9885 0.8193 0.9281

(3.742) (3.500) (1.746) (2.707)

p00 0.9874 0.9854 0.8165 0.9834

(3.338) (3.086) (2.228) (3.966)

!0 0.0165 0.0113 0.0381 0.0303

(8.714) (8.436) (7.569) (10.913)

!1 0.0299 0.0315 0.1350 0.0698

(6.328) (7.523) (6.922) (4.161)

Asymptotic t-ratios in parentheses. For pii; i = 0; 1, the reported t-ratios are those of

the transformation ln(pii=(1� pii)); i = 0; 1, respectively. The transformation was

employed to restrict probability estimates to the interval (0; 1).
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Table 19

Maximum Likelihood Estimates of the 2SMS2M2V Process; Monthly Data

Consumption Dividends

�0 0.0015 0

(5.940) (0.180)

�1 0.0003 0.007

(0.331) (3.237)

p11 0.5377 0.6037

(0.139) (0.898)

p00 0.8483 0.9516

(1.216) (7.712)

!0 0.0034 0.0033

(8.588) (19.030)

!1 0.0020 0.0095

(2.085) (6.858)

Asymptotic t-ratios in parentheses. For pii; i = 0; 1, the reported t-ratios are those of

the transformation ln(pii=(1� pii)); i = 0; 1, respectively. The transformation was

employed to restrict probability estimates to the interval (0; 1).
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Table 20

Variance Ratios for Historical and Equilibrium Returns - Endowment

Calibrated to Total Consumption and to Consumption of Non-durables and

Services, the 2SMS1M2V Process, Yearly Data

Total Consumption

Actual �=�0:65 �=�0:07 �=0 �=0:07 �=0:60

VR(2) 1.0275 0.9100 0.8831 1.0001 1.1120 1.4576

VR(3) 0.8891 0.8835 0.8442 1.0001 1.1493 1.6101

VR(4) 0.8923 0.8729 0.8248 1.0002 1.1680 1.6864

VR(5) 0.8760 0.8685 0.8132 1.0003 1.1792 1.7322

VR(6) 0.8205 0.8672 0.8055 1.0003 1.1867 1.7627

VR(7) 0.7918 0.8677 0.8000 1.0004 1.1921 1.7845

VR(8) 0.8013 0.8692 0.7959 1.0005 1.1961 1.8009

VR(9) 0.7928 0.8715 0.7928 1.0005 1.1993 1.8136

VR(10) 0.7705 0.8741 0.7903 1.0006 1.2018 1.8238

mean 0.0818 0.1912 0.0666 0.0664 0.0663 0.0661

st.dev. 0.1871 1.2891 0.0439 0.0386 0.0350 0.0284

eq. premium 0.0529 0.1459 0.0029 0.0024 0.0020 0.0011
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Table 20

Variance Ratios for Historical and Equilibrium Returns - Endowment

Calibrated to Total Consumption and to Consumption of Non-durables and

Services, the 2SMS1M2V Process, Yearly Data

Consumption of Non-durables and Services

Actual �=�0:66 �=�0:07 � = 0 � = 0:07 � = 0:60

VR(2) 1.0275 0.9651 0.8830 1.0001 1.1121 1.4577

VR(3) 0.8891 0.9550 0.8440 1.0001 1.1495 1.6103

VR(4) 0.8923 0.9511 0.8246 1.0002 1.1682 1.6866

VR(5) 0.8760 0.9496 0.8130 1.0003 1.1794 1.7324

VR(6) 0.8205 0.9494 0.8053 1.0003 1.1869 1.7629

VR(7) 0.7918 0.9498 0.7998 1.0004 1.1923 1.7847

VR(8) 0.8013 0.9506 0.7957 1.0005 1.1964 1.8011

VR(9) 0.7928 0.9517 0.7926 1.0005 1.1995 1.8138

VR(10) 0.7705 0.9530 0.7901 1.0006 1.2020 1.8240

mean 0.0818 0.1904 0.0647 0.0645 0.0644 0.0643

st.dev. 0.1871 2.0772 0.0399 0.0351 0.0318 0.0257

eq. premium 0.0529 0.1444 0.0024 0.0020 0.0017 0.0009

� = 0:97 and  = 1:70; values of � represent respectively strong habit persistence, modest habit

persistence, time separability, modest durability, and strong durability. Means, standard deviations,

and equity premiums are reported in addition to variance ratios for both historical and equilibrium

returns.
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Table 21

Variance Ratios for Historical and Equilibrium Returns - Endowment

Calibrated to Dividends and to GNP, the 2SMS1M2V Process, Yearly Data

Dividends
Actual �=�0:46 �=�0:07 �=0 �=0:07 �=0:60

VR(2) 1.0275 0.8611 0.8866 1.0013 1.1100 1.4484

VR(3) 0.8891 0.8219 0.8496 1.0022 1.1471 1.5980

VR(4) 0.8923 0.8057 0.8314 1.0030 1.1658 1.6729

VR(5) 0.8760 0.7977 0.8208 1.0035 1.1771 1.7179

VR(6) 0.8205 0.7933 0.8137 1.0040 1.1847 1.7479

VR(7) 0.7918 0.7906 0.8088 1.0043 1.1902 1.7694

VR(8) 0.8013 0.7889 0.8051 1.0046 1.1943 1.7855

VR(9) 0.7928 0.7878 0.8023 1.0049 1.1975 1.7980

VR(10) 0.7705 0.7869 0.8000 1.0051 1.2000 1.8080

mean 0.0818 0.3255 0.0632 0.0608 0.0593 0.0570

st.dev. 0.1871 1.5981 0.1552 0.1359 0.1231 0.0987

eq. premium 0.0529 0.3886 0.0346 0.0282 0.0238 0.0133
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Table 21

Variance Ratios for Historical and Equilibrium Returns - Endowment

Calibrated to Dividends and to GNP, the 2SMS1M2V Process, Yearly Data

GNP
Actual �=�0:54 �=�0:07 � = 0 � = 0:07 � = 0:60

VR(2) 1.0275 0.7406 0.8845 1.0006 1.1115 1.4541

VR(3) 0.8891 0.6755 0.8466 1.0013 1.1489 1.6055

VR(4) 0.8923 0.6576 0.8280 1.0018 1.1679 1.6813

VR(5) 0.8760 0.6576 0.8172 1.0024 1.1793 1.7268

VR(6) 0.8205 0.6657 0.8102 1.0029 1.1871 1.7571

VR(7) 0.7918 0.6778 0.8054 1.0034 1.1927 1.7789

VR(8) 0.8013 0.6920 0.8019 1.0038 1.1970 1.7952

VR(9) 0.7928 0.7071 0.7993 1.0042 1.2004 1.8079

VR(10) 0.7705 0.7225 0.7973 1.0046 1.2031 1.8180

mean 0.0818 0.1335 0.0639 0.0635 0.0633 0.0629

st.dev. 0.1871 0.5558 0.0624 0.0548 0.0498 0.0402

eq. premium 0.0529 0.0946 0.0058 0.0047 0.0040 0.0022

� = 0:97 and  = 1:70; values of � represent respectively strong habit persistence, modest habit

persistence, time separability, modest durability, and strong durability. Means, standard deviations,

and equity premiums are reported in addition to variance ratios for both historical and equilibrium

returns.
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Table 22

Equilibrium Expected Excess Returns, the 2SMS1M2V Process, Yearly

Data
State Total Consumption Consumption of Non-durables and Services Dividends GNP

�=�0:65 �=�0:66 �=�0:46 �=�0:54

1 0.0429 0.0226 0.2465 0.0540

2 0.0366 0.0201 0.2125 0.0457

3 0.0318 0.0181 0.1878 0.0396

4 0.0277 0.0164 0.1679 0.0347

5 0.0242 0.0148 0.1508 0.0305

6 0.0209 0.0134 0.1356 0.0268

7 0.0178 0.0119 0.1214 0.0233

8 0.0145 0.0103 0.1071 0.0198

9 0.9887 0.9584 34.5342 2.8414

10 0.6129 0.6061 3.1920 1.1976

11 0.4124 0.4124 1.2929 0.6751

12 0.2819 0.2840 0.6835 0.4166

13 0.1878 0.1901 0.3906 0.2611

14 0.1151 0.1167 0.2193 0.1560

15 0.0554 0.0559 0.1060 0.0785

16 0.0023 0.0013 0.0223 0.0156

� = 0:97 and  = 1:70; values of � represent strong habit persistence.
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Table 23

Variance Ratios for Historical and Equilibrium Returns - Endowment

Calibrated to Consumption and to Dividends, the 2SMS2M2V Process,

Monthly Data

Consumption

Actual �=�0:84 �=�0:07 �=0 �=0:07 �=0:60

VR(2) 1.2652 0.6113 0.8808 1.0000 1.1141 1.4600

VR(3) 1.3629 0.4820 0.8411 1.0000 1.1522 1.6134

VR(4) 1.4248 0.4174 0.8212 1.0000 1.1712 1.6900

VR(5) 1.4902 0.3787 0.8093 1.0000 1.1826 1.7360

VR(6) 1.5669 0.3529 0.8013 1.0000 1.1902 1.7667

VR(7) 1.6150 0.3344 0.7957 1.0000 1.1956 1.7886

VR(8) 1.6339 0.3206 0.7914 1.0000 1.1997 1.8050

VR(9) 1.6491 0.3099 0.7881 1.0000 1.2029 1.8178

VR(10) 1.6636 0.3013 0.7854 1.0000 1.2054 1.8280

mean 0.006759 0.1073 0.0339 0.0339 0.0339 0.0339

st.dev. 0.03431 0.4575 0.0047 0.0041 0.0037 0.0030

eq. premium 0.002612 0.0751 0.0000 0.0000 0.0000 0.0000
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Table 23

Variance Ratios for Historical and Equilibrium Returns - Endowment

Calibrated to Consumption and to Dividends, the 2SMS2M2V Process,

Monthly Data

Dividends
Actual �=�0:77 �=�0:07 � = 0 � = 0:07 � = 0:60

VR(2) 1.2652 0.6916 0.8807 1.0000 1.1143 1.4601

VR(3) 1.3629 0.5928 0.8409 1.0000 1.1524 1.6135

VR(4) 1.4248 0.5450 0.8210 1.0000 1.1714 1.6901

VR(5) 1.4902 0.5170 0.8091 1.0000 1.1828 1.7361

VR(6) 1.5669 0.4986 0.8011 1.0000 1.1905 1.7668

VR(7) 1.6150 0.4856 0.7954 1.0000 1.1959 1.7887

VR(8) 1.6339 0.4759 0.7912 1.0000 1.2000 1.8052

VR(9) 1.6491 0.4684 0.7879 1.0000 1.2032 1.8179

VR(10) 1.6636 0.4624 0.7852 1.0000 1.2057 1.8282

mean 0.006759 0.0483 0.0313 0.0313 0.0313 0.0313

st.dev. 0.03431 0.2407 0.0067 0.0059 0.0053 0.0043

eq. premium 0.002612 0.0182 0.0001 0.0001 0.0000 0.0000

� = 0:97 and  = 1:70; values of � represent respectively strong habit persistence, modest habit

persistence, time separability, modest durability, and strong durability. Means, standard deviations,

and equity premiums are reported in addition to variance ratios for both historical and equilibrium

returns.

