Sizing up the errors in models of risk

Scott Gilbert ${ }^{1}$
Southern Illinois University Carbondale
and
Petr Zemčík ${ }^{2}$
CERGE-EI, Prague

July 12, 2008

Abstract

In models of risk, including the capital asset pricing model (CAPM) and the arbitrage pricing theory (APT), a key construct is investor expectation of returns on assets at a given date, given information on systematic risks at that date. The difference between actual and expected return is the model's error. In application the magnitude of such errors is important, and the present work develops statistics for sizing errors up, overall, across multiple assets and time periods. The statistics describe model performance, and like the fitted model they are sample-dependent, so we characterize their sampling distribution, which is non-standard. We apply the methods to CAPM and multi-factor models, using Fama-French stock data, and find that some previously reported differences between CAPM and multi-factor models seem exaggerated.

Key Words (+ JEL Codes): Asset Pricing (G12), Econometric/Statistical Estimation (C13), Models with Panel Data (C33)

[^0]
1 Introduction

The stock market is a chance for ordinary households to share in firms' profits. The history of the stock market suggests that profits of diverse companies are related to each other, despite differences in industry, region, etc., thereby generating a systematic risk to firm values. For households, existence of inter-firm, macroeconomic, systematic risk means that a well-diversified stock portfolio is risky, though less risky than any individual stock.

Economic models, including the capital asset pricing model (CAPM) and the arbitrage pricing theory (APT), provide an opportunity to characterize rational responses to systematic risk. Both the CAPM and APT yield risk-conditioned expectations of the return on assets, and in rational, efficient markets these expectations should be unbiased, or nearly so, for most assets. The difference between actual and expected return is the model's error, which includes bias - if any exists - plus random, idiosyncratic variation in returns. Economic research on the CAPM and APT has focused on evidence of bias, and hence deviations from rationality or efficiency, based on statistical tests such as likelihood ratio, Wald, Lagrange multiplier, GMM, and F tests. Such tests are statements about statistical significance, not necessarily practical signficance.

We focus on the typical size of model errors, over time and across assets, for models in which systematic risk is represented by returns on one or more observable funds. We estimate total error and also its bias and variance components. Large estimated bias often suggests the existence of extraordinary returns on some assets, and in a highly influential paper Fama and French (1993) use this principle to choose among models - discarding as incredible models with large bias. Fama and French also prefer models with smaller error variance, and overall they proceed as if they care about the magnitude of total error, including bias and variance, with preference for small error.

We estimate the size of errors in models of systematic risk. In addition to point point estimates, we obtain closed-form expressions and computational formulas for distribution moments, under the assumption of normally distributed asset returns. By comparison, Geweke and Zhou (1996) compute numerically Bayesian posterior distributions for bias in an APT model with unobserved factors. We check the performance of our moment estimators via bootstrap simulation based on real stock return data, and find they work well despite apparent non-normality in the data.

The remainder of this work is organized as follows. Section 2 provides an economic context for the proposed methods, Section 3 proposes some statistics, Section 4 provides distributional theory for the new statistics, and Section 5 applies the methods to the stock market.

2 Economic Theory

Many economic models imply formulas for the expectations held by economic agents, and for each such expectation their is an associated error, equal to the difference betweeen realized value and predicted value. We want to examine, via econometrics, the size of such errors, in the case where investors hold expectations about the returns on capital assets. Even in this special setting there are numerous economics models, with acronyms like CAPM, APT, ICAPM, and CCAPM. Among these, the capital asset pricing model (CAPM) and the arbitrage pricing theory (APT) are static (one-period) models in which systematic risk plays a natural role. We will focus on errors in this sort of model, with portfolio choice among assets during a single period, and random asset returns which have a normal probability distribution.

Let R_{1}, \ldots, R_{n} be the returns on n risky assets, with a probability distribution which is jointly normal $N(\mu, \Omega)$, with mean vector μ having typical element μ_{i} given by $E\left[R_{i}\right]$, and variance-covariance matrix Ω with typical element $\Omega_{i j}$ given by $\operatorname{cov}\left(R_{i}, R_{j}\right)$. There is a riskless asset with interest rate R_{0}. Each investor has some endowment of assets, and chooses portfolio weights $\pi_{0}, \pi_{1}, \ldots, \pi_{n}$, which together sum to 1 , earning a return on investment R_{π} equal to $\pi_{0} R_{0}+\pi_{1} R_{1}+\cdots+\pi_{n} R_{n}$. Investor's preferences among portfolios are represented by some function U of the portfolio return's mean μ_{π} and variance σ_{π}^{2}, and is not otherwise affected by the comovement of R_{π} with other factors, such as labor income. This setting is consistent with the CAPM model of Sharpe (1964) and Lintnter (1965), and the APT model of Ross (1976), but is inconsistent with the intertemporal CAPM (ICAPM) models of Merton (1973), Breeden (1979) and Campbell (1993).

Suppose that some investors' endowments yield them less utility than is possible via trade in financial markets. Let F be any commonly traded fund, composed of risky assets, purchased or sold by some investors to raise the utility of their portfolios. For example, F could be a market basket of stocks purchased by an investor with no endowment of stock, or it could be a basket of stocks for those firms having small market capitalization ("small cap"), etc. We treat information on such funds F as sufficient to represent systematic risk, and do not explicitly consider other risks such as fluctuation in economic growth, or inflation.

A fund F provides a return on investment, call it R_{F}. Let \mathcal{F} be the collection of assets which are included in the fund. The return R_{i} on any asset i in \mathcal{F} is linked to the fund return R_{F}, because the asset is included in the fund. To further describe the link between systematic risk F and underlying asset return R_{i}, consider the expectation $E\left[R_{i} \mid R_{F}\right]$ of R_{i} conditional on an observed value for fund return R_{F}, or a collection of such fund returns. If the fund achieves, via diversification across \mathcal{F}, near elimination of all risk, then R_{F} may be nearly constant, in which case the conditional expecation $E\left[R_{i} \mid R_{F}\right]$ may be close to the unconditional expectation $E\left[R_{i}\right]$. If so, the link between systematic risk and asset returns is weak. On the other hand, if R_{F} contains substantial risk, not diversified via \mathcal{F}, then $E\left[R_{i} \mid R_{F}\right]$ may frequently be far from $E\left[R_{i}\right]$, supporting a strong link between systematic risk and the underlying assets.

Conditional expected returns $E\left[R_{i} \mid R_{F}\right]$ are predictions of returns R_{i}, given fund perfor-
mance R_{F}, and as such incur errors, equal to the difference $R_{i}-E\left[R_{i} \mid R_{F}\right]$. It is helpful to distinguish between ordinary mathematical expectations E and what we will call model predictions, denoted E^{*}, which incorporate some restrictions on (μ, Ω) implied by economic theory. For the latter, we will suppose that investor actions either lead to a fully optimal, utility-maximizing, socially efficient market outcome, or at least guarantee an outcome which is deemed satisfactory or sufficient. In the CAPM theory, investor actions are fully optimal, while in the APT theory, they need only preclude arbitrage - a sufficient outcome. For expectations E^{*}, obtained from some economic model, errors δ_{i} are as follows:

$$
\begin{equation*}
\delta_{i}=R_{i}-E^{*}\left[R_{i} \mid R_{F}\right] \tag{1}
\end{equation*}
$$

for each i in \mathcal{F}. The quantity δ_{i} is a random variable having some mean value α_{i}. If model predictions are unbiased then $\alpha_{i}=0$ for each i in \mathcal{F}, otherwise some expections are biased. Without loss of generality, model errors take the form:

$$
\begin{equation*}
\delta_{i}=\alpha_{i}+\varepsilon_{i} \tag{2}
\end{equation*}
$$

for $i=1,2, \ldots, n$, where ε_{i} is a random error for which $E\left[\varepsilon_{i} \mid R_{F}\right]=0$.
The present work is devoted to estimating the magnitude of model errors, empirically, for given funds F, with focus on aggregate, or overall, error magnitude observed across all the assets in the relevant set \mathcal{F}. We are interested both in bias α and the random error ε, that together generate model errors via equation (2).

We next illustrate the above-described framework of model errors, in the CAPM and APT models. To summarize, in the CAPM and APT both the bias and random error components of δ_{i} are of economic interest: large biases suggest instances of extraordinary asset performance, and small random errors suggest importance of systematic risk.

2.1 CAPM

In the CAPM model, as presented in Sharpe (1964) and Lintner (1965), all investors have the same beliefs regarding the distribution of asset returns, a distribution which is assumed multivariate normal with mean vector μ and covariance matrix Ω. Asset markets are in competitive equilibrium, and each investor maximizes utility by forming an optimal portfolio of risky and riskless assets. In equilibrium, investors each hold the market portfolio of risky assets, and to achieve this outcome they buy and sell assets, if needed. For investors with no endowment of stocks, the market portfolio represents a fund F that is purchased to maximize utility. The fund F represents the whole market, so the collection \mathcal{F} of assets included in F is the entirety of all traded assets. The fund's return R_{F} is the market return, denoted here as R_{m}, and for each asset i the CAPM expected return, conditional on R_{m}, is:

$$
\begin{equation*}
E^{*}\left[R_{i} \mid R_{m}\right]=R_{0}+\beta\left(R_{m}-R_{0}\right) \tag{3}
\end{equation*}
$$

with 'beta' value $\beta=\operatorname{cov}\left(R_{i}, R_{m}\right) / V\left(R_{m}\right)$. In the CAPM, actual returns R_{i} will almost surely differ from the expectation shown in equation (3): this difference is represented by
the quantity δ_{i} in equations (1) and (2), with the latter equation decomposing δ_{i} into bias α_{i} and random error ε_{i}. If the CAPM model is correct, bias α_{i} is zero; if not then model prediction can differ from the more generally valid expectation formula which, under the asssumed normality of returns and the non-stochastic nature of R_{0}, can be expressed as follows: ${ }^{3}$

$$
\begin{equation*}
E\left[R_{i} \mid R_{m}\right]=\alpha_{i}+R_{0}+\beta_{i}\left(R_{m}-R_{0}\right) \tag{4}
\end{equation*}
$$

In equation (4), also called the market model, the 'alpha' value α_{i} takes on an additional meaning, connoting 'extraordinary' returns. To make this clearer we can compare equations (3) and (4), and observe that α_{i} equals the difference between generally-vaid expectation E and CAPM model prediction E^{*} :

$$
\alpha_{i}=E\left[R_{i} \mid R_{m}\right]-E^{*}\left[R_{i} \mid R_{m}\right]
$$

Hence α_{i} represents a surprise to investors, associated with revising expectation away from that formed in CAPM equilbrium, for the i-th asset. If such surprises are rare then α_{i} may represent an extraordinary return. Estimates of alpha, for the market model, are widely reported and of general interest to financial economists. In the present work we seek to estimate the typical magnitude of bias α_{i} across all relevant assets i.

The market portfolio's random return represents a risk, in the CAPM, for those who share in the purchase of the market fund, and more generally for all investors since each ends up holding some combination of the riskless asset and the market portfolio of risky assets. How important is this risk? The CAPM theory itself has no answer to this question: systematic risk can be trivial and unimportant if all returns R_{i} are mutually independent. In particular, if risky returns are IID normal then the market portfolio is an equal-weighted average \bar{R} of all these returns, and for large n the correlation between any asset return and \bar{R} converges to zero. On the other hand, systematic risk can be important if important if returns exhibit unequal variance or strong correlation among each other.

To further discuss risk in the CAPM, we use equations (2) and (3) to relate returns R_{i} to market return R_{m} and random error ε_{i}, yielding the standard CAPM equation:

$$
\begin{equation*}
R_{i}=R_{0}+\beta_{i}\left(R_{m}-R_{0}\right)+\varepsilon_{i} \tag{5}
\end{equation*}
$$

for $i=1,2, \ldots, n$. If asset returns are IID normal then $R_{m}=\bar{R}, \beta_{i}=1$ for each i, and $V\left[\varepsilon_{i}\right]=V\left[R_{i}\right]\left(1-\frac{1}{n}\right)$. If, further, n gets large then risk has vanishing importance and:

$$
\begin{equation*}
\frac{1}{n} \sum_{i=1}^{n} V\left[R_{i}\right] \approx \frac{1}{n} \sum_{i=1}^{n} V\left[\varepsilon_{i}\right] \tag{6}
\end{equation*}
$$

That is, if risk is totally idiosyncratic, diversifiable, and unimportant then the errors in the CAPM equation (5) should have the same variability as the asset returns themselves. The

[^1]approximation (6) remains valid if we allow returns to have unequal mean values or unequal variances, so long as such between-asset differences remain bounded as $n \rightarrow \infty$.

If some risk is systematic and hence important then equation (6) must not hold, a situation implied by the following condition:

$$
\begin{equation*}
\frac{1}{n} \sum_{i=1}^{n} V\left[\varepsilon_{i}\right] \ll \frac{1}{n} \sum_{i=1}^{n} V\left[R_{i}\right] \tag{7}
\end{equation*}
$$

That is, if the bound (7) holds then systematic risk is important in the CAPM, as can be further demonstrated by decomposing return variance $V\left[R_{i}\right]$ into systematic and idiosyncratic components:

$$
\begin{equation*}
V\left[R_{i}\right]=\beta_{i}^{2} V\left[R_{m}\right]+V\left[\varepsilon_{i}\right] \tag{8}
\end{equation*}
$$

for each asset i. For a given value of return variance $V\left[R_{i}\right]$, if idiosyncratic variance component $V\left[\varepsilon_{i}\right]$ is relatively small then systematic variance component $\beta_{i}^{2} V\left[R_{m}\right]$ must be relatively large.

2.2 APT

In the Ross (1976) APT, returns on assets conform to a strict factor model:

$$
\begin{equation*}
R_{i}=\mu_{i}+\gamma_{i} z+\varepsilon_{i} \tag{9}
\end{equation*}
$$

where $\mu_{i}=E\left[R_{i}\right]$ as earlier, z is a $K \times 1$ vector z of unobserved random factors, for some $K \geq 0, \gamma_{i}$ is a $1 \times K$ vector of constants - 'factor loadings', and ε_{i} is a random error. ${ }^{4}$ The factors z_{1}, \ldots, z_{K} each have zero mean, and they have a variance/covariance matrix, say Ω_{z}, which, without loss of generality, equals the $K \times K$ identity matrix I_{K}. Each error ε_{i} has zero mean, positive variance, and zero covariance with z. Distinct errors ε_{i} and ε_{j} are uncorrelated, and since we assume asset returns are distributed jointly normal, without loss of generality we suppose that z is a standard normal vector, and that $\varepsilon_{1}, \varepsilon_{2}, \ldots$ are mutually independent normal variables, all independent of z.

