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1 Introduction

The stock market is a chance for ordinary households to share in firms’ profits. The history
of the stock market suggests that profits of diverse companies are related to each other,
despite differences in industry, region, etc., thereby generating a systematic risk to firm
values. For households, existence of inter-firm, macroeconomic, systematic risk means that
a well-diversified stock portfolio is risky, though less risky than any individual stock.

Economic models, including the capital asset pricing model (CAPM) and the arbitrage
pricing theory (APT), provide an opportunity to characterize rational responses to system-
atic risk. Both the CAPM and APT yield risk-conditioned expectations of the return on
assets, and in rational, efficient markets these expectations should be unbiased, or nearly
so, for most assets. The difference between actual and expected return is the model’s er-
ror, which includes bias – if any exists – plus random, idiosyncratic variation in returns.
Economic research on the CAPM and APT has focused on evidence of bias, and hence
deviations from rationality or efficiency, based on statistical tests such as likelihood ratio,
Wald, Lagrange multiplier, GMM, and F tests. Such tests are statements about statistical
significance, not necessarily practical signficance.

We focus on the typical size of model errors, over time and across assets, for models in
which systematic risk is represented by returns on one or more observable funds. We estimate
total error and also its bias and variance components. Large estimated bias often suggests
the existence of extraordinary returns on some assets, and in a highly influential paper Fama
and French (1993) use this principle to choose among models – discarding as incredible
models with large bias. Fama and French also prefer models with smaller error variance, and
overall they proceed as if they care about the magnitude of total error, including bias and
variance, with preference for small error.

We estimate the size of errors in models of systematic risk. In addition to point point
estimates, we obtain closed-form expressions and computational formulas for distribution mo-
ments, under the assumption of normally distributed asset returns. By comparison, Geweke
and Zhou (1996) compute numerically Bayesian posterior distributions for bias in an APT
model with unobserved factors. We check the performance of our moment estimators via
bootstrap simulation based on real stock return data, and find they work well despite ap-
parent non-normality in the data.

The remainder of this work is organized as follows. Section 2 provides an economic
context for the proposed methods, Section 3 proposes some statistics, Section 4 provides
distributional theory for the new statistics, and Section 5 applies the methods to the stock
market.
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2 Economic Theory

Many economic models imply formulas for the expectations held by economic agents, and for
each such expectation their is an associated error, equal to the difference betweeen realized
value and predicted value. We want to examine, via econometrics, the size of such errors,
in the case where investors hold expectations about the returns on capital assets. Even in
this special setting there are numerous economics models, with acronyms like CAPM, APT,
ICAPM, and CCAPM. Among these, the capital asset pricing model (CAPM) and the
arbitrage pricing theory (APT) are static (one-period) models in which systematic risk plays
a natural role. We will focus on errors in this sort of model, with portfolio choice among
assets during a single period, and random asset returns which have a normal probability
distribution.

Let R1, ..., Rn be the returns on n risky assets, with a probability distribution which
is jointly normal N(µ, Ω), with mean vector µ having typical element µi given by E[Ri],
and variance-covariance matrix Ω with typical element Ωij given by cov(Ri, Rj). There is a
riskless asset with interest rate R0. Each investor has some endowment of assets, and chooses
portfolio weights π0, π1, ..., πn, which together sum to 1, earning a return on investment Rπ

equal to π0R0 + π1R1 + · · ·+ πnRn. Investor’s preferences among portfolios are represented
by some function U of the portfolio return’s mean µπ and variance σ2

π, and is not otherwise
affected by the comovement of Rπ with other factors, such as labor income. This setting
is consistent with the CAPM model of Sharpe (1964) and Lintnter (1965), and the APT
model of Ross (1976), but is inconsistent with the intertemporal CAPM (ICAPM) models
of Merton (1973), Breeden (1979) and Campbell (1993).

Suppose that some investors’ endowments yield them less utility than is possible via
trade in financial markets. Let F be any commonly traded fund, composed of risky assets,
purchased or sold by some investors to raise the utility of their portfolios. For example, F
could be a market basket of stocks purchased by an investor with no endowment of stock,
or it could be a basket of stocks for those firms having small market capitalization (“small
cap”), etc. We treat information on such funds F as sufficient to represent systematic risk,
and do not explicitly consider other risks such as fluctuation in economic growth, or inflation.

A fund F provides a return on investment, call it RF . Let F be the collection of assets
which are included in the fund. The return Ri on any asset i in F is linked to the fund
return RF , because the asset is included in the fund. To further describe the link between
systematic risk F and underlying asset return Ri, consider the expectation E[Ri|RF ] of Ri

conditional on an observed value for fund return RF , or a collection of such fund returns.
If the fund achieves, via diversification across F , near elimination of all risk, then RF may
be nearly constant, in which case the conditional expecation E[Ri|RF ] may be close to the
unconditional expectation E[Ri]. If so, the link between systematic risk and asset returns
is weak. On the other hand, if RF contains substantial risk, not diversified via F , then
E[Ri|RF ] may frequently be far from E[Ri], supporting a strong link between systematic
risk and the underlying assets.