116



Table 24

Equilibrium Expected Excess Returns, the 2SMS1M2V Process, Monthly

Data
State Consumption Dividends

�=�0:84 �=�0:77

1 0.8598 0.3498

2 0.5826 0.2443

3 0.3577 0.1563

4 0.1583 0.0764

5 -0.0269 0.0006

6 -0.2054 -0.0740

7 -0.3846 -0.1505

8 -0.5787 -0.2353

9 1.4583 1.6300

10 0.9560 1.0240

11 0.5659 0.5834

12 0.2327 0.2267

13 -0.0666 -0.0790

14 -0.3458 -0.3523

15 -0.6176 -0.6078

16 -0.9026 -0.8647

� = 0:97 and  = 1:70; values of � represent strong habit persistence
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Part V

An Empirical Investigation of the

Consumption Based Capital Asset

Pricing Model Using a Modi�ed

Variance-Ratio Test

A chi-square statistic is constructed that compares variance ratios and mean simple re-

turns from data with those implied by an asset pricing model. The statistic is applied

to the Consumption based Capital Asset Pricing Model with time non-separable prefer-

ences. It favors habit persistence for annual data, time-separability for quarterly data,

and durability for monthly data, respectively. Introduction of time non-separability

yields only a marginal improvement. The power of the test is high when alternative

hypotheses are formed by varying the relative risk aversion coe¢ cient. It is lower for

alternative hypotheses generated by varying the time non-separability parameter, espe-

cially for durability.

21 Introduction

The statistical test often used to investigate whether asset returns follow a random walk

is based on variance ratios of returns (see Campbell. Lo, and MacKinlay 1997, Chapter

2, for a survey). Variance ratios capture the autocorrelation structure of asset returns

and though their statistical power to detect mean reversion is rather low, it is still higher

than for alternatives such as the likelihood-ratio test or simple regressions of current

returns on lagged returns (see Poterba and Summers 1988). The test developed in this

paper is based on variance ratios and mean simple returns. The presence of mean simple
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returns ensures that the level of returns is captured together with their autocorrelation

structure, I avoid the necessity of choosing the variance ratio with the highest power (see

Faust 1992) by constructing a chi-square statistic, which is a weighted sum of squared

deviations from estimated and hypothesized variance ratios and mean simple returns for

several time periods. The chi-square test statistic can be used to test any model of asset

prices including the Consumption based Capital Asset Pricing Model (CCAPM).

In the standard CCAPM, the representative agent maximizes expected utility where

preferences are de�ned by time-separable iso-elastic functions of the �ow of nondurable

goods and services. Cecchetti, Lam, and Mark (1990) compare variance ratios of asset

returns implied by the CCAPM with historical variance ratios. They �nd that the model

can match the pattern observed in the U.S. data. Bonomo and Garcia (1994), on the

other hand, show that the CCAPM can produce serial correlation in equilibrium returns

only if its endowment process is misspeci�ed. Zemcik (2001) uses a proper speci�cation

of the endowment process together with time non-separable preferences to demonstrate

that the CCAPM can in fact generate autocorrelation in asset returns. Time non-

separability in Zemcik (2000) is introduced by adopting the internal habit formation

where the current utility depends on an individual�s past consumption. Preferences

are thus de�ned by three parameters: the discount factor, the time non-separability

parameter, and the relative risk aversion (RRA) coe¢ cient. An identical preference

speci�cation is utilized in this paper.

Following Bonomo and Garcia (1994), the consumption in the model is assumed to fol-

low a two-state, one-mean, and two-variance Markov switching process. The parameters

of the consumption process are estimated by the method of maximum likelihood using the

U.S. consumption of nondurables and services at annual, quarterly, and monthly frequen-

cies. The CCAPM is calibrated to various combinations of the parameters and solved

for. The equilibrium returns are then compared to the U.S. equity returns using the

proposed chi-square statistic. The highest p-values are recorded with negative time non-

separability parameter (habit persistence) for annual data, a zero time non-separability
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parameter (time separability) for quarterly data, and a positive time non-separability

parameter (durability) for monthly data. However, the modi�ed variance-ratio test can-

not reject time-separability at any data frequency, though p-values are lower compared

to time non-separable preferences. This result is in accord with recent evidence based on

Bayesian comparison of various preference speci�cations in Gordon and Samson (1999).

They conclude that extensions of the standard power utility function do not yield a

demonstrable improvement.

A standard approach to test asset pricing models is to estimate parameters of a

model by minimizing the distance between various moments of the model returns with

their sample analogs. The empirical adequacy of the model then can be tested using

the fact that the objective function evaluated in its minimum is chi-square distributed.

See Hansen and Singleton (1982) and Ferson and Constantinides (1991) for examples of

this methodology. More recently, Lee and lngram (1991), Du¢ e and Singleton (1993),

and Heaton (1995) discuss and/or apply an estimation procedure which accounts for

cases when the moments of model returns or the stochastic discount factor are simu-

lated. Since Ferson and Constantinides (1991) and Heaton (1995) both estimate the

CCAPM with time non-separable preferences, their results are directly comparable to

those of the calibration exercise presented here. Ferson and Constantinides (1991) esti-

mate the CCAPM at yearly, quarterly, and monthly frequencies, and Heaton (1995) uses

monthly data. While �ndings based on annual and monthly data frequencies are roughly

consistent with results presented here, there are di¤erences at the quarterly frequency.

Estimates of the time non-separability parameter in Ferson and Constantinides (1991)

are strongly negative, whereas the modi�ed variance-ratio test used in this paper favors

time-separability.

The chi-square test statistic constructed here is similar in spirit to other tests based

on distance from sample moments of asset returns. Hung (1994) o¤ers a statistic which

takes into account uncertainty from point estimates of means of the risk-free rate and

the equity premium as well as their mutual correlation. Burnside (1994) and Cecchetti,
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Lam, and Mark (1994) devise tests based on volatility bounds. Speci�cally, even though

the restriction imposed by Hansen and Jagannathan (1991) may be violated, the distance

between the minimum variance bound and the variance of a pricing kernel does not have

to be statistically signi�cant.35 Volatility bound tests tend to favor habit persistence for

all data frequencies, which is due to the increased severity of the equity premium puzzle

when durability is present. Hung (1994), Burnside (1994), and Cecchetti et al. (1994)

all focus on the cross-sectional characteristics of asset returns; on the other hand, the

test presented in this paper concentrates on the autocorrelation pattern of a single asset.

In this context, durability is needed for the CCAPM to match positive serial correlation

in historical monthly returns.

To evaluate information in accepting or rejecting the CCAPM, the power of the

modi�ed variance-ratio test is examined given the null hypothesis of the CCAPM being

the true underlying model. The endowment process parameters are set equal to their

maximum-likelihood estimates for each data frequency. The preference parameters of the

CCAPM are set equal to parameter combinations with highest p-values. The asymptotic

distribution of the above mentioned test statistic is chi-square. To avoid potential issues

with a small-sample bias, I also compute the empirical distribution of the statistic.

Critical values from both the empirical and asymptotic distributions are then used for

computing the power against alternative hypotheses. Various versions of the alternative

hypothesis are formed by varying the time non-separability parameter and relative risk

aversion coe¢ cient, respectively. Power is calculated using a sequence of time series of

model asset returns that is generated under a given alternative hypothesis. The power

is close to one for most alternative parameter combinations, which are far enough from

the combinations with highest p-values. The only exception is a region with a positive

non-separability parameter. This may be attributed to the fact that according to the

statistic used, these parameter combinations cannot be rejected using the data on the

35For recent development regarding volatility bounds, see Hansen, Heaton, and Luttmer

(1995); Hansen and Jagannathan (1997), and Balduzzi and Kallal (1997).
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U.S. stock returns and consumption growth.

The paper is organized as follows. Section 22 derives the chi-square statistic based

on variance ratios and mean simple returns. Section 23 discusses the CCAPM with

time dependent preferences; Section 24 solves for the equilibrium returns implied by the

model; the implied process for returns is used to evaluate the chi-square statistic for

various parameter combinations in Section 25 The power of the test is investigated in

Section 26 Section 27 concludes. The used data set is described in Appendix 4.