The factor model, as specified by equation (9), does not explicitly link asset returns R_{i} to risk represented by the return R_{F} on a commonly traded fund(s) F. Instead it links returns R_{i} to a vector z of unobserved factors. To incorporate F, a possibility is to suppose that z is linearly related to a vector R_{F} of fund returns, with each fund composed of all assets, via:

$$
\begin{equation*}
z=\nu+\Phi R_{F} \tag{10}
\end{equation*}
$$

for some K-vector ν and some $K \times K$ invertible matrix Φ. Equation (10) is not generally consistent with the factor model (9). This is easy to confirm in the case $n=2$ and $K=1$, with ε_{1} and ε_{2} standard normal variables, and $\mu_{1}=\mu_{2}=\gamma_{1}=\gamma_{2}=1, R_{F}=\pi_{1} R_{1}+\pi_{2} R_{2}$,

[^2]since here the covariance of R_{1} and R_{F} must be equal the covariance of R_{2} and R_{F} : $\Phi\left(2 \pi_{1}+\right.$ $\left.\pi_{2}\right)=\Phi\left(\pi_{1}+2 \pi_{2}\right)$, implying that $\pi_{1}=\pi_{2}$, in which case errors ε in equation (10) are the same as those in regression of returns on their average $\bar{R}=\left(R_{1}+R_{2}\right) / 2$, yielding $R_{i}=\bar{R}+\varepsilon_{i}$, for $i=1,2$, in which case errors ε_{1} and ε_{2} have negative covariance: $-\frac{1}{2}$, a contradiction. However, if we have instead $n=3$ then this error covariance becomes $-\frac{1}{3}$, closer to zero, and it approaches 0 as $n \rightarrow \infty$, so violations of (10) are not necessarily important in large samples.

The APT theory is itself a large-sample theory, with the celebrated implication: ${ }^{5}$

$$
\begin{equation*}
E\left[R_{i}\right]=\alpha_{i}+R_{0}+\beta_{i} \tau \tag{11}
\end{equation*}
$$

for a $K \times 1$ vector τ and some scalars $\alpha_{1}, \ldots, \alpha_{m}$ for which: ${ }^{6}$

$$
\begin{equation*}
\frac{1}{n} \sum_{i=1}^{n} \alpha_{i}^{2} \rightarrow 0 \text { as } n \rightarrow \infty \tag{12}
\end{equation*}
$$

Applying equations (9), (10) and (11), we find that the vector τ in equation (11) has typical element $\tau_{k}=E\left[R_{F k}\right]-R_{0},{ }^{7}$ in which case:

$$
\begin{equation*}
R_{i}=\alpha_{i}+R_{0}+\sum_{k=1}^{K} \beta_{i k}\left(R_{F k}-R_{0}\right)+\varepsilon_{i} \tag{13}
\end{equation*}
$$

Under the APT restriction (12), the typical magnitude of α_{i} should be small when n is large, in which case we can interpret the large- n prediction $E^{*}\left[R_{i} \mid R_{F}\right]$ to be:

$$
\begin{equation*}
E^{*}\left[R_{i} \mid R_{F}\right]=R_{0}+\sum_{k=1}^{K} \beta_{i k}\left(R_{F k}-R_{0}\right) \tag{14}
\end{equation*}
$$

By comparison, a generally valid expectation formula, under assumed normality of asset returns, is:

$$
\begin{equation*}
E\left[R_{i} \mid R_{F}\right]=\alpha_{i}+R_{0}+\sum_{k=1}^{K} \beta_{i k}\left(R_{F k}-R_{0}\right) \tag{15}
\end{equation*}
$$

In the framework specified by equations (13)-(15), we can now endow the symbols α_{i} and ε_{i} with the meaning given earlier in equation (2), where α_{i} is the bias component of the model error $\delta_{i}=R_{i}-E^{*}\left[R_{i} \mid F\right]$, and ε_{i} is the random component. As in the CAPM, bias α_{i} in the APT can be interpreted as an extraordinary return.

The importance of risk, in the APT, is unclear a proiri. Consider, as in the CAPM discussion earlier, the large- n no-risk case where asset returns are IID normal. From the APT regression (13), the covariance between asset returns is:

[^3]\[

$$
\begin{equation*}
\operatorname{COV}\left[R_{i}, R_{j}\right]=\beta_{i}^{\prime} \Omega_{R_{F}} \beta_{j} \tag{16}
\end{equation*}
$$

\]

for each i and j, where β_{i} is the K-vector of factor loadings for asset i, and $\Omega_{R_{F}}$ is the variance-covariance matrix for R_{F}. With $\Omega_{R_{F}}$ a positive definite matrix, there can be at most K assets for which β_{i} has non-zero elements and such that, whenever paired, the i, j covariance in equation (16) equals zero. Hence, for large n, if returns are IID normal then β_{i} equals the $K \times 1$ zero vector 0_{K} for almost all n, and in the APT regression (13) the typical variance of returns R_{i} is about the same as the typical variance of errors ε_{i}. That is, equation (6) holds, just as in the CAPM, in the absence of systematic risk. As earlier, (6) holds even if we allow non-constant mean and variance values for returns R_{i}, provided that such between-asset differences remain bounded as n gets large.

If some risk is systematic in the APT then equation (6) must fail, just as in the CAPM, and if this risk is large then the bound (7) should hold. As earlier, we can usefully decompose return variance into systematic and idiosyncratic components:

$$
\begin{equation*}
V\left[R_{i}\right]=\beta_{i}^{\prime} \Omega_{R_{F}} \beta_{i}+V\left[\varepsilon_{i}\right] \tag{17}
\end{equation*}
$$

for each asset i, in which case smaller idiosyncratic risk $V\left[\varepsilon_{i}\right]$ implies a larger systematic risk $\beta_{i}^{\prime} \Omega_{R_{F}} \beta_{i}$, for each given value of return variance $V\left[R_{i}\right]$.

3 Statistics

3.1 Measures of error magnitude

We want to size up the errors δ_{i} in models of systematic risk. In the aggregate, across assets $i=1,2, \ldots, n$, a simple measure of the magnitude of model error is the expected mean square error, or equivalently the root mean squared error (RMSE), which we denote as ϕ :

$$
\begin{equation*}
\phi=\sqrt{\frac{1}{n} E\left[\sum_{i=1}^{n} \delta_{i}^{2}\right]} \tag{18}
\end{equation*}
$$

For the economist that wants an economic model to have small error, a small value of ϕ may be desired. However, the typical investor may hold a different view about ϕ : to see why, first decompose each error δ_{i} as in equation (2), and express the i-th expected square error $E\left[\left(\delta_{i}\right)^{2}\right]$ as:

$$
E\left[\delta_{i}^{2}\right]=\alpha_{i}^{2}+\sigma_{i}^{2}
$$

with squared bias term α_{i}^{2} and variance term where $\sigma_{i}^{2}=V\left[\varepsilon_{i}\right]$. We can then write RMSE as the contribution of two components:

$$
\begin{equation*}
\phi=\sqrt{\frac{1}{n} \sum_{i=1}^{n} \alpha_{i}^{2}+\frac{1}{n} \sum_{i=1}^{n} \sigma_{i}^{2}} \tag{19}
\end{equation*}
$$

We can further define constants χ_{1} and χ_{2} :

$$
\chi_{1}=\sqrt{\frac{1}{n} \sum_{i=1}^{n} \alpha_{i}^{2}}, \quad \chi_{2}=\sqrt{\frac{1}{n} \sum_{i=1}^{n} \sigma_{i}^{2}}
$$

in which case $\phi=\sqrt{\chi_{1}^{2}+\chi_{2}^{2}}$. The constant χ_{1} is the root mean square of biases, and hence represents the model's non-stochastic error magnitude, whereas χ_{2} is the root mean square of standard deviations, and is therefore the stochastic error magnitude.

If the typical investor views the existence of shared, or systematic, risk as bad, they may prefer, for given values of asset return variances $V\left[R_{i}\right], i=1,2, \ldots, n$, that the stochastic error magnitude ψ_{2} be relatively large, since this suggests a relatively small contribution of systematic risk to $V\left[R_{i}\right]$ (for relevant discussion see the previous section on the CAPM). But if so then the investor may prefer to see a larger RMSE value ϕ, for the economic model, under some conditions. At the least, it seems reasonable to seek information about RMSE components χ_{1} and χ_{2}, when one is investigating RMSE itself.

Concerning model bias (α), if bias is bad then presumably a smaller value of root-meansquare bias $\left(\chi_{1}\right)$ is preferred. But since bias is evaluated across n separate investments, the individual biases $\alpha_{1}, \ldots, \alpha_{n}$ may or may not be large on average. ${ }^{8}$ To address this possibility we can define two more constants ψ_{1} and ψ_{2} :

$$
\psi_{1}=|\bar{\alpha}|, \quad \psi_{2}=\sqrt{\frac{1}{n} \sum_{i=1}^{n}\left(\alpha_{i}-\bar{\alpha}\right)^{2}}
$$

where $\bar{\alpha}$ is the average bias: $\frac{1}{n} \sum_{i=1}^{n} \alpha_{i}$, in which case $\chi_{1}=\sqrt{\psi_{1}^{2}+\psi_{2}^{2}}$. The constant ψ_{1} is the unsigned pooled bias, while ψ_{2} is the bias heterogeneity across assets. So, for a given magnitude of bias - measured by χ_{1} - the relative contributions of ψ_{1} and ψ_{2} may be of some interest.

Heterogeneity of bias, ψ_{2}, can be viewed as ex ante source of heterogeneity in model errors, while stochastic error magnitude χ_{2} can can be viewed as ex post heterogeneity. We can then define total heterogeneity component ω, of model errors as:

$$
\omega=\sqrt{\psi_{2}^{2}+\chi_{2}^{2}}
$$

By construction, RMSE can be expressed as $\phi=\sqrt{\psi_{1}^{2}+\omega^{2}},{ }^{9}$ in which case the model's overall error magnitude, measured by RMSE, can be attributed to common $\left(\psi_{1}\right)$ and heterogeneous $\left(\omega_{2}\right)$ components.

To further interpret the RMSE (ϕ) and its various components χ, ψ, ω, note that all of these constants are non-negative. It then follows that ϕ is greater than or equal to each

[^4]component value (χ, ψ, ω). Similarly, non-stochastic error magnitude χ_{1} is no less than its component values ψ_{1} and ψ_{2}. Each of these error measures is computable in terms of bias α and error variance σ, as shown in Table 1 .

[INSERT Table 1 about here]

3.2 Estimation

To apply the RMSE value ϕ, and its components, note that all of these constants can be computed if bias α_{i} and error variance σ_{i}^{2} is known for each asset i, as implied by Table 1 . It then suffices to have good estimators $\hat{\alpha}$ of α and $\hat{\sigma}$ of σ. We can write α_{i} as:

$$
\begin{equation*}
\alpha_{i}=E\left[E\left[R_{i} \mid R_{F}\right]-E^{*}\left[R_{i} \mid R_{F}\right]\right] \tag{20}
\end{equation*}
$$

where as earlier R_{i} is the return on an asset, R_{F} is the return on a commonly traded fund(s), E represents mathematical expectation, and E^{*} is prediction from the economic model. To obtain equation (20) apply (1) and (2) and note that, by the law of iterated expectations, $E\left[E\left[R_{i} \mid R_{F}\right]\right]=E\left[R_{i}\right]$. Earlier we assumed joint normality of asset returns, in which case mathematical expectation can be written:

$$
\begin{equation*}
E\left[R_{i} \mid R_{F}\right]=\beta_{i 0}+R_{0}+\sum_{j=1}^{K} \beta_{i j}\left(R_{F j}-R_{0}\right) \tag{21}
\end{equation*}
$$

with, as earlier, R_{0} the risk-free rate of return, for some intercept values $\beta_{i 0}$ and slopes $\beta_{i j}$, $i=1,2, \ldots, n, j=1,2, \ldots, K$, with K the number of funds. model prediction E^{*} imposes on E some economic restrictions which, from equation (21), is some restriction(s) on β. In the CAPM and APT economic models, which we earlier interpreted as models of systematic risk - the general class of models we are interested in, the economic restriction on β is that the intercepts $\beta_{i 0}$ each equal 0 , and with this approach we have:

$$
\begin{equation*}
E^{*}\left[R_{i} \mid R_{F}\right]=R_{0}+\sum_{j=1}^{K} \beta_{i j}\left(R_{F j}-R_{0}\right) \tag{22}
\end{equation*}
$$

Model bias α_{i}, for asset i, then coincides with the intercept $\beta_{i 0}$ in equation (21), and we can re-state (21) as a set of regression equations:

$$
\begin{equation*}
R_{i}=\alpha_{i}+R_{0}+\sum_{j=1}^{K} \beta_{i j}\left(R_{F j}-R_{0}\right)+\varepsilon_{i} \tag{23}
\end{equation*}
$$

with regression errors ε_{i} which are normal, with mean 0 and variance $\sigma_{i}^{2} .{ }^{10}$

[^5]To estimate the regression system (21), we suppose that for all asset and fund returns there are observations at successive times, denoted $t=1,2, \ldots, T$, such that the return probability distribution exhibits independence over time. With assumed normality, the maximum likelihood estimator (MLE) of (α, β) is the same as the ordinary least squares (OLS) estimator applied to each separate instance $i=1,2, \ldots, n$ of (21). Denoting thess MLEs by $\hat{\alpha}, \hat{\beta}$, which are unbiased estimators, let $\hat{\sigma}_{i}^{2}$ be the OLS regression standard error (of the estimate), which is a bias-corrected version of the MLE for σ^{2}.

Plugging in $\hat{\alpha}$ and $\hat{\sigma}$ into the above formulas for the economic model's magnitude of error, we obtain consistent estimates $\hat{\phi}, \hat{\chi}, \hat{\psi}, \hat{\omega}$ of RMSE ϕ and its components $\chi, \psi, \omega .^{11}$

4 Econometric Theory

The proposed RMSE statistics have sampling distributions which are unknown. These distributions can be useful, and we therefore derive features of them.

4.1 Quadratic Forms

Nominally, the proposed statistics are measures of goodness-of-fit. Standard measures of goodness-of-fit are based on sums of squares, or more generally quadratic forms, and suitable transformations thereof. The proposed statistics fit in this category, also.

To proceed, in terms of notation let x be the $T \times K$ matrix of data on the excess returns of funds F, and let y be the $T \times n$ matrix of data on the excess returns on assets. Given y, let vector \mathbf{y} be the "vec" version of y, this being the $n T \times 1$ column vector consisting of the columns of y stacked on top of each other, starting at the left of y. We introduce a semi-norm:

$$
\begin{equation*}
\|y\|_{S}=\sqrt{\mathbf{y}^{\prime} S \mathbf{y}} \tag{24}
\end{equation*}
$$

for some square $n T \times n T$ symmetric positive semi-definite matrix S, with rank r which is user-specified, and which we will call the kernel. We restrict attention to the situation where S is a known function of x.

Semi-norm $\|y\|_{S}$ represents the magnitude, or size, of some r-dimensional feature of the $n T \times 1$ vector y. A semi-norm is a generalization of the concept norm, such that $\|z\|=0$ is possible for $z \neq 0$ when $\|\cdot\|$ is a semi-norm, but not a norm - see for example Horn and Johnson (1999, p. 259). Matrices of type S can always be factored $S=A^{\prime} A$, for some $r \times n T$ matrix A, so we can view $\|y\|_{S}$ as the (Euclidean) length of the $r \times 1$ vector $z=A \mathbf{y}$, and intepret z as the feature measured by $\|y\|_{S}$. For example, let $A=C^{\prime}$, with C the Cholesky root of S. There is more than one such factorization, as $S=A^{\prime} B^{\prime} B A$ for any $r \times r$ matrix B for which $B^{\prime} \times B=I_{r}$, where I_{r} is the $r \times r$ identity matrix.

[^6]For any two features z_{1} and z_{2}, if $A_{1} A_{2}^{\prime}=0_{r_{1}, r_{2}}$, with $0_{r_{1}, r_{2}}$ the $r_{1} \times r_{2}$ matrix consisting of 0 s , then the features are orthogonal in the sense that the mappings $\mathbf{y} \rightarrow A_{1} \mathbf{y}$ and $\mathbf{y} \rightarrow$ $A_{2} \mathbf{y}$ have derivatives $\frac{d}{d \mathbf{y}} A_{1} \mathbf{y}=A_{1}$ and $\frac{d}{d \mathbf{y}} A_{2} \mathbf{y}=A_{2}$, such that the rows of A_{1} are vectors orthogonal to those of A_{2}. We call quadratic forms $Q_{1}=\mathbf{y} S_{1} \mathbf{y}$ and $Q_{2}=\mathbf{y} S_{2} \mathbf{y}$ orthogonal if $S_{1} S_{2}=0_{n T, n T}$. It follows that if z_{1} and z_{2} are orthogonal then so are Q_{1} and Q_{2}. Conversely, if Q_{1} and Q_{2} are orthogonal then z_{1} and z_{2} are orthogonal. To see this note that if $S_{1} S_{2}=$ $0_{n, n}=A_{1}^{\prime} A_{1} A_{2}^{\prime} A_{2}$ then the rank of $S_{1} S_{2}$ equals 0 , and this is no more than the maximum of the ranks of matrices: $A_{1}^{\prime}, A_{1} A_{2}^{\prime}$, and A_{2} which, when multiplied, yield $S_{1} S_{2}$, with A_{1}^{\prime} and A_{2} having ranks r_{1} and r_{2}, respectively, implying that $A_{1} A_{2}^{\prime}$ has rank 0 and hence equals $0_{r_{1}, r_{2}}$. If the elements of y are independent and identically distributed (IID) normal then features are orthogonal if and only if they are stochastically independent. To see this note that

$$
\operatorname{cov}\left(z_{1}, z_{2}\right)=E\left[\left(z_{1}-E z_{1}\right)\left(z_{2}-E z_{2}\right)^{\prime}\right]=E\left[A_{1}(\mathbf{y}-E \mathbf{y})(\mathbf{y}-E \mathbf{y})^{\prime} A_{2}^{\prime}\right]
$$

Hence $\operatorname{cov}\left(z_{1}, z_{2}\right)=A_{1} V_{\mathbf{y}} A_{2}^{\prime}$, with $V_{\mathbf{y}}$ the variance-covariance matrix of \mathbf{y}. If \mathbf{y} is IID then $V_{\mathbf{y}}$ is a multiple of the identity matrix, and so $\operatorname{cov}\left(z_{1}, z_{2}\right)=0$ if and only if $A_{1} A_{2}^{\prime}=0_{r_{1}, r_{2}}$. In the CAPM and APT models discussed earlier, the IID assumption can fail if, for example, different assets i have different error variances $V\left[\varepsilon_{i}\right]$, in which case orthogonal features z_{1} and z_{2} may be stochastically dependent.

Table 2 presents various statistics expressible as quadratic forms $\|y\|_{S}^{2}=\mathbf{y}^{\prime} S \mathbf{y} .{ }^{12}$ This table present some formulas that involve matrix producs, and inverses, and direct products - also called Kronecker products. ${ }^{13}$. Included are three univariate statistics: the average squared value: $T^{-1} y^{\prime} y$, the squared average: $T^{-1} \hat{y}^{\prime} \hat{y}$, and the average squared deviation: $T^{-1}(y-\hat{y})^{\prime}(y-\hat{y})$. The rank r of the corresponding S matrices is $T, 1$, and $T-1$, respectively. In the case of squared average, the semi-norm $\|y\|_{S}=|\bar{y}|$ represents the magnitude of a 1dimensional feature of the data, represented by the average \bar{y} which we can write as $z_{1}=A_{1} y$ with $A_{1}=n^{-1} 1_{n}$. For the average squared deviation, the feature of interest has dimension $T-1$, and can be represented via a vector of contrasts $z_{2}=A_{2} y$, where, with the aid of Helmert's transformation, we can select A_{2} and z_{2} via:

$$
\begin{aligned}
& z_{21}=\frac{1}{\sqrt{2 n}}\left(y_{1}-y_{2}\right) \\
& z_{22}=\frac{1}{\sqrt{6 n}}\left(y_{1}+y_{2}-2 y_{3}\right), \ldots \\
& z_{2, n-1}=\frac{1}{\sqrt{n(n-1) n}}\left(y_{1}+y_{2}+\cdots+y_{n-1}-(n-1) y_{n}\right)
\end{aligned}
$$

Other specifications of z_{2} are possible, for example by permuting elements y_{i} of y in each of the above formulas for the elements of z_{2}. The average and the contrast vector are orthogonal features of y, a fact expressible as $S_{1} S_{2}=0$ for respective kernels S_{1} and S_{2}, which from Table 1 are $S_{1}=T^{-2} 1_{T, T}$ and $S_{2}=T^{-1}\left(I_{T}-T^{-1} 1_{T, T}\right)$. For IID normal data $y_{t}, t=1,2, \ldots, T$, this implies the well-known fact that $(\bar{y})^{2}$ is independent of the sample variance s_{y}^{2}. On the

[^7]other hand if, say, the covariance matrix V_{y} of y is of diagonal form with non-constant entries on the diagonal, then $(\bar{y})^{2}$ and s_{y}^{2} are dependent, as can be shown by computing $A_{1} V_{y} A_{2}$ and verifying that it is not equal to the zero matrix $0_{T, T}$.
[INSERT Table 2 about here]

In the context of single-equation regression models, also addressed in Table 2, the (scaled) magnitude of fitted value \hat{y} and residual $y-\hat{y}$ are orthogonal features whose magnitudes take the form $\|y\|_{S}$. In the multi-equation context (Table 2, bottom), most relevant to our study, these features are present again, though passage to multiple equations complicates matters somewhat, in terms of the S formula.

To cast $R M S E$ estimator $\hat{\phi}$ and its components $(\hat{\chi}, \hat{\psi}, \hat{\omega})$ as semi-norms of the form $\mathbf{y}^{\prime} S \mathbf{y}$, we apply the expectation model (21) to data observed at times $t=1,2, \ldots, T$, as follows:

$$
\begin{equation*}
y_{i t}=\alpha_{i}+x_{t} \beta+\varepsilon_{t i} \tag{25}
\end{equation*}
$$

where $y_{i t}=R_{t i}-R_{t 0}$ is excess return on the i-th asset at time t, x_{t} is the $1 \times K$ vector of excess returns $R_{t F k}-R_{t 0}$ for factors $k=1,2, \ldots, K$, at time t, and β is a $K \times 1$ vector of factor loadings. For OLS estimators $\left(\hat{\alpha}_{i}, \hat{\beta}_{i}\right)$ of $\left(\alpha_{i}, \beta_{i}\right)$, we have:

$$
\begin{equation*}
\hat{\alpha}_{i}=\bar{y}_{i}-\bar{x} \hat{\beta}_{i} \tag{26}
\end{equation*}
$$

with $\bar{y}_{i}=\frac{1}{T} 1_{T}^{\prime} y_{i}$, and $\hat{\beta}_{i}=\left(x^{* \prime} x^{*}\right)^{-1} x^{* \prime} y_{i}^{*}$, where y_{i} is the $T \times 1$ vector with typical element $y_{i t}, x^{*}$ and y_{i}^{*} are de-meaned (centered) versions of x and y_{i}, and 1_{T} is the T-vector with all entries equal to 1 . We can write $y_{i}^{*}=\left(I_{T}-\frac{1}{T} 1_{T, T}\right) y_{i}$, with $1_{T, T}$ the $T \times T$ matrix consisting of 1 s , in which case equation (26) yields:

$$
\hat{\alpha}_{i}=a_{x}^{\prime} y_{i}
$$

for each $i=1, \ldots, n$, with $T \times 1$ vector a_{x} as follows:

$$
a_{x}=\frac{1}{T} 1_{T}-\left(I_{T}-\frac{1}{T} 1_{T, T}\right) x^{*}\left(x^{* \prime} x^{*}\right)^{-1} \bar{x}
$$

We can then write the $n \times 1$ vector $\hat{\alpha}$ as

$$
\hat{\alpha}=\left[\begin{array}{c}
a_{x}^{\prime} y_{1} \\
\vdots \\
a_{x}^{\prime} y_{n}
\end{array}\right]
$$

In terms of the $n T \times 1$ vector \mathbf{y}, we then have:

$$
\hat{\alpha}=\left(I_{n} \otimes a_{x}^{\prime}\right) \mathbf{y}
$$

Theorem 1 The kernel matrix, S, for the quadratic forms underlying sample RMSE and its components are as shown in Table 3.
[INSERT Table 3 about here]

Corollary 1 The kernel matrices S associated with sample RMSE and its components have the following relationships:

$$
\begin{array}{lll}
\text { i. } & S_{\phi}=S_{\chi_{1}}+S_{\chi_{2}}, & S_{\chi_{1}} S_{\chi_{2}}=0 \\
\text { ii. } & S_{\phi}=S_{\psi_{1}}+S_{\omega}, & S_{\psi_{1}} S_{\omega}=0 \\
\text { iii. } & S_{\chi_{1}}=S_{\psi_{1}}+S_{\psi_{2}}, & S_{\psi_{1}} S_{\psi_{2}}=0 \\
\text { iv. } & S_{\omega}=S_{\chi_{2}}+S_{\psi_{2}}, & S_{\chi_{2}} S_{\psi_{2}}=0
\end{array}
$$

From Corollary 1, components $\hat{\chi}_{1}$ and $\hat{\chi}_{2}$ of the sample $\operatorname{RMSE}(\hat{\phi})$ are orthogonal in the sense that their associated quadratic forms are orthogonal. Likewise, $\hat{\psi}_{1}$ and $\hat{\psi}_{2}$ are orthogonal, as are $\hat{\psi}_{1}$ and $\hat{\omega}$, and $\hat{\chi}_{2}$ and $\hat{\psi}_{2}$. If, conditional on X, the joint distribution of vector \mathbf{y} is IID normal it follows that orthogonal statistics are also independent. In application to stock returns the IID assumption requires CAPM regression errors to have equal variance across all assets, for example, and this is likely unrealistic. Hence orthogonal components of RMSE may be stochastically dependent.

4.2 Moments

For point estimates of model error measures $(\phi, \chi,, \psi, \omega)$, we would like to know their probability distribution. For a quadratic form expressible as $Q=\mathbf{y}^{\prime} S \mathbf{y}$, with normally distributed random vector \mathbf{y}, the probability distribution of Q is the same as that of a weighted sum of independent chi square random variables (Imhof (1961)). This distribution depends on the associated weights, and generally can not be tabulated independently of them. For example, in our setup if $K=1$ then the squared non-stochastic error $\hat{\chi}_{1}^{2}$ is just the sum of squared sample averages $\sum_{i=1}^{n}\left(\bar{y}_{i}\right)^{2}$, and its distribution depends on means, variances, and covariances among the y variables, hence while we can view this distribution as a weighted sum of chi squares, the weights are unknown a priori. Morever, there is no tractable way to 'standardize' such statistics, via some transformation $Q \rightarrow Q^{*}$, with Q^{*} having a known distribution (standard normal, chi square, etc.), even if the moments of y are known. This remains true in large samples, despite availability of the centeral limit theorem.

With some work we can obtain moments of the distribution of model error statistics. For a quadratic form $Q=\mathbf{y}^{\prime} S \mathbf{y}$, with vector \mathbf{y} having mean vector μ and covariance matrix V, and square matrix S, the expected value μ of Q is: ${ }^{14}$

$$
\begin{equation*}
E(Q)=\operatorname{tr}[S V]+\mu^{\prime} S \mu \tag{27}
\end{equation*}
$$

with "tr" meaning the trace operator - summing a matrix's diagonal elements. The expectation E is interpreted as conditional on data x for the independent variables in the regression model. Under the additional assumption that \mathbf{y} is normally distributed, the variance of Q is: ${ }^{15}$

$$
\begin{equation*}
V(Q)=2 \operatorname{tr}[S V S V]+4 \mu^{\prime} S V S \mu \tag{28}
\end{equation*}
$$

To apply the mean formula (27) and variance formula (28) for quadratic forms in normal variables, we need the relevant mean μ and variance V values. In our application, the variable of interest is y, and we use the distribution of y conditional on x. With $y_{t i}=\alpha_{i}+\beta_{i}^{\prime} x_{t}+\varepsilon_{t i}$, introduce notation: $z_{t}=\left(1, x_{t}^{\prime}\right)^{\prime}$, and $\theta_{i}=\left(\alpha_{i}, \beta_{i}^{\prime}\right)^{\prime}, i=1, \ldots, n$, each of which is a $(K+1) \times 1$ vector. Then $y_{t i}=\theta_{i}^{\prime} z_{t}+\varepsilon_{t i}$, and the conditional mean of $y_{t i}$, given x_{t}, is $\theta_{i}^{\prime} z_{t}$. With $(K+1) \times n$ matrix θ having typical row θ_{i}, and $T \times(K+1)$ matrix z having typical column z_{t}, we then have the conditional mean $\mu_{\mathbf{y}}$ of the $n T \times 1$ vector \mathbf{y} :

$$
\mu_{y}=\operatorname{vec}(z \theta)
$$

To get the variance/covariance of y, conditional on x, using $y_{t i}=z_{t} \theta_{i}+\varepsilon_{t i}$ we observe that the conditional variance of $y_{i t}$ is the error variance $V\left(\varepsilon_{t i}\right)$. Let V_{ε} denote the variance-covariance matrix for $\left(\varepsilon_{t i}, i=1,2, \ldots, n\right)$, and any fixed $t .{ }^{16}$ When then have a formula for the variance V_{y} of vector \mathbf{y} :

$$
V_{y}=V_{\varepsilon} \otimes I_{T}
$$

A practical challenge, in applying equations 27 and 28 is that they require multiplication of huge matrices, unless n and T are small, with the number of calculations proportional to $(n T)^{2}$. Fortunately, the matrices being multiplied are 'sparse', and can be simplified, as follows.

Theorem 2 The expected value formula (27) for the RMSE statistic and its components can be expressed in a form that is computationally tractable. For this, Table 4 provides formulas for $\operatorname{tr}\left[S V_{y}\right]$, and Table 5 provides formulas for $\mu_{y}^{\prime} S \mu_{y}$.