22 The Modi�ed Variance-Ratio Test

This section derives a test of asset pricing models based on estimates of variance ratios

and mean simple returns. The random walk hypothesis for asset returns is frequently

tested using the standard variance-ratio test (see Campbell et al. 1997, Chapter 2, for

a survey). A typical approach is to derive an asymptotic distribution of variance ratios

under the null hypothesis and then test the hypothesis. Variance ratios used may be

chosen according to their power as suggested in Faust (1992). Rather than choosing

variance ratios based on their power, a joint estimation of variance ratios for several

time horizons is conducted here. In addition, variance ratios are estimated together

with mean simple returns. The estimation is carried out by the Generalized Method of

Moments (GMM) and the asymptotic distribution of estimates is normal regardless of

the distribution of returns and a form of potential heteroskedasticity. Finally, a Wald

statistic is constructed that compares mean simple returns and variance ratios implied by

an asset-pricing model with their estimates. The variance-ratio statistic can be written

as

V R(k) =
V ar(Rkt )

kV ar(Rt)
= 1 +

2

k

k�1X
s=1

(k � s)�s; k = 2; 3; :::; (32)

where Rkt , is the simple k-period gross return, Rt is the simple one-period gross return,

and �s, is the s-th serial correlation coe¢ cient of returns.
36 V R(k) = 1 if the k-period

36Poterba and Summers (1988) o¤er an alternative de�nition of she variance-ratio
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return follows a random walk. For k = 2, the variance ratio is simply unity plus the �rst-

order autocorrelation. Thus, V R(2) < 1 for a negatively serially correlated two-period

return, and V Rf2) > 1 for a positively serially correlated two-period return. For k > 2,

V R(k) is a linear combination of autocorrelation coe¢ cients of returns with declining

weights.

Let �i, denote the mean of the k-period simple gross return. Let us also assume that

both �k and V R(k)can be obtained by solving a given model of asset pricing. De�ne

zt = (R
1
t ; R

2
t ; :::; R

L
t )
p, and

� = (�1;�2;:::;�L;V R(2); V R(3); :::; V R(L))
p, where L is a positive integer. The mo-

ment restrictions used for the GMM estimation follow from the de�nition of the variance

ratio statistic (32):

E[h(zt; �)] = 0;

where

h(zt; �) =

0BBBBBBBBBBBBBBBBBB@

R1t � �1

R2t � �2

:::

RLt � �L

(R2t � �2)
2 � 2V R(2)(R1t � �1)

2

(R3t � �3)
2 � 3V R(3)(R1t � �1)

2

:::

(RLt � �L)
2 � LV R(L)(R1t � �1)

2

1CCCCCCCCCCCCCCCCCCA
Let gT (�) = 1

T

TP
t=1

h(zt; �)and WT is some positive de�nite symmetric matrix. The

GMM estimator of � maximizes the quadratic form JT (�) = gT (�)
pWTgT (�). In our

case, JT (b�) = 0 because the estimator is exactly identi�ed. It can be proved that
p
T (b� � �0)

d! N(0; V (b�)). V (b�) is the asymptotic covariance matrix and is given by
statistic for monthly data: V R(k) =

V ar(Rkt )

k
=
V ar(R12t )

12
, i.e., they compare variances

of simple returns in relation to (he variation over a one-year period. For quarterly data,

12 would be replaced by 4. This approach is not adopted here because of potential

problems with variance ratios, which arise when the time horizon is large relative to the

total time span of the data (see Campbell et al. 1997, Chapter 2).
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(D0S
�1
0 D0)

�1 , where D0 = E[
@h(zt; �)

@�
] , and S0 =

1P
i=�1

E[h(zt; �0)]E[h(zt; �0)]
p:V (b�) is

estimated by bV (b�) = (DTS
�1
T DT )

�1where

DT =
1

T

TX
t=1

@h(zt;b�)
@�

;

and ST is estimated using the Newey and West (1987) method, i.e.,

ST =
1

T

TX
t=1

h(zt;b�)h(zt;b�)p + nX
i=1

[1� i

n+ 1
]�

[
1

T

TX
t=1+i

h(zt;b�)h(zt�1;b�)p + 1

T

T�iX
t=1

h(zt;b�)h(zt+i;b�)p];
where the number of lags n is equal to 15.37 The estimates of b� are reported in Table 25
for the S&P Index at yearly, quarterly, and monthly frequencies for L=10.38 The data

sources are described in Appendix 4. When annual data are used, the variance ratio for

a two-year investment horizon equals one. However, V R(2) can be greater than one if

a di¤erent data span is used. For investment horizons greater than two years, variance

ratios are lower than one, which corresponds to �ndings of Cecchetti et al. (1990) and

Poterba and Summers (1988). For quarterly returns, positive autocorrelation coe¢ cients

overweight the negative ones up to the investment horizon of seven quarters (1.75 years).

Finally, variance ratios for monthly returns are greater than one for all periods. Estimates

of � are consistent with the following stylized facts: equity returns display positive serial

correlation at horizons shorter than one year and negative serial correlation for longer

horizons.

Using the fact that b� is asymptotically normally distributed with covariance matrix
V (b�), one can write

Q = T (b� � �0)
pV (b�)�1(b� � �0) � �22L�1: (33)

37The Gauss code for GMM written by Hansen, Heaton, and Okagi is available upon

request.
38L = 10 is chosen since Cecchetti et al. (1990), Bonomo and Garcia (1994), and

Zemcik (2001) examine VR(k) for k = 2, 3,..., 10.
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The above relationship also holds when V (b�) is replaced by its consistent estimate,bV (b�).
The vector � can be thought of as a function of a vector of underlying parameters of an

asset pricing model. In this case, one might falsely conclude that the number of degrees

of freedom in the Q-statistic is the di¤erence between the number of elements in � (which

equals the number of restrictions) and the number of model parameters. However, since

no estimation with respect to model parameters is conducted, the number of degrees of

freedom is simply the number of elements in �. The Q statistic will be employed to test

the CCAPM with time non-separable preferences.

23 The CCAPM with Time Non-Separable Prefer-

ences

The framework adopted here is that of Lucas (1978). The model is solved for the case

with time-dependent preferences. The lifetime utility function of the representative con-

sumer takes the form

E0

1X
t=0

�t
(ct + �ct�1)

1�

1� 
; (34)

where ct, is the consumption of services at time t and � and � denote the discount

factor and the time non-separability parameter, respectively, � is the coe¢ cient of inter-

est since it a¤ects the autocorrelation structure of the model returns (Zemcik 2001) as

well as the size of the equity premium implied by the model (Constantinides 1990).  is

approximately equal to the expected value of the RRA coe¢ cient (Ferson and Constan-

tinides 1991) for � 6= 0 and equals the RRA for � = 0.

The present version of the CCAPM has been estimated and tested extensively. Ferson

and Constantinides (1991) estimate the CCAPM by GMM at annual, quarterly, and

monthly frequencies to �nd negative time non-separability parameters for annual and

quarterly data and a positive one for monthly data. Estimation of alternative versions
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of the CCAPM by Eichenbaum and Hansen (1990) and Heaton (1995) also supports

durability in monthly data. Cecchetti et al. (1994) test the CCAPM using tests based

on volatility bounds. Their results favor habit persistence for annual and monthly data

frequencies. A certain degree of habit persistence is necessary to generate a more volatile

pricing kernel, which in turn increases the equity premium implied by the model.

Let st;pt;dt be the amount of assets (trees) held, the market price of the asset, and

the dividend, respectively. The representative agent then maximizes (34) with respect

to the following budget constraint:

ct + ptst+1 � (pt + dt)st:::

The �rst order necessary conditions for the optimization problem imply

pt = Etmt+1(pt+1 + dt+1); (35)

where mt+1 is the Intertemporal Marginal Rate of Substitution (IMRS) and is given by

mt+1 =
�[(1 + �x�1t+1)

� + ��Et+1(xt+2 + �)�]

(1 + �x�1t )
� + ��Et(xt+1 + �)�

x�t+1;

where xt+1 =
ct+1
ct
. Using the expression for the IMRS, the Euler equation (35) can be

written as

vt = Etmt+1ht+1(1 + vt+1); (36)

where vt denotes the price-dividend ratio and ht the gross growth rate of the dividend,

respectively.

24 Shocks and Solution Method

This section derives variance ratios implied by the CCAPM. At �rst, the state dependent

continuous distribution of the consumption growth rate is discretized by the Gaussian

Appoint quadrature rule for N=6.39 Then, the IMRS is discretized as well and so is the

39The resulting number of corresponding rates of returns is (#states�N)2, i.e., 144.
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Euler equation, which can be written in the terms of price-dividend ratios. Next, the

Markov process forcing equilibrium returns is derived using the price-dividend ratios and

the transition matrix of the consumption process. Finally, variance ratios are calculated

from the moments of model returns.40

Bonomo and Garcia (1994) argue that the two-state Markov switching model with one

mean and two variances (2SMSIM2V) is the most parsimonious, statistically acceptable

model for consumption growth rate. I follow Bonomo and Garcia (1994) and estimate

parameters of this process using the method of maximum likelihood.41

The 2SMS1M2V model is de�ned as:

ln(xt+1) = �0 + (w0 + w1ut)�t+1;

where ut = 1 or 0, depending on the state of the economy. �t+1 � N(0; 1). The transpose

of the transition matrix between the states 0 and 1 is:

G =

0@ g00 1� g00

1� g11 g11

1A ;

where g00 is the probability of remaining at state 0, while g11 is the probability of

remaining at state 1. To conduct the estimation, consumption data on nondurables and

services in the U.S. are used� see Appendix 4 for description of the data and Table 26

for summary statistics. The maximum likelihood estimates of �0; g00; g11; w0;and w1 are

reported in Table 27.

40For the sake of brevity, some details of the solution method are omitted. The details

are available upon request from the author.
41Cecchetti et al. (1994) use a random walk model for annual data and an AR(1)

model for monthly data. The random walk model is explicitly ruled out by Bonomo

and Garcia (1994). For the sake of comparison, I also solve the model using the AR(1)

process at all data frequencies and conduct the calibration exercise described in testing

the CCAPM below. The CCAPM then generates autocorrelated returns even for time

separable preferences, contrary to calibration of the model by the 2SMS1M2V process.

However, di¤erences in results seem minor when the Q-statistic is used and uncertainty

regarding point estimates of historical variance ratios is accounted for.
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Let ln(x0) be an (N � 1) vector with elements

ln(x0i ) = �0 + w0ai; i = 1; 2; :::; N;

where ai;, is the abscissa for an N-point quadrature rule for the standard normal density.