[^8][INSERT Tables 4 and 5 about here]

Theorem 3 The variance formula (28) for the RMSE statistic and its components can be expressed in a form that is computationally tractable. For this, Table 6 provides formulas for $\operatorname{tr}\left[S V_{y} S V_{y}\right]$, and Table 7 provides formulas for $\mu_{y}^{\prime} S V_{y} S \mu_{y}$.
[INSERT Tables 6 and 7 about here]

In Theorem 2 and 3, the required number of matrix computational steps is proportional to $n+K^{2} T$, as compared to $(n T)^{2}$ needed for direct evaluation of equations 27 and $28 .{ }^{17}$

For non-normal data, with finite variance, the mean formula (27) for quadratic forms remains valid but the variance formula (28) may not. For our model error statistics $\hat{\phi}, \hat{\chi}, \hat{\psi}, \hat{\omega}$, some of the variance formulas in Tables 6 and 7 remain valid in large samples even if data are non-normal. If we assume that $\hat{\alpha}$ is asymptotically normal, then for statistics expressible as quadratic forms in $\hat{\alpha}$ the proposed variance formulas are (asymptotically) valid. From Table 1 , these 'robust' statistics are $\hat{\chi}_{1}, \hat{\psi}_{1}$, and $\hat{\psi}_{2}$. The remaining statistics: $\hat{\phi}, \hat{\chi}_{2}$, and $\hat{\omega}$ each are functions of sample (error) variances, and the (population) variance of sample variance is well-known to be sensitive to data non-normality, fat-tailed distributions, etc.

4.3 Confidence Intervals

For quadratic forms Q we calculated in Theorems 2 and 3 their mean and variance, and we can then construct intervals of the form:

$$
\begin{equation*}
(E[Q] \pm k \sqrt{V[Q]}) \tag{29}
\end{equation*}
$$

for some number $k \geq 0$. By Chebychev's inequality, this interval contains the value Q with probability:

$$
\begin{equation*}
P(|Q-\mu| \leq k \sigma) \geq 1-\frac{1}{k^{2}} \tag{30}
\end{equation*}
$$

Hence, the bound (30) renders formula (29) a conservative confidence interval for Q, with probability at least $1-1 / k^{2}$ of containing the true value. If Q is normally distributed, or nearly so, then (29) with $k=2$ will have approximately 95% probability coverage, and with

[^9]$k=3$ will have about 99% coverage. This compares to conservative coverage levels 75% for $k=2$ and 89% for $k=3$.

The RMSE statistic, and its components, is of the form \sqrt{Q}, with Q one of the quadratic forms described earlier. Each Z is non-negative, in which case the transformation $Q \rightarrow \sqrt{Q}$ is monotonic (increasing). This provides a conservative confidence interval for \sqrt{Q} also: ${ }^{18}$

$$
\begin{equation*}
(\sqrt{\mu-k \sigma}, \sqrt{\mu+k \sigma}) \tag{31}
\end{equation*}
$$

To use the formulas 29 and 31, we substitute unkowns μ and σ with plug-in values $\hat{\mu}$ and $\hat{\sigma}$. To do this we apply the formulas for μ and σ appearing in Theorems 2 and 3, and plug in OLS estimates for regression constants $\alpha, \beta, V_{\varepsilon}$. This yields approximate (conservative) confidence intervals, with probability coverage that approaches the true level in large samples due to the consistency of estimators $\hat{\mu}$ and $\hat{\sigma}$.

5 Application

5.1 Descriptives

Model error (ϕ) and its components describe on the ability of systematic-risk models to 'fit' data an asset returns. We illustrate the use of the RMSE statistics using an updated version of the dataset from Fama and French (1993). The data has been downloaded from the web site of Kenneth R. French, see Appendix B for a data description. ${ }^{19}$ The sample is extended from the original 1963:7-1991:12 to 1946:1-2007:12 to cover the post WWII period. The returns to be modelled are for the $5 \times 5=25$ Fama and French portfolios, with 5 (quintile) categories of firm 'size' - measured by market capitalization, and 5 categories of firm 'value' - measured by the ratio of book value to market value. The systematic risk factors include the market (excess) return, the Fama and French SMB (small minus big) factor - measuring difference in returns for small vs. big firms, and the HML (high minus low) factor - measuring difference in returns for high-value versus low-value firms, see Appendix D for further details.

Table 8 summarizes the historical performance of the 5×5 portfolios, in terms of monthly excess return. There are six statistics, describing aspects of portfolio performance, each labelled with a symbol ($\hat{\phi}, \hat{\chi}_{1}$, etc.) which corresponds to symbols used later to describe model performance. The typical magnitude or 'size' of excess returns is described by the normed return vector $\|y\|$, which from Table 8 equals 5.39. Of this value 5.39 , the normed mean vector $\|\bar{y}\|$ and the pooled variability $\hat{\sigma}_{y}$ can be viewed components, equal to 1.19 and 5.26 respectively, whose root mean square value equals pooled variability: $5.39=\sqrt{1.19^{2}+5.26^{2}}$. The normed mean vector $\|\bar{y}\|$ itself has components: pooled mean and mean heterogeneity, equal to 1.17 and 0.20 , whose root mean square equals 1.19 . Total heterogeneity, among returns, is composed of mean heterogeneity and pooled variability, and equals 5.26 . We can

[^10]further interpret the magnitude $\|y\|$ of excess returns in terms of pooled mean (=1.17) and total heterogeneity $(=5.26)$ components, whose root mean square equals $\|y\|$. On the whole, excess returns are rather small in mean value, relative to their variability, and there is little heterogeneity in mean value across portfolios, relative to the typical mean value.

5.2 CAPM and APT models

Table 9 reports model errors, for the CAPM model and seven APT models. For each error statistic a useful reference point is the descriptive statistic in Table 8 having the corresponding symbol (ϕ, χ_{1}, etc.). Note that each column value in Table 8 equals a row value in Table 9 , for the row that reports on the APT model with no factors: in this model systematic risk is precluded, and the APT prediction is that all assets earn the riskless return on average, over time. This model's error (RMSE), equal to 5.39 , is necessarily larger than that of the CAPM and alternative APT models. The correspondence between columns in Table 8 and the 'factorless' APT row in Table 9 motivates our use of symbols ϕ, χ, etc. in Table 8.

[INSERT Table 9 about here]

The CAPM model's RMSE error equals 2.89, mostly attributable to stochastic error $(=2.83)$ rather than non-stochastic error $(=0.58)$. The latter is attributable more to pooled bias $(=0.52)$ than to bias heterogeneity $(=0.25)$. Also, in reference to Table 8, the CAPM model's error is considerably less than the magnitude $\|y\|$ of excess returns ($=5.39$).

Based on the economic theory discussion in Section 2, if the CAPM holds then the model's true non-stochastic error (χ_{1}) should equal 0 , and the sample value $\hat{\chi}_{1}=0.58$ may or may not be viewed as 'close' to zero. Concerning risk, if risk is unimportant and returns are mutually independent with (nearly) equal variance then, from equation (6) Section 2, stochastic error $\left(\chi_{2}=2.83\right)$ should be about equal to pooled variability $(=5.26$, see Table 8$)$, but is instead more consistent with the bound (7) from Section 2, whereby stochastic error is much less than pooled variability. That is, systematic risk seems important in the CAPM.

The remaining six APT models take the form of regression models orginally reported in Fama and French (1993). ${ }^{20}$ In Table 9, these models are reported in the last six rows, with the final row ("all") including all 3 Fama-French factors - this being the well-known " 3 -factor" model of stock returns. The non-stochastic error χ_{1} is estimated at 0.38 for the 3 -factor model, compared to 0.58 for the CAPM, and consists more of pooled bias ($=0.35$) than bias heterogeneity $(=0.13)$. The estimate of stochastic error χ_{2} equals 2.83 for the CAPM, versus 1.64 for the 3 -factor model. Across the board, for each category of error (ϕ, χ, etc.), the 3 -factor model has smaller estimated error.

If the APT holds then, as discussed in Section 2, the true non-stochastic error $\left(\chi_{1}\right)$ should be equal to zero, or close to it. For the 3 -factor model, the estimate $\hat{\chi}_{1}=0.38$ may or may not be viewed as 'close' to zero: it is about two-thirds the value of the CAPM $\hat{\chi}_{1}=0.58$, so

[^11]if CAPM pricing errors were deemed far from zero - on the whole - it would be hard to say that the 3 -factor model's pricing errors were close to zero. Also, sampling variability may account for some of the difference between these $\hat{\chi}_{1}$ values, an issue we address below.

The data suggests that risk is important in the 3 -factor APT: stochastic error ($\hat{\chi}_{2}=1.64$) is small in comparison to pooled variability ($=5.26$), consistent with the bound (7) in Section 2. This compares to $\hat{\chi}_{2}=2.83$ in the CAPM.

5.3 Error Distributions

For each of the model error statistics shown in Table 9, we report in Tables 10 and 11 some distribution characteristics of the quadratic forms underlying each statistic.Shown are estimates of mean value, standard deviation, and intervals of form: mean ± 3 std. dev., using the methods spelled out in Section 4.
[INSERT Tables 10 and 11 about here]
From the tables, the effect of sampling variability on model error statistics is sometimes substantial, particularly in reference to non-stochastic error $\left(\chi_{1}\right)$ and its components ψ_{1} and ψ_{2}, where the estimated standard deviation $\sqrt{\hat{V}(Q)}$ is not negligible in comparison to the estimated mean value $\hat{E}(Q)$. Earlier we noted that the CAPM and 3 -factor Fama-French model do not differ by a great margin, in terms of non-stochastic error estimates. Table 9 further suggests that whatever difference exist may be largely attributable to sampling variability, rather than to a true difference in model performance. On the other hand, the two models seem convincingly different in terms of stochastic error $\left(\chi_{2}\right)$ and total error (ϕ).

5.4 Simulation

To check our theory-driven error distributions, we simulate error statistics via Monte Carlo. As indicated in Tables 12 and 13, simulation is consistent with theory (Tables 10 and 11) for those error statistics which involve alpha estimates only: $\hat{\chi}_{1}, \hat{\psi}_{1}, \hat{\psi}_{2}$. For the other statistics: $\hat{\phi}, \hat{\chi}_{2}, \hat{\omega}$, which involve variance estimates, simulation indicates greater variability than suggested by the theory. This contrast is consistent with data non-normality which, as mentioned in Section 4, does not have a large-sample impact on alpha-only statistics, but can impact the other statistics. ${ }^{21}$
[INSERT Tables 12 and 13 about here]
For purposes of comparing errors across models, in the case of the CAPM and 3-factor APT models the simulation results give the same impression as did the theoretical distributions reported earlier: the models differ convincingly in terms of stochastic error $\left(\chi_{2}\right)$, but not in terms of non-stochastic error $\left(\chi_{1}\right)$.

[^12]
6 Discussion

6.1 Methods

The proposed measures of model error, as presented in Table 1, are intended for models of risk, as in the CAPM and APT, with risks proxied by portfolio returns. These (population) measures, and their sample analogues, can be extended to other risk models as well, specifically the Merton (1973) intertemporal capital asset pricing model (ICAPM). For this it is necessary to allow for time-varying alphas and betas, perhaps by constructing annual alphas and betas from daily data. Also, the econometric theory in Section 4 - for the distribution of sample errors - would need to be extended to allow serial correlation in the data.

Our measures of model error are based of simple averages, across assets, of regression intercept values, or regression errors. Value-weighted averages may be an attractive alternative, and these are easy to compute so long as the relevant weights are available. The probability distribution, for the weighed averages, will generally differ from that described in Section 4, but Theorems 1, 2, and 3 can be extended to handle this case.

Our econometric theory assumes that asset returns are normally distributed. For nonnormal data we can generalize variance equation (28) and Theorem 3 in Section 4. The theory already calls for rather involved computations, and generalizing it will surely add more. Also, simulation - reported in Section 5 - suggested that non-normality may not matter much in terms of the theory's usefulness.

6.2 Application

Section 5 applied the proposed methods to return data for the Fama and French (1993) 5x5 collection of portfolios. As a 'universe' of returns, this collection is highly aggregated, a fact that may bias the application of CAPM and APT models. Specifically, in assessing the importance of risk in the stock market, aggregation across assets may smooth out idiosyncratic risk, causing estimates of stochastic error $\left(\chi_{2}\right)$ to look smaller than they would if had used a more disaggregated menu of assets. In other words, we may be understating the importance of idiosyncratic risk, and overstating the importance of systematic risk, in the stock market. As a remedy, we can disaggregate the data and again apply our methods, though some care is needed in using the econometric theory, as well-behaved estimates of the stochastic error (ε) variance/covariance matrix require that the number n of assets is reasonably small in relation to the number of time periods T. The modelling approach of Campbell, Lettau, Malkiel and Xu (2001) may be helpful here.

In applying the APT theory to Fama-French regressions, we assumed that the APT factor model in Section 2 was valid. The model assumes zero correlation among errors ε_{i} appearing in regressions for different assets i. The essential results of the APT remain valid if such correlation is mild (Chamberlain and Rothschild (1983)). Pairwise sample correlation is 0.152 , on average, for 3 -factor model residuals, not too large, and compares to 0.375 for the CAPM model.

Our sample period covers January 1947 through December 2007, for the Fama-French data set. The original data, studied by Fama and French (1993), covered July 1963 through December 1991. Our earlier remarks apply also to the original sample. ${ }^{22}$ Specifically, the following three facts are valid for both samples. First, heterogeneity in historical mean values - across the 5x5 Fama-French portfolios - is small relative to return values: on the original sample the mean heterogeneity statistic equals 0.23 , small in comparison to normed return value 5.87. Second, the CAPM and 3 -factor models are broadly comparable in terms of model bias (alpha) statistics: on the original sample non-stochastic error estimates equal to 0.80 and 0.58 , respectively, for the two models. Third, the 3 -factor model has much smaller stochastic error $(=1.45)$ than does the CAPM $(=2.68)$, as was reported earlier on the full sample.

Fama and French (1993) report that the 3-factor regression model outperforms the CAPM model on two fronts - pricing errors (α) are smaller and explanatory power is greater. In terms of explanatory power, they find the 3 -factor model to be superior both in terms of capturing variation over time for specific portfolios, and for capturing differences in historical mean return across portfolios.

In terms of pricing errors, unlike Fama and French (1993) we find that pricing errors are similar, on the whole, for the CAPM and 3-factor models. In terms of explanatory power, heterogeneity in historical mean values - across the 5x5 Fama-French portfolios - is small relative to return values. So, there is not much for the economic models to capture, in terms of mean heterogeneity. The 3-factor model does have smaller stochastic error (χ_{2}) than does the CAPM, and this implies a larger measured value for systematic risk, as discussed in Section 2. With a larger systematic component, the 3-factor model is capturing more variability in returns, and most of this return variation is over time. Hence, the 3 -factor model appears superior to the CAPM in capturing time series variation of returns on the 5×5 portfolios.

On the whole, we find that previous evidence for superior 'fit' of the 3-factor model versus the CAPM model to be somewhat overstated, as pricing errors are comparable across models, and there is little explained cross-sectional variation. The superior fit of time-series variation, within each given portfolio's history, does seem compelling, though both models create the impression that sytematic risk makes an important contribution to this temporal variation in asset performance.

[^13]
REFERENCES

Campbell, John Y. (1993), Intertemporal Asset Pricing without Consumption Data American Economic Review 3, 487-512.

Campbell, John Y., Martin Lettau, Burton G. Malkiel, and Yexiao Xu (2001), Have Individual Stocks Become More Volatile," Journal of Finance 56, pp. xxx.

Chamberlain, G., and Michael Rothschild (1983), "Arbitrage, Factor Structure, and MeanVariance Analysis on Large Asset Markets," Econometrica 51, 1281-1304.

Chung, Y. Peter, Herb Johnson and Michael J. Schill (2006), "Asset Pricing When Returns Are Nonnormal: Fama-French Factors versus Higher-Order Systematic Comoments," The Journal of Business 79, 923-940.

Cochrane, John (2001), Asset Pricing. Princeton University Press.
Cochrane, John (2008), "A Mean-Variance Benchmark for Intertemporal Portfolio Theory," unpublished manuscript, University of Chicago.

Connor, John (1984), "A Unified Beta Pricing Theory," Journal of Economic Theory 34, 13-31.

Dyvbig, Phillip (1983), "An explicit bound on deviations from APT pricing in a finite economy," Journal of Financial Economics 12, 483-96.

Fama, Eugene F. and Kenneth R. French (1992), "The cross-section of expected stock returns," Journal of Finance 47, 427-465.

Fama, Eugene F. and Kenneth R. French (1993), "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, 33, 3-56.

Fama, Eugene F. and Kenneth R. French (1995), "Multifactor explanations of Asset pricing anomalies," Journal of Finance 50, 131-155.

Fama, Eugene F. and Kenneth R. French (1996), "Size and Book-to-Market Factors in Earnings and Returns," Journal of Finance 51, 55-84.

Fama, Eugene F. and Kenneth R. French (1998), "Value versus growth: the international evidence," Journal of Finance 53, 1975-1999.

Geweke, John, and Guofu Zhou (1996), "Measuring the pricing error of the arbitrage pricing theory," Review of Financial Studies 9, 557-587.

Gibbons, Michael R., Stephen A. Ross, and Jay Shanken (1989), "A Test of the Efficiency of a Given Portfolio," Econometrica 57, 1121-1152.

Grinblatt, Mark, and Sheridan Titman (1987), "Factor pricing in a finite economy," Journal of Financial Economics 12, 497-507.

Greene, William H. (2003), Econometric Analysis, 5th edition. Prentice-Hall.
Harvey, Campbell R. and Akhtar Siddique (2000), "Conditional Skewness in Asset Pricing Tests," Journal of Finance 55, 1263-1295.

Horn, Roger A. and Charles R. Johnson (1999), Matrix Analysis. Cambridge University Press.

Imhof, J. P. (1961), "Computing the Distribution of Quadratic Forms in Normal Variables," Biometrika 48, 419-426.

Jagannathan, Ravi and Zhenyu Wang (1996), "The Conditional CAPM and the CrossSection of Expected Returns," The Journal of Finance 51, 3-53.

Lintner, J. (1965), "The valuation of risk assets and the selection of risky investments in stock portfolios and capital budgets," Review of Economics and Statistics 47, 13-37.

Magnus, Jan R. and Heinz Neudecker (2002), Matrix Differential Calculus with Applications in Statistics and Econometrics. Wiley.

Merton, Robert C. (1973), "An intertemporal capital asset pricing model," Econometrica 41, 867-887.

Mossin, Jan (1966), "Equilibrium in a Capital Asset Market," Econometrica 34, 768-783.
Ross, Stephen A. (1976), "The Arbitrage Theory of Capital Asset Pricing," Journal of Economic Theory 13, 341-360.

Rubinstein, M., (1973), "The Fundamental Theorem of Parameter-preference Security Valuation," Journal of Financial and Quantitative Analysis 8, 61-69.

Ruud, P. (2000), An Introduction to Classical Econometric Theory. Oxford University Press.

Searle, Shayle R. (1971), Linear Models. John Wiley.
Sharpe, William F. (1964), "Capital asset prices: A theory of market equilibrium under conditions of risk," Journal of Finance 19, 425-442.

Singleton, Kenneth (2006) Empirical Dynamic Asset Pricing: Model Specification and Econometric Assessment. Princeton University Press.

Appendix A: Proofs of Theorems

Proof of Theorem 1:

For the χ_{1} result in Table 3, we have:

$$
\frac{1}{n} \sum_{i} \hat{\alpha}_{i}^{2}=\frac{1}{n} \hat{\alpha}^{\prime} \hat{\alpha}=\frac{1}{n} \mathbf{y}^{\prime}\left(I_{n} \otimes a_{x}^{\prime}\right)^{\prime}\left(I_{n} \otimes a_{x}^{\prime}\right) \mathbf{y} .
$$

To evaluate $\left(I_{n} \otimes a_{x}^{\prime}\right)^{\prime}$ in the above equation, for any matrix of the form $M_{1} \otimes M_{2}$, its transpose is $M_{1}^{\prime} \otimes M_{2}^{\prime}{ }^{23}$ hence $\left(I_{n} \otimes a_{x}^{\prime}\right)^{\prime}=I_{n} \otimes a_{x}$. Consequently, we can write the product $\left(I_{n} \otimes a_{x}^{\prime}\right)^{\prime}\left(I_{n} \otimes a_{x}^{\prime}\right)$ as $\left(I_{n} \otimes a_{x}\right)\left(I_{n} \otimes a_{x}^{\prime}\right)$, which can be re-written as $I_{n} \otimes a_{x} a_{x}^{\prime} .{ }^{24}$ Plugging this in, above, we obtain part (i) of the theorem.

To get the rank of kernel S in the χ_{1} case, note that S is of the form $A A^{\prime}$, with $A=$ $n^{-1 / 2} a_{x} \otimes I_{n}$. The rank of S is then equal to the rank of A (see Magnus and Neudecker (2002, page 9)). By construction, the matrix A has dimensions $n T \times n$, hence has rank at most n. Also, the columns of n are orthogonal to each other, hence span a space of dimension n, so A has rank n, as does S.

For the χ_{2} result in Table 3: See Table 2, last row, for a formula for $\left.(n T)^{-1} \sum\left(y_{i t}-\hat{y}_{i t}\right)\right)^{2}$.
For the ϕ result: It suffices to apply our results for the kernel of components χ_{1} and χ_{2}, and note that the sum $S_{\chi_{1}}+S_{\chi_{2}}$ equals the kernel S_{ϕ} of ϕ.

For the ψ_{1} result: Note that $\left(\sum_{i} \hat{\alpha}\right)^{2}=\hat{\alpha}^{\prime} 1_{n, n} \hat{\alpha}$. Also, from the proof of Theorem $1, \hat{\alpha}=$ $\left(I_{n} \otimes a_{x}^{\prime}\right) y$. Therefore, $S_{\text {sae }}=\frac{1}{n^{2}}\left(I_{n} \otimes a_{x}^{\prime}\right)^{\prime} 1_{n, n}\left(I_{n} \otimes a_{x}^{\prime}\right)$. Also, $\left(I_{n} \otimes a_{x}^{\prime}\right)^{\prime}=I_{n} \otimes a_{x}$, as noted earlier. With $1_{n, n}=1_{n} 1_{n}^{\prime}$, and a_{x} a $T \times 1$ vector, we can write $\left(I_{n} \otimes a_{x}\right) 1_{n}=1_{n} \otimes a_{x}$, likewise $1_{n}^{\prime}\left(I_{n} \otimes a_{x}^{\prime}\right)=1_{n}^{\prime} \otimes a_{x}^{\prime}$. Hence $\left(\sum_{i} \hat{\alpha}\right)^{2}=\left(1_{n} \otimes a_{x}\right)\left(1_{n}^{\prime} \otimes a_{x}^{\prime}\right)$. The last expression is of the form $\left(M_{1} \otimes M_{2}\right)\left(M_{3} \otimes M_{4}\right)$, which simplifies $\left(M_{1} M_{3}\right) \otimes\left(M_{2} M_{4}\right)$ when the products $M_{1} M_{3}$ and $M_{2} M_{4}$ are well-defined (see Magnus and Neudecker...), in which case to $\left(1_{n} \otimes a_{x}\right)\left(1_{n}^{\prime} \otimes a_{x}^{\prime}\right)=$ $\left(1_{n} 1_{n}^{\prime}\right) \otimes\left(a_{x} a_{x}^{\prime}\right)$. Since $1_{n} 1_{n}^{\prime}=1_{n, n}$, the result follows.

For the ψ_{2} result: Note that $\sum_{i}\left(\hat{\alpha}_{i}-\left(\frac{1}{n} \sum_{i} \hat{\alpha}_{i}\right)\right)^{2}=\left(\sum_{i} \hat{\alpha}_{i}^{2}\right)-n\left(\frac{1}{n} \sum_{i} \hat{\alpha}_{i}\right)^{2}$. Applying Theorem 1.1 to $\sum_{i} \hat{\alpha}_{i}^{2}$ and Theorem 1.4 to $\left(\frac{1}{n} \sum_{i} \hat{\alpha}_{i}\right)^{2}$, we get $\sum_{i}\left(\hat{\alpha}_{i}-\left(\frac{1}{n} \sum_{i} \hat{\alpha}_{i}\right)\right)^{2}=I_{n} \otimes\left(a_{x} a_{x}^{\prime}\right)-$ $\frac{1}{n} 1_{n, n} \otimes\left(a_{x} a_{x}^{\prime}\right)$. Simplifying, the result follows.

For the ω result: It suffices to apply our earlier kernel results for the components χ_{2} and ψ_{2} of ω, and note that the sum $S_{\chi_{2}}+S_{\psi_{2}}$ of these kernels equals the kernel S_{ω} for ω.

[^14]
PROOF of Corollary 1

Here and later, we will make use of:
Lemma 1 (Magnus and Neudecker (2002, page 28)): For matrices $M_{1}, M_{2}, M_{3}, M_{4}$ such that matrix products $M_{1} M_{3}$ and $M_{2} M_{4}$ are well-defined, the following holds: $\left(M_{1} \otimes M_{2}\right)\left(M_{3} \otimes\right.$ $\left.M_{4}\right)=\left(M_{1} M_{3}\right) \otimes\left(M_{2} M_{4}\right)$.

It is easy to verify, via Table 3, that $S_{\phi}=S_{\chi_{1}}+S_{\chi_{2}}=S_{\psi_{1}}+S_{\omega}, S_{\chi_{1}}=S_{\psi_{1}}+S_{\psi_{2}}$, $S_{\omega}=S_{\chi_{2}}+S_{\psi_{2}}$. To show that $S_{\chi_{1}} S_{\chi_{2}}=0_{n T, n T}$, first note that:

$$
\begin{equation*}
\alpha_{x}^{\prime}\left(I_{n T}-I_{n} \otimes\left(X\left(X^{\prime} X\right)^{-1} X^{\prime}\right)\right)=0_{T, T} \tag{32}
\end{equation*}
$$

this being a standard result which indicates, in terse matrix terms, that the regression residuals, if themselves regressed on x, must generate an intercept (vector) equal to 0 . Consequently:

$$
\begin{aligned}
& S_{\chi_{1}} S_{\chi_{2}}=\left(I_{n} \otimes\left(\frac{1}{n} a_{x} a_{x}^{\prime}\right)\right)\left(I_{n T}-I_{n} \otimes\left(X\left(X^{\prime} X\right)^{-1} X^{\prime}\right)=\right. \\
& \quad I_{n} \otimes\left(\frac{1}{n} a_{x} a_{x}^{\prime}\right)-I_{n} \otimes\left(\left(\frac{1}{n} a_{x} a_{x}^{\prime}\right)\left(\frac{1}{n T}\left(X\left(X^{\prime} X\right)^{-1} X^{\prime}\right)\right)=\right. \\
& \quad I_{n} \otimes\left(\left(\frac{1}{n} a_{x}\left(a_{x}^{\prime}\left(I_{n T}-\frac{1}{n T}\left(X\left(X^{\prime} X\right)^{-1} X^{\prime}\right)\right)\right)=I_{n} \otimes 0_{T, T}=0_{n T, n T}\right.\right.
\end{aligned}
$$

with the last line following from equation 32 and Lemma 1.
We can similarly verify that $S_{\psi_{1}} S_{\psi_{2}}=0_{n T, n T}$ since, from Table 3,

$$
S_{\psi_{1}} S_{\psi_{2}}=\left(\frac{1}{n} 1_{n, n} \otimes\left(a_{x} a_{x}^{\prime}\right)\right)\left(\frac{1}{n}\left(I_{n}-\frac{1}{n} 1_{n, n}\right) \otimes\left(a_{x} a_{x}^{\prime}\right)\right)
$$

Applying Lemma 1, this expression simplifies to:

$$
S_{\psi_{1}} S_{\psi_{2}}=\left(\frac{1}{n} 1_{n, n} \frac{1}{n}\left(I_{n}-\frac{1}{n} 1_{n, n}\right) \otimes\left(a_{x} a_{x}^{\prime}\right)^{2}\right)=0_{n, n} \otimes\left(a_{x} a_{x}^{\prime}\right)^{2}=0_{n T, n T}
$$

For the result $S_{\psi_{1}} S_{\omega}=0_{n T, n T}$, we have $S_{\omega}=S_{\chi_{2}}+S_{\psi_{2}}$, and since we showed above that $S_{\psi_{1}} S_{\psi_{2}}=0_{n T, n T}$, it suffices to show that $S_{\chi_{2}} S_{\psi_{1}}=0_{n T, n T}$. For this we can apply Table 3 and equation 32, applying arguments similar to those used earlier to show $S_{\chi_{1}} S_{\chi_{2}}=0_{n T, n T}$. Likewise, we can verify that $S_{\chi_{2}} S_{\psi_{2}}=0_{n T, n T}$.

Proof of Theorem 2

i. Table 4 results. To get the χ_{1} result, with $S_{\chi_{1}}=\frac{1}{n} I_{n} \otimes\left(a_{x} a_{x}^{\prime}\right)=I_{n} \otimes\left(\frac{1}{n} a_{x} a_{x}^{\prime}\right)$ and $V_{y}=$ $V_{\varepsilon} \otimes I_{T}$, we have $S_{\chi_{1}} V_{y}=\left(I_{n} \otimes\left(\frac{1}{n} a_{x} a_{x}^{\prime}\right)\right)\left(V_{\varepsilon} \otimes I_{T}\right)$. This is of the form $\left(M_{1} \otimes M_{2}\right)\left(M_{3} \otimes M_{4}\right)$, with matrices M_{1}, \ldots, M_{4} for which $M_{1} M_{3}$ and $M_{2} M_{4}$ are defined, so by Lemma 1 the expression equals $M_{1} M_{3} \otimes M_{2} M_{4}$. Hence $S_{\chi_{1}} V_{y}=V_{\varepsilon} \otimes \frac{1}{n} a_{x} a_{x}^{\prime}$. Since $\operatorname{tr}\left[M_{1} \otimes M_{2}\right]=\operatorname{tr}\left[M_{1}\right] \operatorname{tr}\left[M_{2}\right]$ for any square matrices M_{1} and M_{2} (see Magnus and Neudecker 2002, equation 8, page 28), $\operatorname{tr}\left[S_{\chi_{1}} V_{y}\right]=\operatorname{tr}\left[V_{\varepsilon}\right] \operatorname{tr}\left[\frac{1}{n} a_{x} a_{x}^{\prime}\right]$.