Also, let ln(x1) denote an (N � 1) vector with elements

ln(x1i ) = �0 + (w0 + w1)ai; i = 1; 2; :::; N;

Then, the consumption growth rate ln(xt+1) is approximated by a Markov chain, where

the vector of possible values of the consumption process is de�ned as

ln(xt) =

�
ln(x0)

ln(x1)

�
;

with the transpose of the transition matrix

T =

0@ g00� (1� g00)�

(1� g11)� g11�

1A ; (37)

where �ij = wj;i; j = 1; 2; :::; N , and wj are the weights of an N-point quadrature rule

for the standard normal density.

The IMRS is written in the terms of xt+1, and discretized. Let M denote the (2 N �

2N) matrix of values of the IMRS. Thus, the Euler equation (36) can be expressed as:

v = K�+Kv; (38)

where v is a {2N � 1) vector of price-dividend ratios and � is a (2N � 1) vector of ones.

The (2N �2N) matrix K is de�ned as

fKijg =MijxjTij; i; j = 1; 2; :::; 2N:

(38) is a system of 2N equations in 2N unknowns and can be easily solved for v . The

equity returns then are

Rij =
pj + dj
pi

=
vj + 1

vi
xj; i; j = 1; :::; 2N: (39)

Using T and (39), the equilibrium path for returns is characterized by another Markov

chain with (4N2 � 1) vector of possible values of returns, R, the (4N2�4N2) transition
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matrix, PR, and the (4N2 � 1) vector of unconditional probabilities, �R (see Hamilton

1994, Section 22.4. for an example of a similar approach). The implied moments of

returns are

E(Rt) = �RpR = �; (40)

V ar[Rt] = �Rp(R:R)� �2;

and

E[Rt+sRt] = (R:�R)
pP sRR:

Thus, the s-th autocorrelation coe¢ cient of the equilibrium returns can be calculated

using

�s =
E[Rt+sRt]� �2

V ar[Rt]
: (41)

The variance ratios implied by the CCAPM are calculated using (41) and (32). �0 is

de�ned as (�; 2�; :::; L�; V R(2); V R(3); :::; V R(L)), where L = 10. The Q-statistic then

can be computed for a given set of parameter values by substituting for �0 in (33).

25 Testing the CCAPM

In this section, contour maps of p-values associated with the Q-statistic are constructed.

Annual, quarterly, and monthly data are used. At each data frequency, the CCAPM

is fully characterized by the endowment process parameters �; g00; g11; w0; w1and by the

utility function parameters �; �; . The consumption process parameters are set equal

to their maximum-likelihood estimates given in Table 27. Preference parameters are

chosen to be within a range of "reasonable" values. Values for � being examined for

annual data are 1.03, 1.00, 0.97, and 0.90, respectively, Kocherlakota (1990) provides a

theoretical justi�cation for � > 1: ��s for the other two data frequencies are adjusted to

account for a di¤erent time-period. � varies from -1 to 1 and Y from 0 to 25. Based on

the outcome, a narrower parameter space is then examined in �ner intervals. Finally,

parameter combinations with the highest p-values are presented for each data frequency.

The described calibration exercise can be thought of as an informal estimation procedure.
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A rigorous estimation of the identical version of the CCAPM is conducted in Ferson and

Constantinides (1991) and is beyond the scope of this paper.

Results for annual data are summarized in Figure 1. Contour diagrams A, B, and C

in Figure 1 di¤er only by the value of �. Admissible values for the model are the ones

for which the null hypothesis of the equilibrium model being valid cannot be rejected.

For instance when the p-value taken from one of the contour diagrams is higher than 10

percent it is not possible to reject the model at 10 percent level of signi�cance. Since

there are no p-values higher than 1 percent for �= 0.90, no contour diagram is drawn.

Interestingly, in all the other cases, both durability and habit persistence are plausi-

ble. In addition, time separability is not rejected either, though corresponding p-values

are somewhat lower. The highest p-value across all evaluated preference parameters is

0.99999 for �= 1.00, � = -0.04, and = 4.30.

The outcome of testing the CCAPM using quarterly data is depicted in Figure 2.

�s for quarterly data are 1.0074 in part A of the picture, 1.0000 in B, 0.9924 in C.

and 0.9740 in D, respectively. Contours are similar to their counterparts in Figure 1 in

admitting durability, habit persistence, and time-separability for all �s considered, even

for �= 0.9740, which is equivalent to � = 0.90 at a yearly frequency. The parameter

combination with the highest p-value of 0.99995757 is �= 1.00742, �= 0, and =6.4.

Results for monthly data are illustrated in Figure 3. Contrary to Figures 1 and

2, Figure 3 favors durability, though time-separable preferences and habit persistence

mostly cannot be rejected. When � = 0.99126, no p-value is greater than 1 percent and

no picture is drawn. The highest p-value of 1 is obtained for � = 1.00000, � = 0.10, and

 = 2.80.

26 Power of the Modi�ed Variance-Ratio Test

The null hypothesis is de�ned by the maximum-likelihood estimates of the consump-

tion process parameters (Table 27) in combination with preference parameters with the
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highest p-value according to the Q-statistic (see Section "Testing the CCAPM"). The

null hypothesis is used to parameterize the Data Generating Process, DGP0. The DGP0

is employed to produce a sequence of 20,000 repetitions of the Monte-Carlo experiment

where a series of returns is generated under the null hypothesis of the CCAPM model

being true. The number of observations for each data frequency is taken from Table

26. Simple means of returns and variance ratios are estimated for each series of returns

generated by the DGP0. The estimates are used to calculate the Q-statistic. An empir-

ical distribution of Q is derived. The empirical distribution provides the size corrected

critical value of the test. Then an alternative hypothesis is formulated by varying utility

function parameters. The DGP1 where the preference parameters are supplied by the

alternative hypothesis, is formed. The DGP1 is used to generate 1,000 time series of

returns. Mean simple returns and variance ratios are estimated so that the Q-statistic

can be calculated. The Q-statistic is compared to its critical value. Both the size cor-

rected and asymptotic critical values are considered. The size corrected critical value

is obtained from the distribution of Q under the null hypothesis. The alternative hy-

pothesis is either accepted or rejected using the Q-statistic. Finally, the ratio of the

number of rejections to the number of repetitions determines the power of the modi�ed

variance-ratio test.

A more formal discussion follows closely Spanos (1993). Let

b = (�; �; ; �; g00; g11; w0; w1)p 2 B;

where B is the set of plausible values for parameters of the CCAPM. Suppose we

have two competing hypotheses, H0 : b 2 B0 and H1 : b 2 B1, where B0 [ B1 = B and

B0 \ B1 = ?. Let us also de�ne the acceptance region C0 = fb : Q(b) < �s;2L�1g and

the rejection region C1 = fb : Q(b) > �s;2L�1g, where s is the level of signi�cance of the

test. Thus, if b 2 C0 we accept H0 at the s level of signi�cance and if b 2 C1 we reject

H0 at the s level of signi�cance. Q is de�ned by equation (33). Then the power of the

test is the probability of rejecting H0 when false i.e. Pr(b 2 C1 j b = b1) for b1 2 B1.

To compute the empirical distribution of Q, an arti�cial dataset has to be constructed.
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We know from Section "Shocks and Solution Method" that returns satisfying restrictions

given by the CCAPM are driven by a Markov chain with vector of possible values R and

the transition matrix PR. The Markov chain is fully characterized by the parameters of

the CCAPM, combined in a vector b. Let d = (�; g00; g11; w0; w1)
p denote a vector of

consumption process parameters. Table 27 de�nes d for annual data (da), quarterly data

(dq), and monthly data (dm), respectively. Values of preference parameters are taken

from the calibration exercise in Section "Testing the CCAPM". Thus, we can formulate

the null hypotheses as follows:

Annual Data H0 : ba0 = (1:00;�0:04; 4:30; da0)0,

Quarterly Data H0 :b
q
0 = (1:00742; 0; 6:4; d

q0)0;

Monthly Data H0 : bm0 = (1:00; 0:1; 2:8; d
m0)0:

To see the di¤erence between the asymptotic and empirical distributions of Q I calcu-

late the Q-statistic for each series produced by the DGP0. The model implied means of

simple returns and variance ratios are de�ned using b0 or in other words we can express

� in (33) as a function of the underlying parameters of the CCAPM represented by b.

Under H0, �(b) = �(ba0) for annual data and similarly for quarterly and monthly data.

Graph 4 compares the two distributions for each data frequency. The theoretical relative

frequency for 10-unit intervals is computed as F(Q2) � F(Q1), where Q2 � Q1 = 10

and F(.) is the cumulative distribution function of �19. To account for the di¤erence I

conduct two kinds of tests to assess the power of the modi�ed variance-ratio test: the

asymptotic test and the size corrected test. The 10% critical value for �19 is 27.2036.

So, the rejection region for the asymptotic test is C1 = fb : Q(b) > 27:2036g. Using size

corrected critical values, rejection regions are

Annual Data: C1 = fb : Q(b) > 89:108211g;

Quarterly Data: C1 = fb : Q(b) > 50:610095g;

Monthly Data: C1 = fb : Q(b) > 40:614630g:

Not surprisingly, as the number of observations increases, the empirical distribution

of Q gets closer to the asymptotic distribution. However, the empirical distribution
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remains fat-tailed for all frequencies.