To get the χ_{2} result, we apply the same 'tricks' used above, but here using $S_{\chi_{2}}=$ $\frac{1}{n(T-K-1)}\left(I_{n T}-\left(I_{n} \otimes\left(X\left(X^{\prime} X\right)^{-1} X^{\prime}\right)\right)\right)$ rather than $S_{\chi_{1}}$. First,

$$
S_{\chi_{2}} V_{y}=\left(\frac{1}{n(T-K-1)}\left(I_{n T}-\left(I_{n} \otimes\left(X\left(X^{\prime} X\right)^{-1} X^{\prime}\right)\right)\right)\left(V_{\varepsilon} \otimes I_{T}\right),\right.
$$

which we can write as:

$$
S_{\chi_{2}} V_{y}=\frac{1}{n(T-K-1)}\left(V_{\varepsilon} \otimes I_{T}-\left(I_{n} \otimes X\left(X^{\prime} X\right)^{-1} X^{\prime}\right)\left(V_{\varepsilon} \otimes I_{T}\right)\right) .
$$

The expression $\left(I_{n} \otimes X\left(X^{\prime} X\right)^{-1} X^{\prime}\right)\left(V_{\varepsilon} \otimes I_{T}\right)$, is of the form $\left(M_{1} \otimes M_{2}\right)\left(M_{3} \otimes M_{4}\right)$, in the sense discussed above, hence this expression simplifies to $V_{\varepsilon} \otimes X\left(X^{\prime} X\right)^{-1} X^{\prime}$. Combining this with the above results, we get

$$
S_{\chi_{2}} V_{y}=V_{\varepsilon} \otimes\left(\frac{1}{n(T-K-1)}\left(I_{T}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right)\right) .
$$

Proceeding as we did with the form $S_{\chi_{1}} V_{y}$ earlier, we then get

$$
\operatorname{tr}\left[S_{\chi_{2}} V_{y}\right]=\operatorname{tr}\left[V_{\varepsilon}\right] \operatorname{tr}\left[\left(\frac{1}{n(T-K-1)}\left(I_{T}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right)\right)\right]
$$

To get the ϕ result, first note that $S_{\phi} V_{y}=\left(S_{\chi_{1}}+S_{\chi_{2}}\right) V_{y}$. Applying formulas for $S_{\chi_{1}} V_{y}$ and $S_{\chi_{2}} V_{y}$, from the preceeding discussion, we get

$$
\begin{aligned}
\operatorname{tr}\left[S_{\phi} V_{y}\right] & =\operatorname{tr}\left[\left(V_{\varepsilon} \otimes \frac{1}{n} a_{x} a_{x}^{\prime}+V_{\varepsilon} \otimes \frac{1}{(n(T-K-1))^{2}}\left(I_{T}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right)\right)\right] \\
& =\operatorname{tr}\left[S_{\chi_{1}} V_{y}\right]+\operatorname{tr}\left[S_{\chi_{2}} V_{y}\right] .
\end{aligned}
$$

Deriving the ψ_{1} and ψ_{2} results is analogous to deriving the χ_{1} and χ_{2} results. The ω result is likewise similar.
ii. Table 5 results. To derive the χ_{1} result, recall that $S_{\chi_{1}}=I_{n} \otimes\left(\frac{1}{n} a_{x} a_{x}^{\prime}\right)$ is a blockdiagonal $(n T \times n T)$ matrix with the $T \times T$ matrix $\frac{1}{n} a_{x} a_{x}^{\prime}$ on its diagonal. The expression for $\mu_{y}^{\prime} S_{\chi_{1}} \mu_{y}$ then readily follows. Similarly for the χ_{2} result, where the $T \times T$ matrix on the diagonal is $\left.\left(I_{T}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right)\right)$. This stems from the observation that

$$
\begin{aligned}
S_{\chi_{2}} & =\frac{1}{n(T-K-1)}\left(I_{n T}-\left(I_{n} \otimes\left(X\left(X^{\prime} X\right)^{-1} X^{\prime}\right)\right)\right) \\
& =\frac{1}{n(T-K-1)}\left(I_{n} \otimes I_{T}-I_{n} \otimes\left(X\left(X^{\prime} X\right)^{-1} X^{\prime}\right)\right) \\
& =\frac{1}{n(T-K-1)}\left(I_{n} \otimes\left(I_{T}-\left(X\left(X^{\prime} X\right)^{-1} X^{\prime}\right)\right) .\right.
\end{aligned}
$$

With this, the fact that $S_{\phi}=S_{\chi_{1}}+S_{\chi_{2}}$ provides the ϕ result in Table5. To get the ψ_{1} result, note that $S_{\psi_{1}}=\frac{1}{n} 1_{n, n} \otimes\left(a_{x} a_{x}^{\prime}\right)$ is a matrix consisting of $n \times n$ matrix-blocks $\frac{1}{n} \otimes\left(a_{x} a_{x}^{\prime}\right)$ with dimensions $(T \times T)$. Therefore, the summation is over both i and j indexes. To arrive at ψ_{2} result, it is sufficient to observe that $S_{\psi_{2}}=\frac{1}{n}\left(I_{n}-\frac{1}{n} 1_{n, n}\right) \otimes\left(a_{x} a_{x}^{\prime}\right)=S_{\chi_{2}}-\frac{1}{n} S_{\psi_{1}}$. Similarly for the ω result, where $S_{\omega}=S_{\chi_{2}}+S_{\psi_{2}}$.

Proof of Theorem 3

i. Table 6 results

To get the χ_{1} result, we simply extend the proof of Theorem 2 where we showed that $S_{\chi_{1}} V_{y}=V_{\varepsilon} \otimes \frac{1}{n} a_{x} a_{x}^{\prime}$. Likewise, $S_{\chi_{1}} V_{y} S_{\chi_{1}} V_{y}=\left(V_{\varepsilon}\right)^{2} \otimes\left(\frac{1}{n} a_{x} a_{x}^{\prime}\right)^{2}$. Again using properties of Kronecker products, $\operatorname{tr}\left[S_{\chi_{1}} V_{y} S_{\chi_{1}} V_{y}\right]=\operatorname{tr}\left[\left(V_{\varepsilon}\right)^{2}\right] \operatorname{tr}\left[\left(\frac{1}{n} a_{x} a_{x}^{\prime}\right)^{2}\right]$.

To get the χ_{2} result, we build on the expression $S_{\chi_{2}} V_{y}$ from the proof of Theorem 2. Proceeding as we did with the form $S_{\chi_{1}} V_{y}$ earier, we get $\operatorname{tr}\left[S_{\chi_{2}} V_{y}\right]=\operatorname{tr}\left[V_{\varepsilon}^{2}\right] \operatorname{tr}\left[\left(\frac{1}{n T}\left(I_{T}-\right.\right.\right.$ $\left.\left.\left.X\left(X^{\prime} X\right)^{-1} X^{\prime}\right)\right)^{2}\right]$. Noting that the matrix M given by $M=I_{T}-X\left(X^{\prime} X\right)^{-1} X^{\prime}$ is idempotent (e.g. $\left.M^{2}=M\right),{ }^{25}$ we then get $\operatorname{tr}\left[S_{\chi_{2}} V_{y}\right]=\operatorname{tr}\left[V_{\varepsilon}^{2}\right] \operatorname{tr}\left[\left(\frac{1}{(n(T-K-1))^{2}}\left(I_{T}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right)\right)\right]$, as desired.

To get the ψ_{1} result, first note that $S_{\phi} V_{y}=\left(S_{\chi_{1}}+S_{\chi_{2}}\right) V_{y}$. Applying formulas for $S_{\chi_{1}} V_{y}$ and $S_{\chi_{2}} V_{y}$, from the preceeding discussion, we get

$$
\operatorname{tr}\left[S_{\phi} V_{y} S_{\phi} V_{y}\right]=\operatorname{tr}\left[\left(V_{\varepsilon} \otimes \frac{1}{n} a_{x} a_{x}^{\prime}+V_{\varepsilon} \otimes \frac{1}{(n(T-K-1))^{2}}\left(I_{T}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right)\right)^{2}\right]
$$

Using same properties of the trace and Kronecker operators as above, this expression can be further written as:

$$
\begin{array}{r}
\operatorname{tr}\left[\left(\left(V_{\varepsilon}\right)^{2} \otimes\left(\frac{1}{n} a_{x} a_{x}^{\prime}\right)^{2}+\left(V_{\varepsilon}\right)^{2} \otimes\left(\frac{1}{n(T-K-1)}\left(I_{T}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right)\right)^{2}+\right.\right. \\
2\left(\left(V_{\varepsilon}\right)^{2} \otimes\left(\frac{1}{n} a_{x} a_{x}^{\prime}\left(\frac{1}{n(T-K-1)}\left(I_{T}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right)^{2}\right)\right]\right.
\end{array}
$$

We now make use of the fact that matrix $M=I_{T}-X\left(X^{\prime} X\right)^{-1} X^{\prime}$ is idemponent (as noted earlier). Also, we have $a_{x} a_{x}^{\prime} M=0_{T, T}$ because $a_{x}^{\prime} M=0$, as discussed earlier. Applying these two restrictions to the above form for $\operatorname{tr}\left[S_{\phi} V_{y} S_{\phi} V_{y}\right]$, the result follows.

The ψ_{1} and ψ_{2} results are derived in a manner similar to the χ_{1} and χ_{2} results, and the ω result then follows.

ii. Table 7 results

For the χ_{1} result, applying the 'tricks' used earlier we can write $S_{\chi_{1}} V_{y} S_{\chi_{1}}=V_{\varepsilon} \otimes\left(\frac{1}{n} a_{x} a_{x}^{\prime}\right)^{2}$. This matrix, having dimensions $T n \times T n$, has as its upper-left $T \times T$ block $V_{\varepsilon, 11}\left(\alpha_{x} \alpha_{x}^{\prime}\right)^{2}$, its lower-right $T \times T$ block $V_{\varepsilon, n n}\left(a_{x} a_{x}^{\prime}\right)^{2}$, and so on, with the common $T \times T$ block 'repeating' itself $\left(a_{x} a_{x}^{\prime}\right)^{2}$ a total of n times in each row, and in each column. At the same time, the $T n \times 1$ vector μ_{y} has as its upper-most $T \times 1$ sub-vector the expression $X \theta_{1}$, with θ_{1} the first column of θ; its next $T \times 1$ sub-vector is $X \theta_{2}$, and so on. Matching $T \times T$ blocks with $T \times 1$ vectors, during multiplications represented by $\mu_{y}^{\prime} S_{\chi_{1}} V_{y} S_{\chi_{1}} \mu_{y}$, the common form $X^{\prime}\left(a_{x} a_{x}^{\prime}\right)^{2} X$ 'repeats' itself, multiplied by differing vectors on the left and right. Simplifying, the result follows.

For the χ_{2} and ϕ results, the same 'tricks' apply, but with $\left(\frac{1}{n} a_{x} a_{x}^{\prime}\right)^{2}$ replaced by

[^15]$\frac{1}{(n(T-K-1))^{2}}\left(I_{T}-X\left(X^{\prime} X\right)^{-1}\right) X^{\prime}$ and $\left(\left(\frac{1}{n} a_{x} a_{x}^{\prime}\right)^{2}+\frac{1}{(n(T-K-1))^{2}}\left(I_{T}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right)\right.$, respectively. Also, for the ϕ result use the fact that $S_{\chi_{1}} V_{y} S_{\chi_{2}}=0$, in which case $\mu_{y}^{\prime} S_{\phi} V_{y} S_{\phi} \mu_{y}=$ $\mu_{y}^{\prime} S_{\chi_{1}} V_{y} S_{\chi_{1}} \mu_{y}+\mu_{y}^{\prime} S_{\chi_{2}} V_{y} S_{\chi_{2}} \mu_{y}$.

To derive the ψ_{1} result, note that $S_{\psi_{1}} V_{y} S_{\psi_{1}}=\left(1_{n, n} V_{\varepsilon} 1_{n, n}\right) \otimes\left(\frac{1}{n} a_{x} a_{x}^{\prime}\right)^{2}$. This is an $n T \times n T$ matrix with elements equal to $\left(\sum_{i, j=1}^{n} V_{\varepsilon, i j} \frac{1}{n} a_{x} a_{x}^{\prime}\right)^{2}$. Multiplying by μ_{y} from both sides delivers the result. Similarly for the ψ_{2} result with $S_{\psi_{2}} V_{y} S_{\psi_{2}}=\Omega \otimes\left(\frac{1}{n} a_{x} a_{x}^{\prime}\right)^{2}$ where $\Omega=\left(I_{n}-\right.$ $\left.\frac{1}{n} 1_{n, n}\right) V_{\varepsilon}\left(I_{n}-\frac{1}{n} 1_{n, n}\right)$. Deriving the ω result resembles deriving the corresponding result in Table 5: $S_{\psi_{2}} V_{y} S_{\chi_{2}}=0$ and $\mu_{y}^{\prime} S_{\omega_{2}} V_{y} S_{\omega_{2}} \mu_{y}=\mu_{y}^{\prime} S_{\psi_{2}} V_{y} S_{\psi_{2}} \mu_{y}+\mu_{y}^{\prime} S_{\chi_{2}} V_{y} S_{\chi_{2}} \mu_{y}$.

Appendix B: Data description

The dependent variables to be explained are excess stock returns on 25 portfolios, sorted on size and (independently) on book-to-market equity ($B E / M E$). The portfolios are constructed by Fama and French (1993) as follows. The quintile breakpoints for size in a given year are based on market capitalization of NYSE stocks in June of the same year. The quintiles for book-to-market ratios are calculated using NYSE stocks using $B E$ and $M E$ from December of the previous year. The portfolios are then formed using stocks from NYSE, AMEX and NASDAQ, for which there is a positive book equity (from COMPUSTAT) available from December of the previous year and market equity available in June of the given year and December of the previous year. Finally, value-weighted monthly portfolio returns are computed starting in July of the current year and ending in June of the following year (stock prices are from CRSP). The excess returns are calculated using the one-month Treasury bill rate (from Ibbotson Associates).

The explanatory variables are the market excess return plus the two additional empirically motivated factors - SMB and HML - related to size and book-to-market ratios. The market excess return is defined as the value-weight return on all NYSE, AMEX, and NASDAQ stocks (from CRSP) minus the one-month Treasury bill rate (from Ibbotson Associates). The two latter factors are constructed from six portfolios, again sorted on size and book-tomarket equity. The algorithm to construct these portfolios is the same as above, with size breakpoint being the median and book-to-market equity breakpoints being respectively the 30th and the 70th NYSE percentiles.

To construct the SMB factor, all available stocks are divided into two groups based on median market equity (size), Small and Big. For the HML factor, the stocks are grouped by their book-to-market equity ratios $(B E / M E)$, and the breakpoints are the 30th and the 70th $B E / M E$ percentiles, resulting in three $B E / M E$ categories: High, Medium and Low. High $B E / M E$ is consistently associated with low earnings on assets (the so called value stocks) and vice versa (the growth stocks). The returns on $S M B$ and $H M B$ are respectively calculated as

$$
\begin{align*}
\text { SMB } & =1 / 3(\text { Small High }+ \text { Small Medium }+ \text { Small Low }) \\
& -1 / 3(\text { Big High }+ \text { Big Medium }+ \text { Big Low }) . \tag{33}
\end{align*}
$$

and

$$
\begin{align*}
H M L & =1 / 2(\text { Small High }+ \text { Big High }) \\
& -1 / 2(\text { Small Low }+ \text { Big Low }) . \tag{34}
\end{align*}
$$

Table 1: Measures of Model Error

measure	symbol	formula
total error (RMSE)	ϕ	$\sqrt{\frac{1}{n} \sum_{i=1}^{n} \alpha_{i}^{2}+\sigma_{i}^{2}}$
non-stochastic error	χ_{1}	$\sqrt{\frac{1}{n} \sum_{i=1}^{n} \alpha_{i}^{2}}$
stochastic error	χ_{2}	$\sqrt{\frac{1}{n} \sum_{i=1}^{n} \sigma_{i}^{2}}$
(unsigned) pooled bias	ψ_{1}	$\|\bar{\alpha}\|$
bias heterogeneity	ψ_{2}	$\sqrt{\frac{1}{n} \sum_{i=1}^{n}\left(\alpha_{i}-\bar{\alpha}\right)^{2}}$
total heterogeneity	ω	$\sqrt{\frac{1}{n} \sum_{i=1}^{n}\left(\alpha_{i}-\bar{\alpha}\right)^{2}+\sigma_{i}^{2}}$

Table 2: Known Statistics Expressible as $\mathbf{y}^{\prime} S \mathbf{y}$

type statistic S
univariate, $\frac{y^{\prime} y}{T} \quad \frac{1}{T} I_{T}$
descriptive

$$
\begin{array}{lll}
(\bar{y})^{2} & \frac{1}{T^{2}} 1_{T, T} & 1 \\
\frac{1}{T}(y-\bar{y})^{\prime}(y-\bar{y}) & \frac{1}{T}\left(I_{T}-\frac{1}{T} 1_{T, T}\right) & T-1
\end{array}
$$

univariate, $\frac{\hat{y}^{\prime} \hat{y}}{T} \quad \frac{1}{T} X\left(X^{\prime} X\right)^{-1} X^{\prime} \quad K+1$
regression

$$
\frac{1}{T}(y-\hat{y})^{\prime}(y-\hat{y}) \quad \frac{1}{T}\left(I_{T}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right) \quad T-(K+1)
$$

multivariate	$\frac{\mathbf{y}^{\prime} \mathbf{y}}{n T}$	$\frac{1}{n T} I_{n T}$	$n T$
	$\frac{\hat{\mathbf{y}}^{\prime} \hat{\mathbf{y}}}{n T}$	$\frac{1}{n T}\left(I_{n} \otimes\left(X\left(X^{\prime} X\right)^{-1} X^{\prime}\right)\right)$	$n(K+1)$
	$\frac{(\mathbf{y}-\hat{\mathbf{y}})^{\prime}(\mathbf{y}-\hat{\mathbf{y}})}{n T}$	$\frac{1}{n T}\left(I_{n T}-\left(I_{n} \otimes\left(X\left(X^{\prime} X\right)^{-1} X^{\prime}\right)\right)\right)$	$T-n(K+1)$

Note: y denotes an $T \times 1$ vector $\left(y_{1}, \ldots, y_{T}\right)^{\prime}$, as does \hat{y}, where $\hat{y}_{t}=\hat{\alpha}+\hat{\beta}^{\prime} x_{t}$, with $\hat{\alpha}, \hat{\beta}$ the OLS estimators of α and β. β is a $K \times 1$ vector, x_{t} is a $K \times 1$ vector, and $X=\left[1_{T}, x\right]$. y denotes the $n T \times 1$ vector $\left(y_{11}, \ldots, y_{1 T}, \ldots, y_{n 1}, \ldots, y_{n T}\right)^{\prime}$.

Table 3: Kernel S for quadratic forms underlying RMSE and components
Note: As described in Table 1, $\phi=$ total error (RMSE), $\chi_{1}=$ stochastic error, $\chi_{2}=$ nonstochastic error, $\psi_{1}=$ pooled bias, $\psi_{2}=$ bias heterogeneity, $\omega=$ total heterogeneity.

error	kernel	rank of
component	S	S

ϕ
$\chi_{1} \quad \frac{1}{n}\left(I_{n} \otimes a_{x} a_{x}^{\prime}\right)$

$$
\frac{1}{n}\left(I_{n} \otimes a_{x} a_{x}^{\prime}\right)+\frac{1}{n T}\left(I_{T}-I_{n} \otimes\left(X\left(X^{\prime} X\right)^{-1} X^{\prime}\right)\right) \quad T-n K
$$ nK

χ_{2}
$\frac{1}{n T}\left(I_{n T}-I_{n} \otimes\left(X\left(X^{\prime} X\right)^{-1} X^{\prime}\right)\right)$
$T-n(K+1)$
ψ_{1}
$\frac{1}{n} 1_{n, n} \otimes\left(a_{x} a_{x}^{\prime}\right)$
1
ψ_{2}
$\frac{1}{n}\left(I_{n}-\frac{1}{n} 1_{n, n}\right) \otimes\left(a_{x} a_{x}^{\prime}\right)$
$n-1$
ω

$$
\frac{1}{n T}\left(I_{T}-I_{n T} \otimes\left(X\left(X^{\prime} X\right)^{-1} X^{\prime}\right)\right)+\frac{1}{n}\left(I_{n}-\frac{1}{n} 1_{n, n}\right) \otimes\left(a_{x} a_{x}^{\prime}\right) \quad T-n K-1
$$

Table 4: Formulas for $\operatorname{tr}\left[S V_{y}\right]$, in computing mean of RMSE Distributions

kernel S	$\operatorname{tr}\left[S V_{y}\right]$
$S_{\chi_{1}}$	$\operatorname{tr}\left[V_{\varepsilon}\right] \operatorname{tr}\left[\frac{1}{n} a_{x} a_{x}^{\prime}\right]$
$S_{\chi_{2}}$	$\operatorname{tr}\left[V_{\varepsilon}\right] \operatorname{tr}\left[\left(\frac{1}{(n(T-K-1))}\left(I_{T}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right)\right]\right.$
S_{ϕ}	$\operatorname{tr}\left[S_{\chi_{1}} V\right]+\operatorname{tr}\left[S_{\chi_{2}} V\right]$
$S_{\psi_{1}}$	$\operatorname{tr}\left[\left(1_{n, n} V_{\varepsilon}\right)\right] \operatorname{tr}\left[\frac{1}{n} a_{x} a_{x}^{\prime}\right]$
$S_{\psi_{2}}$	$\left.\operatorname{tr}\left[\left(I_{n}-\frac{1}{n} 1_{n, n}\right) V_{\varepsilon}\right)\right] \operatorname{tr}\left[\frac{1}{n} a_{x} a_{x}^{\prime}\right]$
S_{ω}	$\operatorname{tr}\left[S_{\psi_{2}} V_{y}\right]+\operatorname{tr}\left[S_{\chi_{2}} V_{y}\right]$

Note: $\operatorname{tr}\left[\frac{1}{n} a_{x} a_{x}^{\prime}\right]=\frac{1}{n} \sum_{t=1}^{T} a_{x, t}^{2}$

Table 5: Formulas for $\mu_{y}^{\prime} S \mu_{y}$, in computing mean of RMSE distributions

$\begin{gathered} \text { kernel } \\ S \end{gathered}$	$\mu_{y}^{\prime} S \mu_{y}$
$S_{\chi_{1}}$	$\sum_{i=1}^{n} \theta_{i}^{\prime} X^{\prime}\left(\frac{1}{n} a_{x} a_{x}^{\prime}\right) X \theta_{i},$
$S_{\chi 2}$	$\sum_{i=1}^{n} \theta_{i}^{\prime} X^{\prime}\left(\frac{1}{n(T-K-1)}\left(I_{T}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right) X \theta_{i}\right.$
S_{ϕ}	$\mu_{y}^{\prime} S_{\chi_{1}} \mu_{y}+\mu_{y}^{\prime} S_{\chi_{2}} \mu_{y}$
$S_{\psi_{1}}$	$\sum_{i, j=1}^{n} \theta_{i}^{\prime} X^{\prime}\left(\frac{1}{n} a_{x} a_{x}^{\prime}\right) X \theta_{j}$
$S_{\psi_{2}}$	$\mu_{y}^{\prime} S_{\chi_{1}} \mu-\frac{1}{n} \mu^{\prime} S_{\psi_{1}} \mu_{y}$
$S_{\omega_{2}}$	$\mu^{\prime} S_{\chi_{2}} \mu+\mu^{\prime} S_{\psi_{2}} \mu$

Table 6: Formulas for $\operatorname{tr}\left[S V_{y} S V_{y}\right]$, in computing variance of RMSE Distributions

kernel	
S	$\operatorname{tr}\left[S V_{y} S V_{y}\right]$
$S_{\chi_{1}}$	$\operatorname{tr}\left[V_{\varepsilon}^{2}\right] \operatorname{tr}\left[\left(\frac{1}{n} a_{x} a_{x}^{\prime}\right)^{2}\right]$
$S_{\chi_{2}}$	$\operatorname{tr}\left[V_{\varepsilon}^{2}\right] \operatorname{tr}\left[\left(\frac{1}{(n(T-K-1))^{2}}\left(I_{T}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right)\right]\right.$
S_{ϕ}	$\operatorname{tr}\left[S_{\chi_{1}} V S_{\chi_{1}} V\right]+\operatorname{tr}\left[S_{\chi_{2}} V S_{\chi_{2}} V_{y}\right]$
$S_{\psi_{1}}$	$\operatorname{tr}\left[\left(1_{n, n} V_{\varepsilon}\right)^{2}\right] \operatorname{tr}\left[\left(\frac{1}{n} a_{x} a_{x}^{\prime}\right)^{2}\right]$
$S_{\psi_{2}}$	$\left.\operatorname{tr}\left[\left(I_{n}-1_{n, n}\right) V_{\varepsilon}\right)^{2}\right] \operatorname{tr}\left[\left(\frac{1}{n} a_{x} a_{x}^{\prime}\right)^{2}\right]$
S_{ω}	$\operatorname{tr}\left[S_{\chi_{2}} V_{y} S_{\chi_{2}} V_{y}\right]+\operatorname{tr}\left[S_{\psi_{2}} V_{y} S_{\psi_{2}} V_{y}\right]$

Table 7: Formulas for $\mu_{y}^{\prime} S V_{y} S \mu_{y}$, in computing variance of RMSE distributions
kernel
$S \quad \mu_{y}^{\prime} S V_{y} S \mu_{y}$
$S_{\chi_{1}} \quad \sum_{i, j=1}^{n} V_{\varepsilon, i j} \theta_{i}^{\prime} X^{\prime}\left(\frac{1}{n} a_{x} a_{x}^{\prime}\right)^{2} X \theta_{j}$
$S_{\chi_{2}} \quad \sum_{i, j=1}^{n} V_{\varepsilon, i j} \theta_{i}^{\prime} X^{\prime}\left(\frac{1}{(n(T-K-1))^{2}}\left(I_{T}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right) X \theta_{j}\right.$
$S_{\phi} \quad \sum_{i, j=1}^{n} V_{\varepsilon, i j} \theta_{i}^{\prime} X^{\prime}\left(\left(\frac{1}{n} a_{x} a_{x}^{\prime}\right)^{2}+\frac{1}{(n(T-K-1))^{2}}\left(I_{T}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right) X \theta_{j}\right.$
$S_{\psi_{1}} \quad \sum_{i, j=1}^{n} \theta_{i}^{\prime} X^{\prime}\left(\sum_{l, m=1}^{n} V_{\varepsilon, m l} \frac{1}{n}\left(a_{x} a_{x}^{\prime}\right)^{2}\right) X \theta_{j}$
$S_{\psi_{2}} \quad \sum_{i, j=1}^{n} \Psi_{i j} \theta_{i}^{\prime}\left(X^{\prime}\left(\frac{1}{n} a_{x} a_{x}^{\prime}\right)^{2} X\right) \theta_{j}$
$S_{\omega} \quad \sum_{i, j=1}^{n} \Psi_{i j} \theta_{i}^{\prime}\left(X^{\prime}\left(\frac{1}{n} a_{x} a_{x}^{\prime}\right)^{2} X\right) \theta_{j}$
$+\sum_{i, j=1}^{n} V_{\varepsilon, i j} \theta_{i}^{\prime}\left(X^{\prime} \frac{1}{(n(T-K-1))^{2}}\left(I_{T}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right) X\right) \theta_{j}$

Table 8: Descriptive Statistics for Fama-French 5x5 Stock Portfolios
Notes: (i) For $5 \mathrm{x} 5=25$ portfolios, observed on common history 1947:01-2007:12, $y_{i t}$ denotes the monthly excess return on portfolio i at time t, y denotes the the $n T \times 1$ vector $\left(y_{11}, \ldots, y_{1 T}, \ldots, \ldots, y_{n 1}, \ldots, y_{n T}\right), \bar{y}_{i}$ denotes the sample mean return for the i-th portfolio, \bar{y} denotes the n-vector of mean returns, and $\hat{\sigma}_{y_{i}}^{2}=T^{-1} \sum_{t=1}^{T}\left(y_{i t}-\bar{y}_{i}\right)^{2}$ is the Gaussian maximum likelihood estimator of sample variance for the i-th portfolio. (ii) $\phi=\sqrt{\chi_{1}^{2}+\chi_{2}^{2}}=\sqrt{\psi_{1}^{2}+\omega^{2}}$, $\chi_{1}=\sqrt{\psi_{1}^{2}+\psi_{2}^{2}}$.
statistic formula symbol value
normed return vector $\|y\|=\sqrt{\frac{1}{n T} \sum_{i=1}^{n} \sum_{t=1}^{T} y_{i t}^{2}} \quad \phi$
normed mean vector $\quad\|\bar{y}\|=\sqrt{\frac{1}{n} \sum_{i=1}^{n}\left(\bar{y}_{i}\right)^{2}} \quad \chi_{1} \quad 1.19$
pooled variability $\quad \hat{\sigma}_{y}=\sqrt{\frac{1}{n} \sum_{i=1}^{n} \hat{\sigma}_{y_{i}}^{2}} \quad \chi_{2} \quad 5.26$
$\begin{array}{llll}\text { pooled mean } & \overline{\bar{y}}=\frac{1}{n} \sum_{i=1}^{n} \bar{y}_{i} & \psi_{1} & 1.17\end{array}$
mean heterogeneity $\sqrt{\frac{1}{n} \sum_{i=1}^{n}\left(\bar{y}_{i}-\overline{\bar{y}}\right)^{2}} \quad \psi_{2} \quad 0.20$
total heterogeneity $\sqrt{\chi_{2}^{2}+\psi_{2}^{2}} \quad \omega \quad 5.26$