Finally, the power is calculated. The alternatives are intentionally constructed so

that only one element in the parameter vector b di¤ers from the null hypothesis. The

alternative hypothesis is formulated by varying either the RRA coe¢ cient , or the time

non-separability parameter �. The hypothesis is either rejected or accepted based on the

Q-statistic and the corresponding rejection region. The power of the test is estimated

by cPr(b 2 C1 j b = b1) =
number of rejections
number of repetitions

:

The results of power calculations are depicted in Figure 5. For annual data, see

�gures A and B where the alternative hypotheses are respectively:

Annual Data,  varies H
1 : b

a
1 = (1:00;�0:04; ; da0)0;  2 [0; 5];

Annual Data, � varies H�
1 : b

a
1 = (1:00; �; 2:5; d

a0)0; � 2 [�0:5; 0:5]:

The pattern in both �gures clearly corresponds to what can be seen in Figure 1. As

the null hypothesis is approached, the power decreases in both cases. However, aside

from the close proximity to ba0 , the power is unity or close to unity. The power of the size

corrected test is somewhat lower by construction (size corrected critical value is greater

than the asymptotic critical value) but it reaches unity as well for  < 1.0 and  > 3.8

in Figure 5A and for � = � 0.6 in Figure 5B.

Alternatives for quarterly data are given as:

Quarterly Data,  varies H
1 : b

q
1 = (1:00742; 0; ; d

q0)0;  2 [6; 7];

Quarterly Data, � varies H�
1 : b

q
1 = (1:00742; �; 6:4; d

q0)0;  2 [�0:5; 1:0]:

Results are summarized in Figures 5C and 5D and correspond to Figure 2. There are two

peaks with high p-values in Figure 2 and a through for � = 0.1. The power is relatively

low for the peaks and high for the through. Alternative hypotheses for monthly data are

as follows:

Monthly Data,  varies H
1 : b

m
1 = (1:00; 0:1; ; d

m0)0;  2 [0; 7];

Monthly Data, � varies H�
1 : b

m
1 = (1:00; �; 2:8; d

m0)0; � 2 [�0:5; 0:5]:

The power for monthly data is shown in Graphs 5E and 5F. Again, results are com-
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patible with testing the CCAPM using the Q-statistic in Figure 3.

The power of the test is high when  deviates from it�s null hypothesis�value. How-

ever, the power for � > � 0.1 is rather low since the data cannot clearly distinguish

between habit persistence and durability.

27 Summary

Various forms of the variance-ratio test are utilized to document predictability and to test

asset pricing models. This paper introduces the modi�ed variance-ratio test where a joint

distribution of variance ratios is derived together with mean simple returns to construct

a test statistic, which may be employed to test a variety of models generating asset

returns. The intuition behind the metric originates from the autocorrelation pattern in

the U.S. equity data i.e. a positive autocorrelation in shorter investment horizons and

negative autocorrelation in longer investment horizons. The statistic evaluates whether

the di¤erence between the model implied variance ratios and the model implied mean

simple returns and their historical counterparts is statistically signi�cant.

The CCAPMwith time non-separable preferences is tested using the modi�ed variance-

ratio test. The results re�ect what we observe in the U.S. stock market data. Variance

ratios lower than one translate into habit persistence for annual data though neither

durability nor the time-separable model can be rejected. For quarterly data frequency,

the variance ratios are at �rst higher and then lower than one and consequently, the

highest p-value is found for the time separable model. However, there are parameter

combinations representing respectively habit persistence and durability, which cannot

be rejected either. Finally, variance ratios greater than one in monthly data imply test

results favoring durability.

Finally, the power of the modi�ed variance-ratio test is examined to evaluate the

extent of information contained in test results. The null hypothesis is formed using

parameter combinations with highest p-values according to the modi�ed variance-ratio

test. Both the asymptotic and size corrected critical values are calculated from empirical
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distribution of the test statistic under the null hypothesis of the CCAPM being the true

model. An alternative hypothesis is either accepted or rejected using both the asymptotic

and size corrected tests. The ratio of rejections to the number of repetitions determines

the power. Alternative hypotheses are formed by varying one parameter of the model

at a time. The parameters changing their values are the RRA coe¢ cient and the time

non-separability parameter, respectively. When the RRA coe¢ cient varies, the power of

the test is mostly one across all data frequencies and is lower only in the neighborhood

of the parameter combination de�ned by the null hypothesis. While the test rules out

successfully values of the RRA that are di¤erent from the null hypothesis, it does not

distinguish among habit persistence, time-separability, and durability very well. The

low power in this case is caused by data supporting a wide range of values of the time

non-separability coe¢ cient.
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Appendix 4

Annual Data

The yearly data considered here were used in Cecchetti et al. (1993). Cecchetti et

al. (1990) provides a detailed account of the data sources. There are four series:

1.Consumption: The real per capita consumption of non-durables and services, 1889-

1987.

2.CPI: Both the annual average and end of year observations from 1890 to 1987.

3.Dividends: The nominal dividends, 1890-1987, de�ated by the annual average CPI.

4.Standard and Poor�s Composite Stock Price Index: January observations, 1890-

1988, adjusted to in�ation by the end of period CPI.

Quarterly Data

The quarterly data I use contain observations form 1947 II to 1993 I and consist of

two series:

1.Consumption: Real per capita consumption of non-durables and services - CITIBASE

series (GCNQ + GCSQ)/GPOP).

2.Stock Return: Quarterly value weighted Standard and Poor�s 500 returns taken

from the CRSP tape, adjusted for in�ation.

Monthly Data

The monthly data considered start from February 1959 and end in March 1993. They

include the following series:

1.Consumption: The real per capita consumption of non-durables and services in

1987 dollars - CITIBASE series (GMCSQ + GMCNQ)/POP.

2.Price Index: Computed as (GMCS+GMCN)/(GMCSQ+GMCNQ), where GMCS,

GMCN, GMCSQ, GMCNQ are respectively nominal consumption expenditures on ser-

vices, nominal consumption expenditures on non-durables, real consumption expendi-

tures in 1987 dollars on services, and real consumption expenditures in 1987 dollars on

non-durables
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3.Standard and Poor�s Composite Common Stock Price Index: CITIBASE series

FSPCOM adjusted for in�ation by the above price index.

4.Dividends: Constructed using the dividend yield on Standard and Poor�s Composite

Common Stock (CITIBASE series FSDXP), Standard and Poor�s Composite Common

Stock Price Index, and the price index, both de�ned above.
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Table 26

Summary Statistics for Per Capita Consumption Growth Rate

Table 27

Maximum Likelihood Estimates of the 2SMS1M2V Process
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Figure 1. P-values; Annual Data
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Figure 2. P-values; Quarterly Data
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Figure 3. P-values; Monthly Data
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Figure 4. Empirical Distribution of Q Compared to �19
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Figure 5. Power of the Modi�ed Variance-Ratio Test
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Part VI

Housing, Consumption, and Stock

Returns: A Joint Econometric

Model

Various theoretical models and empirical studies suggest a dynamic relationship among

property returns, consumption, and stock returns. The present paper proposes a joint

Markov switching model for the three variables, which allows for di¤ering means and

variances of the individual series. Combining two states for each series results in an

eight-state Markov model with a discrete covariance matrix. The model parameters in-

clude unconditional state probabilities and are estimated by constrained MLE. One of

the states with non-zero probability is characterized by high-mean-high-variance prop-

erty returns with low-mean-high-variance stock returns and high-mean-low-variance con-

sumption, similar to the state of the US economy in the beginning of the 21st century.

Findings of the constrained MLE are also supplemented by Granger causality tests and

impulse response functions.

28 Introduction

The recent worldwide in�ation of share prices followed by a sharp decline has spurred an

interest in the impact of the household wealth on consumption. Surprisingly high level

of consumption kept the U.S. (and with it the world�s) economy from going in a deeper

recession and it is often claimed that it were the high real estate prices, which positively

a¤ected consumption (see Benjamin, Chinloy, and Jud 2004). On the other hand, there

is a possibility of a reverse process due to potentially declining real estate prices,42 which

42Gary Shilling, �Housing Bust Ahead," Forbes, 10/3/2005, Vol. 176 Issue 6, p110.
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raises the question of an accurate representation of the empirical relationship between

housing prices, stock returns and consumption.

Rational expectations models with focus on pricing of assets often include explicit

treatment of housing. Flavin and Nakagawa (2004) model housing with adjustment costs

and compare the housing stock with habit persistence. They use a partial equilibrium

approach with an exogenously given joint process for property, stock, and bond returns.

Implications of their model depend on the assumption of zero-correlation between prop-

erty returns and �nancial returns. This assumption is relaxed in Yao and Zhang (2003)

who allow for positive correlation between real returns on housing assets and stock re-

turns. Campbell and Cocco (2002) investigate the impact of �xed- and �oating-rate

mortgage contracts on a life-time utility of home owners. Housing prices are also exoge-

nously given in their model and are presumed to follow a random walk process. Bajari,

Benkard, and Krainer (2005) study how �uctuations in property prices a¤ect aggregate

consumer welfare in a closed economy and Reis (2005) uses a similar framework to con-

struct a dynamic price index, which includes prices of �nancial assets as well as real

estate prices.

The price of the housing asset can also be endogenized. Ortalo-Magné and Rady

(2003) explicitly consider the role of the young credit-constrained households to gener-

ate over-reaction of housing prices to income shocks and positive correlation of house

prices and the number of housing transactions. Lustig and Van Niewerburgh (2003) ab-

stract from life-cycle considerations and express the dependance of household exposure to

idiosyncratic risk in the terms of housing collateral, the ratio of housing wealth to human

wealth. All of these studies suggest presence of dynamic interactions among property

returns, stock returns, and consumption, and importance of mutual correlations.

Proper calibration of rational asset pricing models and/or formulation of a multivari-

ate econometric model requires detailed knowledge of features of the individual series as

well as their mutual interaction. Dynamics of property prices in the OECD countries

are explicitly studied by Englund and Ioannides (1997) who �nd a signi�cant �rst-order
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autocorrelation in the �rst-di¤erenced real annual house prices. Autocorrelation in prop-

erty returns is also discussed in Cho (1996), a summary article on house price dynamics.

Consumption processes are modelled in Bonomo and Garcia (1994), who argue that a

Markov process for consumption should account for heteroskedasticity - a failure to do so

results in seemingly mean reverting equilibrium equity returns in an asset pricing model

with a power utility function.43 Autocorrelation and heteroskedasticity of stock returns

have been documented in numerous studies; for a thorough survey see Campbell, Lo,

and MacKinlay (1997).

The interaction between house prices and stock prices is studied for example in

Kennedy and Andersen (1994) who report positive correlation between the two vari-

ables,44 contradicting the main assumption in Flavin and Nakagawa (2004). Lustig and

Van Niewerburgh (2003) �nd that an increase in the US stock returns can be predicted

by decline in the ratio of housing wealth to human wealth. Many empirical studies also

estimate marginal propensity to consume out of housing or stock market wealth, rather

than from returns. Case, Quigley, and Shiller (2001) use panel data from twelve de-

veloped European countries, Canada, and United States and Tan and Voss (2000) use

Australian regional panel data to demonstrate that consumer spending is more sensitive

to changes in housing wealth than to changes in �nancial wealth. These �ndings suggest

ambiguity with respect to the correlation between housing and �nancial returns, strong

causality from property prices to consumption, and weak causality from stock prices to

consumption.

The present paper formulates an econometric model for the joint process of housing

returns, consumption, and stock returns. Following Bonomo and Garcia (1994) and

Zemµcík (2001), it allows for two means and two variances for each series. For example,

a bearish stock market can be associated with a higher volatility while the volatility is

43Zemµcík (2001) shows that mean reverting equity returns can in fact be generated when the het-

eroskedastic consumption process is combined with time non-separability in preferences .

44See their Table III.2. They do not include statistical signi�cance.
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reduced on the bull market. Similar analogies can be drawn for housing or consumption:

For instance, the model speci�cation allows for two states of the economy, one with

quickly growing house prices and a slow decline - similarly to Japan by the late 1980�s-

with respective smaller and larger �uctuations. The paper then generalizes some results

for univariate mixture distributions processes in Hamilton (1994, Ch. 22.3) in the spirit

of a bi-variate Markov switching model for stock returns and industrial production in

Hamilton and Li (1996). In the resulting tri-variate model, two states for every time series

translate into a joint eight-state Markov model. Each state corresponds to a particular

combination of regimes of the three time series. In one of the states, consumption growth

rate is positive, the stock market is declining and the housing market is on the rise, a

situation reminiscent of the state of the US economy since 2000. Parameters of the

process include probabilities of occurrence of each of the eight states.

Estimation of the tri-variate Markov chain poses a challenge due to the discreetness

of the covariance matrix of parameters, which in turn re�ects presence of di¤ering volatil-

ities of the time series processes. The challenge is addressed by explicit formulation of

the Jacobian matrix of the non-linear inequality constraints with respect to restricted

parameters and estimation by the method of restricted maximum likelihood. Estimates

of covariances among the three series are all zero with binding constraints to keep the

covariance matrix positive de�nite. This result supports validity of the assumption of

zero covariances between house and �nancial returns adopted in Flavin and Nakagawa

(2004). In mean-variance combinations of individual series, housing returns are more

volatile when they rise, contrary to consumption and stock returns. The most likely

overall state of the economy is when all the series are at their higher levels of means.

Other non-zero states include growing house prices with declining stock market and ei-

ther faster or slower growth of consumption. The former corresponds to the state of

the US economy shortly after the recent stock market decline. Finally, declining stock

market can be observed together with high state of consumption and low state of housing

returns. It is also possible for the stock market to be bullish but accompanied by low
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consumption and house prices.

Causality tests and VAR impulse response functions complete the picture of the mu-

tual relationship among housing, stock markets and consumption. The stock market

returns Granger-cause both consumption and housing returns. Housing returns come

close to being statistically signi�cant in predicting stock returns, which is consistent

with conclusions in Lustig and Van Niewerburgh (2003). Consumption does not have

any statistically signi�cant predictive information content for either stock or housing re-

turns; on the other hand, housing does Granger-cause consumption. These observations

are roughly con�rmed by impulse response functions where consumption is sensitive to

shocks in either stock or housing market and the stock market reacts (almost signif-

icantly) to shocks on the housing market and viceversa. Presented �ndings indicate

causality (both in its standard meaning and in the sense of Granger) from housing and

property returns to consumption. However, contrary to evidence from panel data studies

using housing and stock market wealth, stock returns seem to have a stronger impact on

consumption spending than property returns.

The paper is organized as follows. Section 29 describes the tri-variate Markov model

and estimation of its parameters, Section 30 characterizes data, Section 31 estimation

output, Section 32 discusses Granger causality tests and impulse response functions, and

Section 33 concludes.
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29 Estimation Methodology

Processes of the stock market prices and macroeconomic variables (e.g. consumption,

industrial production, and GDP) have been studied extensively, including their (realistic)

simpli�ed versions meant for calibration of life-cycle models. The process for real estate

prices has not yet been the center of attention from this prospective, which will be

remedied in this study. A potential speci�cation can be found in Hamilton and Lin

(1996), who focus on the stock market prices and adopt a Markov-switching process

with ARCH features, which allows for asymmetric e¤ects on volatility. However, this

model may be over-parameterized for the purposes of this study and does not allow for

di¤ering growth rates. Therefore, a better alternative is the two-state two-mean two-

variance Markov Switching Model (2S2M2VMS) used in Zemµcík (2001) for consumption,

which can be extended to accommodate all the three variables.45

To estimate a multivariate Markov process, this section generalizes discussion of

Markov chains for univariate processes in Hamilton (1994). Let us consider a multivariate

Markov-switching process yt; t = 1; : : : ; T with mean �t and variance 
t. yt is a (3� 1)

vector representing the housing, consumption and stock return processes, respectively.

Each of the processes j = 1; : : : ; 3 has two regimes denoted Sj = 0 and Sj = 1. The

8� 3 matrix S then characterizes all 8 states of the economy:0BBBBBBBBB@

0 0 0

0 0 1

: : :

1 1 1

1CCCCCCCCCA
: (42)

Let us de�ne a variable S�t = i whenever the state of the economy is i and 0 otherwise.

Each state of the economy corresponds to the i-th row of the matrix S. The unconditional

45This 2S2M2VMS generalizes the random walk model in Campbell and Cocco (2002) by allowing for

di¤erent growth rates and volatility. The structure of the Markov process makes it relatively easy to

incorporate in life-cycle rational asset pricing models, which then can be solved.
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probability that S�t equals i is

PfS�t = ig = �i: (43)

Conditional mean and covariance matrix are respectively given by:

�i = (�tjS�t = i) =

0BBB@
�1 + �y1Si1

�2 + �y2Si2

�3 + �y3Si3

1CCCA (44)

and


i = (
tjS�t = i) =

0BBBBBB@
!1 + !y1Si1 !4 !5

!4 !2 + !y2Si2 !6

!5 !6 !3 + !y3Si3

1CCCCCCA ; (45)

where 
i is a positive de�nite symmetric matrix. Further assume that yt is conditionally

normally distributed i.e.

f(ytjS�t = i) =
1

(2�j
ij)1=2
exp

�
�1
2
(yt � �i)

0
�1i (yt � �i)

�
: (46)

Then the joint density distribution of yt and S�t is

f(yt; S
�
t = i) = �if(ytjS�t = i): (47)

Summing up (47) over the states results in the unconditional density of yt:

f(yt) =

8X
i=1

f(ytjS�t = i): (48)

Let us stack elements of �i and 
i together with all �i�s except the last one in a (21� 1)

vector �. The log-likelihood for the observed data is

L(�) =

TX
t=1

log f(yt): (49)

Maximum likelihood estimate �̂ is calculated by maximizing L(�) with respect to � and

subject to
P8

i=1 �i = 1, !k + !ykSik � 0 for all i; k, and 
i being positive de�nite for

all i. Typically, positive de�niteness is ensured by restricting eigenvalues of a covariance

matrix to be positive. This approach cannot be applied here since there are in fact
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eight covariance matrices. This problem can be circumvented by following an alternative

de�nition of positive de�niteness where a matrix is positive de�nite if and only if its

leading principal minors are positive (e.g. de�nition 21.30 in Sydsæter, Strøm, and

Berck 2000). Details are laid out in Appendix 5. The optimization is conducted using

the Constrained Maximum Likelihood module in Gauss (see Gauss Applications 1995).

30 Data

The used data series are listed in Table 28, including data sources and a brief descrip-

tion. Housing prices are characterized by median sales of existing homes in the United

States, which are seasonally adjusted by the di¤erence from moving average method.

The resulting series is adjusted for in�ation by a consumer price index and a growth rate

of the adjusted series is calculated (HPIEX). Stock returns are real monthly returns on

the S&P index and include both capital gains and dividends (SPRET). The per capita

consumption growth rate is computed using the seasonally adjusted US personal con-

sumption expenditures and population data (CRATE). The summary statistics of the

constructed series are given in Table 29. Stock returns have the highest mean and are

also the most volatile of the three series. The distribution of HPIEX has a long right

tail and distributions of SPRET and CRATE have both a long left tail. All the series

are peaked relative to the normal distribution. The null hypothesis of normality can-

not be rejected at 5% level of signi�cance only for the house index series. Covariances

provide basis of comparison with the estimates of the covariance matrices 
i�s. Corre-

lations among the series are around 0.10. Standard augmented Dickey-Fuller unit root

tests with an intercept (not reported) reject unit roots in all the series at 1% level of

signi�cance.
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31 Results

Results of the maximum likelihood estimation are reported in Table 30 where parameter

estimates are accompanied by their standard errors and t-ratios, which can be used for

illustrative statistical inference. The estimates of means conditional on the respective

states being zero are signi�cantly positive for stock returns and consumption growth rate.

The mean estimates for state variables equal to unity are insigni�cant but in two cases

negative, namely for stock returns and consumption. The only positive element of the

covariance matrix for Si1 = Si2 = Si3 = 0 is the variance of consumption. Covariances

restricted to be the same in all states are zero (compare with Table 29). While all

the variances for Si1 = Si2 = Si3 = 1 are positive, only the one for stock returns is

signi�cant. There are four non-zero values for unconditional probabilities, with �2 and

�5 statistically signi�cant.