Table 9: Sample Errors of CAPM and APT Models, for Fama-French 5x5 Stock Portfolios

Notes:
(i) For $5 \times 5=25$ portfolios, sample 1947:01-2007:12, a model for monthly excess returns (in percent form) for a portfolio i at time t is given by $y_{i t}=\alpha_{i}+\beta_{i} x_{t}+\varepsilon_{i t}, i=1,2, \ldots, 25, \quad t=$ $1,2, \ldots, T$.
(ii) $\phi=$ model error $(\mathrm{RMSE})=\sqrt{\chi_{1}^{2}+\chi_{2}^{2}}=\sqrt{\psi_{1}^{2}+\omega^{2}}, \chi_{1}=\sqrt{\psi_{1}^{2}+\psi_{2}^{2}}, \omega=\sqrt{\psi_{1}^{2}+\chi_{2}^{2}}$. Definitions of ϕ, χ, etc. appear in Table 1.

model	systematic risk	total error ϕ	```non-stochastic error \chi1```	stochastic error χ_{2}	pooled bias ψ_{1}	bias heterog. ψ_{2}	total heterog. ω
$\begin{aligned} & \text { CAPM } \\ & \text { APT } \end{aligned}$	market	2.89	0.58	2.83	0.52	0.25	2.84
	none	5.39	1.19	5.26	1.17	0.20	5.26
	smb	4.56	1.08	4.43	1.06	0.21	4.43
	hml	5.23	1.30	5.06	1.29	0.14	5.06
	smb, hml	4.43	1.11	4.29	1.10	0.11	4.30
	market, smb	2.15	0.57	2.08	0.51	0.26	2.09
	market, hml	2.60	0.43	2.56	0.41	0.14	2.57
	all	1.68	0.38	1.64	0.35	0.13	1.65

Updated: Petr, May 22, 2008

Table 10: Theoretical Distribution of Model RMSE and its Components, based on the Sample 1947:01 2007:12, Part 1/2

Notes:
(i) $\phi=$ model RMSE $=\sqrt{\chi_{1}^{2}+\chi_{2}^{2}}=\sqrt{\psi_{1}^{2}+\omega^{2}}, \omega=\sqrt{\psi_{1}^{2}+\chi_{2}^{2}}, \chi_{1}=\sqrt{\psi_{1}^{2}+\psi_{2}^{2}}$. Definitions of ϕ, χ, etc. appear in Table 1.
(ii) The mean and variance of the statistics are calculated as $E(Q)=\operatorname{tr}[S V]+\mu^{\prime} S \mu$ and $V(Q)=2 \operatorname{tr}[S V S V]+4 \mu^{\prime} S V S \mu$ with elements of these formulas given in Tables 4-7.
(iv) The interval $\hat{E}(Q) \pm 3 \sqrt{\hat{V}(Q)}$ has, from Chebychev's inequality, has at least 89 percent chance $\left(=100\left(1-\frac{1}{3^{2}}\right)\right)$ of containing the true Q value, in large samples.

model	risks	$\hat{E}(Q)$	$\sqrt{\hat{V}(Q)}$	$\hat{E}(Q)-3 \sqrt{\hat{V}(Q)}$	$\hat{E}(Q)+3 \sqrt{\hat{V}(Q)}$
			total error $\hat{\phi}^{2}=\frac{1}{n} \sum_{i} \hat{\alpha}_{i}^{2}+\frac{1}{n} \sum_{i} \hat{\sigma}_{i}^{2}$		
CAPM	mkt	8.34	0.25	7.60	9.08
APT	none	29.03	1.26	25.25	32.81
	smb	20.74	0.90	18.02	23.45
	hml	27.55	1.26	23.78	31.33
	smb, hml	19.62	0.90	16.90	22.33
	mkt, smb	4.63	0.12	4.28	4.97
	mkt, hml	6.75	0.22	6.07	7.42
	all	2.82	0.04	2.69	2.96
			non-stochastic error $\hat{\chi}_{1}^{2}=\frac{1}{n} \sum_{i} \hat{\alpha}_{i}^{2}$		
CAPM	mkt	0.35	0.07	0.14	0.56
APT	none	1.45	0.41	0.23	2.67
	smb	1.19	0.31	0.25	2.14
	hml	1.80	0.47	0.40	3.21
	smb, hml	1.25	0.33	0.26	2.24
	mkt, smb	0.33	0.05	0.18	0.49
	mkt, hml	0.20	0.05	0.04	0.36
	all	0.15	0.02	0.10	0.19
			stochastic error $\hat{\chi}_{2}^{2}=\frac{1}{n} \sum_{i} \hat{\sigma}_{i}^{2}$		
CAPM	mkt	7.99	0.24	7.29	8.70
APT	none	27.58	1.19	24.00	31.16
	smb	19.54	0.85	17.00	22.08
	hml	25.75	1.17	22.25	29.25
	smb, hml	18.37	0.84	15.84	20.89
	mkt, smb	4.29	0.10	3.99	4.60
	mkt, hml	6.55	0.22	5.89	7.20
	all	2.68	0.04	2.55	2.80

Updated: Petr, June 3, 2008

Table 11: Theoretical Distribution of Model RMSE and its Components, based on the Sample 1947:01 2007:12, Part 2/2

Notes:
(i) $\phi=$ model RMSE $=\sqrt{\chi_{1}^{2}+\chi_{2}^{2}}=\sqrt{\psi_{1}^{2}+\omega^{2}}, \omega=\sqrt{\psi_{1}^{2}+\chi_{2}^{2}}, \chi_{1}=\sqrt{\psi_{1}^{2}+\psi_{2}^{2}}$. Definitions of ϕ, χ, etc. appear in Table 1. Each statistic is of the form \sqrt{Q}, for a qudratic form $Q=\mathbf{y}^{\prime} S \mathbf{y}$. (ii) The mean and variance of the statistics are calculated as $E(Q)=\operatorname{tr}[S V]+\mu^{\prime} S \mu$ and $V(Q)=2 \operatorname{tr}[S V S V]+4 \mu^{\prime} S V S \mu$ with elements of these formulas given in Tables 4-7.
(iv) The interval $\hat{E}(Q) \pm 3 \sqrt{\hat{V}(Q)}$ has, from Chebychev's inequality, has at least 89 percent chance $\left(=100\left(1-\frac{1}{3^{2}}\right)\right)$ of containing the true Q value, in large samples.

model	risks	$\hat{E}(Q)$	$\sqrt{\hat{V}(Q)}$	$\hat{E}(Q)-3 \sqrt{\hat{V}(Q)}$	$\hat{E}(Q)+3 \sqrt{\hat{V}(Q)}$
				pooled bias ψ_{1}^{2}	
CAPM	mkt	6.89	1.62	2.03	11.74
APT	none	35.10	10.21	4.47	65.73
	smb	28.62	7.90	4.94	52.31
	hml	44.39	11.60	9.60	79.19
	smb, hml	30.83	8.29	5.97	55.70
	mkt, smb	6.56	0.94	3.75	9.36
	mkt, hml	4.35	1.24	0.64	8.07
	all	3.11	0.41	1.89	4.33
				bias heterogeneity ψ_{2}^{2}	
CAPM	mkt	0.07	0.02	0.01	0.13
APT	none	0.05	0.01	0.00	0.09
	smb	0.05	0.02	0.00	0.10
	hml	0.03	0.01	-0.01	0.06
	smb, hml	0.02	0.00	0.00	0.03
	mkt, smb	0.07	0.02	0.01	0.13
	mkt, hml	0.02	0.01	0.01	0.04
	all	0.02	0.01	0.01	0.03
				total heterogeneity ω^{2}	
CAPM	mkt	8.06	0.24	7.36	8.77
APT	none	27.63	1.19	24.05	31.21
	smb	19.59	0.85	17.05	22.13
	hml	25.78	1.17	22.28	29.28
	smb, hml	18.38	0.84	15.86	20.91
	mkt, smb	4.36	0.10	4.05	4.68
	mkt, hml	6.57	0.22	5.92	7.23
	all	2.70	0.04	2.57	2.82

Updated: Petr, June 3, 2008

Table 12: Bootstrapped Distribution of Model RMSE and its Components, 10,000 simulations, based on the Sample 1947:01-2007:12, 1/2

Updated: Petr, June 3, 2008

Table 13: Bootstrapped Distribution of Model RMSE and its Components, 10,000 simulations, based on the Sample 1947:01-2007:12, 2/2

model	risks	mean	stdev	1\%	5\%	10\%	90\%	95\%	99\%
pooled bias: ψ_{1}^{2}									
CAPM	market	6.86	1.63	3.60	4.37	4.84	8.99	9.68	11.09
APT	none	35.04	10.04	15.14	19.75	22.71	48.22	52.73	61.59
	smb	28.65	7.83	12.92	16.83	18.87	39.04	42.31	49.08
	hml	42.35	11.03	20.09	25.56	28.58	56.75	61.48	70.79
	smb, hml	30.84	8.23	14.28	18.33	20.60	41.71	45.32	52.19
	capm, smb	6.54	0.93	4.51	5.10	5.39	7.78	8.16	8.86
	capm, hml	4.34	1.24	1.84	2.45	2.83	5.95	6.48	7.64
	all	3.11	0.41	2.24	2.48	2.60	3.65	3.81	4.13
bias heterogeneity: ψ_{2}^{2}									
CAPM	market	0.07	0.02	0.03	0.04	0.05	0.10	0.11	0.13
APT	none	0.05	0.01	0.02	0.03	0.03	0.07	0.07	0.09
	smb	0.05	0.02	0.02	0.03	0.03	0.07	0.08	0.09
	hml	0.03	0.01	0.01	0.01	0.01	0.04	0.05	0.06
	smb, hml	0.02	0.00	0.01	0.01	0.01	0.02	0.02	0.03
	capm, smb	0.07	0.02	0.03	0.04	0.05	0.10	0.10	0.12
	capm, hml	0.02	0.01	0.01	0.01	0.02	0.03	0.04	0.05
	all	0.02	0.01	0.01	0.01	0.01	0.03	0.03	0.04
total heterogeneity: ω^{2}									
CAPM	market	8.06	0.52	6.97	7.27	7.41	8.74	8.96	9.44
APT	none	27.63	1.93	23.49	24.62	25.24	30.16	30.98	32.40
	smb	19.60	1.16	17.08	17.78	18.15	21.11	21.59	22.44
	hml	25.59	1.89	21.58	22.65	23.24	28.06	28.85	30.40
	smb, hml	18.39	1.12	15.97	16.63	16.98	19.86	20.33	21.21
	capm, smb	4.36	0.25	3.82	3.97	4.05	4.69	4.79	4.98
	capm, hml	6.57	0.42	5.72	5.94	6.06	7.12	7.29	7.64
	all	2.70	0.10	2.48	2.54	2.57	2.83	2.87	2.95

Updated: Petr, June 3, 2008

[^0]: ${ }^{1}$ Correspondence address: Scott Gilbert, Associate Professor, Department of Economics, Mailcode 4515, Southern Illinois University Carbondale, Carbondale, IL 62901-4515, Tel: (618) 453-5065, Fax: (618) 4532717, E-mail: gilberts@siu.edu.
 ${ }^{2}$ CERGE-EI is a joint workplace of the Center for Economic Research and Graduate Education, Charles University, and the Economics Institute of the Academy of Sciences of the Czech Republic.

[^1]: ${ }^{3}$ With R_{i} and R_{m} distributed multivariate normal, $E\left[R_{i} \mid R_{m}\right]=\gamma_{i}+R_{0}+\beta_{i}\left(R_{m}-R_{0}\right)$, with $\gamma_{i}=$ $E\left[R_{i}\right]-R_{0}-\beta_{i}\left(E\left[R_{m}\right]-R_{0}\right)$. Also, from equations (1), (2), and (3), $\alpha_{i}=E\left[R_{i}-R_{0}-\beta_{i}\left(R_{m}-R_{0}\right)\right]$, hence $\gamma_{i}=\alpha_{i}$.

[^2]: ${ }^{4}$ The coincidence of notation ε_{i} in equation (9) and earlier ones like (2) is intentional and is discussed below.

[^3]: ${ }^{5}$ Coincidence of 'alpha' notation α_{i} in equations (11) and (2) is explained below.
 ${ }^{6}$ In equation (12), the average of squared alpha values converges to 0 , for large m : somewhat more generally, the APT stipulates that $\sum_{i=1}^{m} \alpha_{i}^{2}$ remains bounded as $m \rightarrow \infty$.
 ${ }^{7}$ For discussion on this point see Huberman, Kandel, and Stambaugh (1987).

[^4]: ${ }^{8}$ In the market model (4), with market portfolio return R_{m} equal to a weighted sum $\sum_{i} w_{i} R_{i}$ of asset returns, the weighted average alpha necessarily equals zero: $\sum_{i} w_{i} \alpha_{i}=0$, though the simple average $n^{-1} \sum_{i} \alpha_{i}$ may be non-zero. The same result holds for the APT regression equation (13).
 ${ }^{9}$ Note that, from equation (19), $\phi^{2}=\chi_{1}^{2}+\chi_{2}^{2}=\psi_{1}^{2}+\psi_{2}^{2}+\chi_{2}^{2}$.

[^5]: ${ }^{10}$ The symbol ε_{i} was earlier used in equation (2) to represent the random component of the error made by an economic model, and is justified in regression (21) due to the intercept identification $\beta_{0 i}=\alpha_{i}$.

[^6]: ${ }^{11}$ Note that ϕ represents the RMSE of the economic model, inclusive of bias, whereas in regression the standard RMSE statistic describes model fit without bias.

[^7]: ${ }^{12}$ The results in Table 2 are readily derived from standard least-squares formulas, as contained in econometric texts like Greene (2003) and Ruud (2000).
 ${ }^{13}$ See Horn and Johnson (1999), Magnus and Neudecker (2002).

[^8]: ${ }^{14}$ See for example Wiley (1970), for a presentation of this classic result.
 ${ }^{15}$ See Wiley (1970). As with expectation E, variance V is computed conditional on x.
 ${ }^{16} \mathrm{We}$ are assuming the data is independent and identically distributed, over time.

[^9]: ${ }^{17}$ Computer code, for the computations in tables $4, \ldots, 7$ are available from the authors' website, as EViews programs.

[^10]: ${ }^{18}$ If $\mu-k \sigma<0$ then we can replace the expression $\sqrt{\mu-k \sigma}$ with the value 0 in formula 31 .
 ${ }^{19}$ See http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.

[^11]: ${ }^{20}$ In their paper, Fama and French do not define these as APT models.

[^12]: ${ }^{21}$ Estimates of kurtosis suggest fat-tailed, non-normal distributions for the 5 x 5 return data: with average kurtosis equal to 5.534 .

[^13]: ${ }^{22}$ See the authors' website for tables corresponding to this sample.

[^14]: ${ }^{23}$ See Magnus and Neudecker (2002,p. 28).
 ${ }^{24}$ Each of these block matrices is a Kronecker sum, and their product is also a Kronecker sum with square block $a_{x} a_{x}^{\prime}$ repeating on the diagonal.

[^15]: ${ }^{25}$ This is a standard regression result, see Goldberger (1991, Ch. 14.2).