To interpret the estimates, they are organized in Table 31 so that one can see how the

three processes move together. For example, for the state S�i = 1, the state variables for

house prices, stock returns and consumption are respectively Si1 = Si2 = Si3 = 0. The

mean of the growth rate of housing index is �1 = 0:0010 from Table 30. The variance

is equal to !1 = 0. Similarly for stocks and consumption. The estimated unconditional

probability of occurrence of the �rst state is 0 (�1 = 0).

A close look at the table provides some additional information on the mutual dynam-

ics of the considered processes. The housing process has two states, low mean with low

variance and high mean with high variance. The estimates of the stock returns process

conform stylized facts i.e. the variance is low for high returns and vice versa. In other

words, there is heteroskedasticity with higher volatility associated with low returns. The

consumption process is similar in that aspect though the di¤erence in volatilities is rather

small compared to the di¤erence in means. A combination of means and variances cor-

responding to a particular state determines the joint law of motion for the three-variate

process.
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Let us consider the most likely state S�i = 5. In this case, probability of its occurrence

is �t = 0:8646. All processes are in the higher mean state with the corresponding higher

volaitility for housing and lower volatilities for stocks and consumption, respectively.

Clearly, most of the time since 1968, all three processes were growing at faster rates.

State eight has the second largest probability - here housing is on the rise while stock

returns and consumption growth are low. State two corresponds to low growth rates of

housing and consumption with high returns on the stock market. Of special interest is

S�i = 7, which can be related to the situation in the United States in the beginning of the

21st century. The stock market was bearish but high house prices fuelled consumption

growth. In the laste state with non-zero probability, S�i = 3, consumption is growing

fast in spite of low housing prices and stock returns.

32 Granger Causality Tests and Impulse Responses

To further investigate relations among the three series, Granger causality tests are con-

ducted (see Granger 1969). The concept of Granger causality di¤ers from common

understanding of the word; rather then cause and e¤ect it re�ects precedence and infor-

mation content. It provides a useful way of characterization of how relevant a variable

(say, y) is for predicting another variable (x). y is said to Granger-cause x if x and its

past values improve prediction of y when used in addition to past y�s.

The following bivariate regressions are run:

yt = �0 + �1yt�1 + : : :+ �lyt�l + �1xt�1 + : : :+ �lxt�l + �t;

xt = �0 + �1xt�1 + : : :+ �lxt�l + �1yt�1 + : : :+ �lyt�l + ut ; (50)

for all three pairs of housing, stock returns and consumption series. The null hypothesis

is

H0 : �1 = �2 = : : : = �l = 0 (51)

46In the following discussion, the focus will be on point estimates since t-ratios are only approximate

and not available for the state eight and zero ��s.
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and if it is rejected, then x Granger causes y in the �rst regression and viceversa in the

second regression.

Table 32 reports F-statistics, which are the Wald statistics for the joint hypothesis

(51). The null hypothesis that SPRET does not Granger-cause HPIEX is rejected at 10%

level of signi�cance, which indicates that the stock market helps to forecast the housing

market. The same is not true in the opposite direction though the p-value only slightly

exceeds 10%. The hypothesis that consumption Granger-causes housing and viceversa is

accepted at 5% level of signi�cance. The fact that both variables improve the prediction

of the other series illustrate close mutual relationship of housing and consumption. Fi-

nally, CRATE does not Granger-cause SPRET but SPRET does Granger-cause CRATE

i.e. the stock market contains information useful to anticipate consumption spending of

households.

To complement Granger causality tests, impulse responses to exogenous shocks are

calculated as well. A VAR process for the three series is estimated with two lags for

endogenous variables. Impulse responses are depicted in Figure 6 together with 95%

con�dence intervals. The observed patternes are in accord with Granger causality tests.

HPIEX is Granger-caused by CRATE and it also reacts strongly to positive shocks in

consumption. Similar reaction of HPIEX can be seen to changes in SPRET and the

p-value of the null hypothesis of Granger non-causality was close to rejection in this

case. The stock market reacts just to the housing market. Consumption on the other

hand reacts strongly to shocks on both the housing and stock markets.

33 Summary

To capture the dynamic relationship among the three series, the present study proposes

an econometric model, which is a generalized version of the bi-variate Markov switching

model in Hamilton and Lin (1996) and of the two means-two variances process in Bonomo

and Garcia (1994) and Zemµcík (2001). In spite of a high degree of parsimony, the model
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allows for interesting dynamics among the three variables and roughly incorporates some

stylized facts for the three series, namely autocorrelation and heteroskedasticity.

The tri-variate Markov process is estimated using US data on stock returns, prices

of existing homes and real per capita consumption. Estimation is conducted by the

method of restricted maximum likelihood and takes into account discrete variances

of the three series. Results show that there are four states with positive probability:

(i) low-mean-low-variance property returns with high-mean-low-variance stock returns

and high-mean-low-variance consumption; (ii) low-mean-low-variance property returns

with low-mean-high-variance stock returns and low-mean-high-variance consumption;

(iii) high-mean-high-variance property returns with high-mean-low-variance stock re-

turns and high-mean-low-variance consumption; and (iv) high-mean-high-variance prop-

erty returns with low-mean-high-variance stock returns and low-mean-high-variance con-

sumption. The state described in (iii) is reminiscent of the situation in the US economy

since 2000 when consumption growth rate was positive, the stock market was declining

and the housing market was on the rise. The estimation results are completed by pair-

wise Granger causality tests and impulse response functions. Both property and stock

returns Granger-cause consumption and consumption helps in prediction of real estate

returns. These �ndings are supported by graphed impulse response functions.
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Appendix 5. Positive De�niteness of 
i�s

The matrix 
i is positive de�nite for all i if and only if:

(i) !1 + !y1Si1 > 0 for all i. This is a restriction on the �rst leading principal minor of


i.

(ii) (!1+!
y
1Si1)(!2+!

y
2Si2)�!24 > 0 for all i. This is a restriction on the second leading

principal minor of 
i.

(iii) (!1+!
y
1Si1)(!2+!

y
2Si2)(!3+!

y
3Si3)+2!4!5!6�!26(!1+!

y
1Si1)�!24(!3+!

y
3Si3)�

!25(!2 + !y2Si2) > 0 for all i. This is simply j
ij > 0:

The restriction (i) is linear in parameters and is easy to enforce in Gauss. Restrictions

(ii) and (iii) are non-linear and performance of the optimization algorithm is improved

if the Jacobian J[i] of the non-linear inequality constraints with respect to restricted

parameters is provided (see Gauss Applications 1995 for details). J[i] is a (12 � 9)

matrix. Let the vector of parameters included in non-linear restrictions be denoted as

�N = (!1; !2; !3; !4; !5; !6; !
y
1; !

y
2; !

y
3)
0. It follows from the restriction (ii) that for j = 1

to 4 (two states for two state variables) the j-th row of J[i] is given by :

J[i]j: = (!2 + !y2Si2; !1 + !y1Si1; 0;�2!4; 0; 0; Si1(!2 + !y2Si2); Si2(!1 + !y1Si1); 0):
0

Similarly, restriction (iii) implies that for j = 5; :::; 12:

J 0[i]j: =

0BBBBBBBBBBBBBBBBBBBBB@

(!2 + !y2Si2)(!3 + !y3Si3)� !22

(!1 + !y1Si1)(!3 + !y3Si3)� !25

(!2 + !y2Si2)(!1 + !y1Si1)� !24

2!5!6 � 2!4(!3 + !y3Si3)

2!4!6 � 2!5(!2 + !y2Si2)

2!4!5 � 2!46(!1 + !y1Si1)

Si1(!2 + !y2Si2)(!3 + !y3Si3)� Si1!
2
2

Si2(!1 + !y1Si1)(!3 + !y3Si3)� Si2!
2
5

Si3(!2 + !y2Si2)(!1 + !y1Si1)� Si3!
2
4

1CCCCCCCCCCCCCCCCCCCCCA

;

where there are eight rows which correspond to the eight rows of matrix S.
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Table 28

Data Description

Series ID Seas. Adj. Source Notes

CPIAUCNS No Bureau of Labor Statistics Index 1982-84-100

HP No National Association of REALTORS USD

PCE Yes Bureau of Economic Analysis Bil. of USD

POP N/A Census Bureau

SP500 No Compustat USD

SPDIV No Compustat USD

The common sample for the data series (growth rates and returns) is 1968:02-2004:05. CPIAUCNS

is Consumer Price Index for All Urban Consumers. HP is a series with median sales price of existing

family homes in the United States. PCE are Personal Consumption Expenditures. POP denotes the

United States population. SP500 and SPDIV are respectively the Standard & Poor�s 500 index and the

corresponding dividend series.
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Table 29

Data Summary Statistics (1968:02-2004:05)

HPIEX SPRET CRATE

Mean 0.0011 0.0056 0.0015

Median 0.0018 0.0078 0.0017

Maximum 0.0426 0.1589 0.0313

Minimum -0.0369 -0.2174 -0.0261

Std. Dev. 0.0123 0.0452 0.0061

Skewness 0.0076 -0.3539 -0.0911

Kurtosis 3.5194 4.5499 6.0416

Jarque-Bera 4.9044 52.7446 168.6748

(Probability) (0.0861) (0.0000) (0.0000)

Observations 436 436 436

Covariances

HPIEX 0.0001514 5.44E-05 8.20E-06

SPRET 5.44E-05 0.002035138 2.90E-05

CRATE 8.20E-06 2.90E-05 3.66E-05

Correlations

HPIEX 1.0000 0.0980 0.1102

SPRET 0.0980 1.0000 0.1062

CRATE 0.1102 0.1062 1.0000
HPIEX is the growth rate of the house pricing index of exiting homes, adjusted to in�ation using a

consumer priced index; SPRET is the rate of return on the SP 500 market index; and CRATE is the

growth rate of real per capita consumption.
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Table 30

Maximum Likelihood Estimates of the Tri-variate Markov Process

Parameters Estimates Std. Error t-ratio �1

�1 0.001 0.0008 1.25

�2 0.0082 0.0025 3.28

�3 0.0016 0.0003 5.33

�y1 0.0002 0.001 0.20

�y2 -0.0255 0.0187 -1.36

�y3 -0.0014 0.0022 -0.64

!1 0 . .

!2 0 . .

!3 0.0015 0.0002 7.50

!4 0 . .

!5 0 . .

!6 0 . .

!y1 0.0002 . .

!y2 0.0043 0.0021 2.05

!y3 0.0001 . .

�1 0 . .

�2 0.0384 0.0174 2.21

�3 0.0095 0.0123 0.77

�4 0 . .

�5 0.8595 0.0807 10.65

�6 0 . .

�7 0.0199 0.0608 0.33
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Table 31

Conditional Means and Variances in a Given State

S�i Si1 Si2 Si3 Housing Stocks Consumption Prob.

mean var mean var mean var 1

1 0 0 0 0.0010 0 0.0082 0 0.0016 0.0015 0

2 0 0 1 0.0010 0 0.0082 0 0.0002 0.0016 0.0384

3 0 1 0 0.0010 0 -0.0173 0.0043 0.0016 0.0015 0.0095

4 0 1 1 0.0010 0 -0.0173 0.0043 0.0002 0.0016 0

5 1 0 0 0.0012 0.0002 0.0082 0 0.0016 0.0015 0.8595

6 1 0 1 0.0012 0.0002 0.0082 0 0.0002 0.0016 0

7 1 1 0 0.0012 0.0002 -0.0173 0.0043 0.0016 0.0015 0.0199

8 1 1 1 0.0012 0.0002 -0.0173 0.0043 0.0002 0.0016 0.0727
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Pairwise Granger Causality Tests

Null Hypothesis: Obs F-Statistic Probability

SPRET does not Granger Cause HPIEX 424 1.5673 0.0985

HPIEX does not Granger Cause SPRET 1.4500 0.1407

CRATE does not Granger Cause HPIEX 424 2.0095 0.0223

HPIEX does not Granger Cause CRATE 1.9750 0.0252

CRATE does not Granger Cause SPRET 424 0.8353 0.6140

SPRET does not Granger Cause CRATE 2.8203 0.0010

Sample: 1969:02 2004:05, Lags: 12.
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Figure 6: Response to Cholesky One S.D. Innovations � 2 S.E.
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Part VII

Conclusion

The conclusion of the present habilitation work focuses on two aspects of the asset

pricing literature, the equity premium puzzle and the role of housing. This perspective

is motivated by events that have taken place since August 2007. The problems originated

in the market for the sub-prime mortgages. The unusual frequency of defaults put many

�nancial institutions in a problematic position. US mortgages were highly securitized

mainly in the form of collateral debt obligations and a number of other related o¤-balance

�nancial vehicles, which has hidden the exposure to risk and made it di¢ cult to estimate

the impact of the collapsed housing market triggered by the defaulting mortgages. The

sub-prime mortgage crisis became �rst a crisis of liquidity and then a crisis of solvency.

The access to credit has tightened and the global economy is heading towards a recession.

One implication was a bearish global stock market with elimination of 20-30% of wealth

in a matter of a month in October 2008. This raises the questions if there is still an

equity premium puzzle since the equity premium has become much smaller. Also, the

probability of a big collapse in stock prices may have not been considered since such

a collapse has not been yet observed.47 Another question is the exact role of housing

both in the crisis and in asset pricing models. Explicit modelling of housing is needed to

describe accurately the causes of the global �nancial and economic crisis and to estimate

the impact of a bursting housing bubble in many markets on household consumption

and performance of economies.

33.1 Equity Premium Puzzle Revisited

Here I intend to con�rm existence of the equity premium puzzle by estimating the stan-

dard power utility model by Generalized Methods of Moments (GMM), using an updated

47This is often referred to as �a black swan event" or a �peso problem".
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dataset. To describe the estimation methodology in some detail, I follow Hamilton

(1994). Let us de�ne an (h� 1) vector of observables wt, an (a� 1) vector of coe¢ cients

� with the true value �0, and an (r � 1) vector valued function h(�; wt). h(:) can be

viewed as a residual from a model. Orthogonality conditions are de�ned as:

E[h(�; wt)] = 0: (52)

The sample equivalent of the orthogonality conditions (52) is given by

g(�; YT ) �
1

T

TX
t=1

h(�; wt) (53)

where YT is an (Th� 1) vector [w1; :::; wT ]0. The idea behind GMM is to choose � so as

to make the sample momemnt g(�; YT ) as close as possible to the population moment of

0. The GMM estimator �̂T is the value of � that minimizes the scalar

Q(�; YT ) = [g(�; YT )]
0S�1[g(�; YT )] (54)

where S = limT!1 TE[g(�0; YT )g(�0; YT )]
0. Hansen (1982) shows that this choice of

weighting matrix in the optimization problem minimizes the variance of the GMM es-

timator. He also shows, that the GMM estimator is normally distributed and that

J = TQ(�̂; YT )! �(r � a). This is the so called Hasen J test of overidentifying restric-

tions.

Hansen and Singleton (1982) apply the GMMmethodology to test restrictions implied

by the Lucas (1978) Consumption based Capital Asset Pricing Model (CCAPM) with the

power utility function characterizing consumer preferences. The model implied residuals

come from the �rst order conditions of the optimization problem, i.e.

h(�; wt) =

�
f1� �(1 + re;t+1)(ct+1=ct)

�gx1t
f1� �(1 + rf;t+1)(ct+1=ct)

�gx2t

�
: (55)

The vector of parameters � = [�; ] where � is the discount factor and  is the coe¢ cient

of relative risk aversion. re is the equity rate of return and rf is the risk-free rate

of return, respectively. c is the per-capita consumption of non-durables and services.

xit; i = 1; 2 are a 5 � 1 vectors of instruments [1; ct=ct�1; ct�1=ct�2; ret; re;t�1]0 for the
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�rst equation and [1; ct=ct�1; ct�1=ct�2; rft; rf;t�1]0 for the second equation, respectively.

wt � [re;t+1; rf;t+1; ct+1=ct; x0t]].

To test restrictions (55), I use monthly US data from March 1967 to September 2008.

For consumption, the data is taken from the St. Louis FED web page and for returns

from the European Central Bank. The weighting matrix estimate S is robust to het-

eroskedasticty (White correction) and autocorrelation (Barlett kernel). The parameter

estimates are as follows:

Parameter Estimate Error t-statistic P-value

� .87 .262E-02 331.30 [.00]
 -1.38 1.65 -.83 [.40]

We can see that the risk aversion is negative though theory suggests it is positive.

The sign is not a problem however since it is insigni�cant. This seems to suggest that

a highly signi�cant risk aversion coe¢ cient is not needed anymore to match the data,

especially after a big drop in stock prices in October 2008. On the other hand, the Hansen

J statistic is 153.82.It has a chi-square distribution with 10-2=8 degrees of freedom. The

corresponding p-value for the test of over-identifying restrictions is then 0, which means

that the model is still rejected. Therefore the equity premium puzzle is weaker than

before but it has not quite yet disappeared.

We have seen the impact of the current global �nancial crisis on the empirical validity

of the equity premium puzzle. We can only speculate if there will be changes in the

behavior of asset prices characterized in the present study. Reversion to the mean is likely

to be strengthened for stocks, bonds, and real estate returns, with a probable downward

shift of the mean in all cases. The relationship among all three asset classes has proved

to be stronger then expected. In other words, the mutual correlations are much higher

than previously thought. There are limits to diversi�cation since the systemic risk is

a big component of the asset prices. Theoretically, there is going to be a bigger focus
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on macroeconomic factors and on joint modelling of stocks, bonds, and housing returns,

which are discussed in detail in the next subsection.

33.2 Housing in asset pricing models

Modelling housing is not trivial due to the two-sided character of housing. First, housing

is a durable consumption good. Second, housing is an asset where households can invest

their wealth. In addition, there are large transaction costs related to the changing of

amount of housing consumption. Modelling becomes even more complex if we analyze

renting vs. owning and take into account the presence of credit constraints. A complex

life-cycle model, which addresses all the above mentioned issues is o¤ered in Li and Yao

(2004). This model is designed to study the impact of changes in housing prices on

consumption and welfare of households and is ideally suited to analyze the impact of

bursting real estate prices. However, such models are very complex and to some extent

become black boxes. Alternatives are concentration of particular features of housing

and usage of reduced form econometric models. Flavin and Nakagawa (2004) focus

on the implications of a particular joint process driving asset prices including housing

returns in combination with habit persistence. Piazzessi, Schneider, and Tuzel (2007)

use the CCAPM to study implications of �uctuations of the relative share of housing

in a household�s composition of its consumption basket (i.e. composition risk) for stock

prices.

The closest to the present work is Flavin and Nakagawa (2004). It also considers

time non-separable preferences, similarly to Chapters IV and V. In addition, it discusses

exogenous process for asset prices. The tri-variate Markov process in Chapter VI is

estimated for stock returns, property returns, and consumption. However, it can be

estimated using stock returns in excess of the risk free rate, bond excess returns, and

property excess returns. The parameters of the estimated tri-variate process can be

used to calibriate an asset pricing model similar to the model in Flavin and Nakagawa
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(2004). The asset returns would be therefore modelled more realistically and o¤-diagonal

elements of the covariance matrix of the three processes would not be zero. This is

extremely important because the rapidly declining housing prices were quickly followed

by bearish stock markets and by a credit crunch a¤ecting the bond market. An outcome

of this exercise would be a realistic model, which could be also used as a vehicle to

analyze the impact of housing returns on consumption and various other variables. The

predictions of the model could be tested using a microeconometric approach in the style

of Campbell and Cocco (2007) who use a pseudo-panel of UK households to study a

housing wealth e¤ect. The asset pricing theory is likely to develop in a direction, which

considers and/or combines both types of analysis.
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