Conditional expected returns E[Ri|RF ] are predictions of returns Ri, given fund perfor-
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mance RF , and as such incur errors, equal to the difference Ri − E[Ri|RF ] . It is helpful
to distinguish between ordinary mathematical expectations E and what we will call model
predictions, denoted E∗, which incorporate some restrictions on (µ, Ω) implied by economic
theory. For the latter, we will suppose that investor actions either lead to a fully optimal,
utility-maximizing, socially efficient market outcome, or at least guarantee an outcome which
is deemed satisfactory or sufficient. In the CAPM theory, investor actions are fully optimal,
while in the APT theory, they need only preclude arbitrage – a sufficient outcome. For
expectations E∗, obtained from some economic model, errors δi are as follows:

δi = Ri − E∗[Ri|RF ] (1)

for each i in F . The quantity δi is a random variable having some mean value αi. If model
predictions are unbiased then αi = 0 for each i in F , otherwise some expections are biased.
Without loss of generality, model errors take the form:

δi = αi + εi (2)

for i = 1, 2, ..., n, where εi is a random error for which E[εi|RF ] = 0.
The present work is devoted to estimating the magnitude of model errors, empirically,

for given funds F , with focus on aggregate, or overall, error magnitude observed across all
the assets in the relevant set F . We are interested both in bias α and the random error ε,
that together generate model errors via equation (2).

We next illustrate the above-described framework of model errors, in the CAPM and
APT models. To summarize, in the CAPM and APT both the bias and random error
components of δi are of economic interest: large biases suggest instances of extraordinary
asset performance, and small random errors suggest importance of systematic risk.

2.1 CAPM

In the CAPM model, as presented in Sharpe (1964) and Lintner (1965), all investors have
the same beliefs regarding the distribution of asset returns, a distribution which is assumed
multivariate normal with mean vector µ and covariance matrix Ω. Asset markets are in
competitive equilibrium, and each investor maximizes utility by forming an optimal portfolio
of risky and riskless assets. In equilibrium, investors each hold the market portfolio of risky
assets, and to achieve this outcome they buy and sell assets, if needed. For investors with no
endowment of stocks, the market portfolio represents a fund F that is purchased to maximize
utility. The fund F represents the whole market, so the collection F of assets included in F
is the entirety of all traded assets. The fund’s return RF is the market return, denoted here
as Rm, and for each asset i the CAPM expected return, conditional on Rm, is:

E∗[Ri|Rm] = R0 + β(Rm −R0) (3)

with ‘beta’ value β = cov(Ri, Rm)/V (Rm). In the CAPM, actual returns Ri will almost
surely differ from the expectation shown in equation (3): this difference is represented by
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the quantity δi in equations (1) and (2), with the latter equation decomposing δi into bias
αi and random error εi. If the CAPM model is correct, bias αi is zero; if not then model
prediction can differ from the more generally valid expectation formula which, under the
asssumed normality of returns and the non-stochastic nature of R0, can be expressed as
follows:3

E[Ri|Rm] = αi + R0 + βi(Rm −R0) (4)

In equation (4), also called the market model, the ‘alpha’ value αi takes on an additional
meaning, connoting ‘extraordinary’ returns. To make this clearer we can compare equations
(3) and (4), and observe that αi equals the difference between generally-vaid expectation E
and CAPM model prediction E∗:

αi = E[Ri|Rm]− E∗[Ri|Rm]

Hence αi represents a surprise to investors, associated with revising expectation away from
that formed in CAPM equilbrium, for the i-th asset. If such surprises are rare then αi may
represent an extraordinary return. Estimates of alpha, for the market model, are widely
reported and of general interest to financial economists. In the present work we seek to
estimate the typical magnitude of bias αi across all relevant assets i.

The market portfolio’s random return represents a risk, in the CAPM, for those who
share in the purchase of the market fund, and more generally for all investors since each
ends up holding some combination of the riskless asset and the market portfolio of risky
assets. How important is this risk? The CAPM theory itself has no answer to this question:
systematic risk can be trivial and unimportant if all returns Ri are mutually independent.
In particular, if risky returns are IID normal then the market portfolio is an equal-weighted
average R̄ of all these returns, and for large n the correlation between any asset return and
R̄ converges to zero. On the other hand, systematic risk can be important if important if
returns exhibit unequal variance or strong correlation among each other.

To further discuss risk in the CAPM, we use equations (2) and (3) to relate returns Ri

to market return Rm and random error εi, yielding the standard CAPM equation:

Ri = R0 + βi(Rm −R0) + εi (5)

for i = 1, 2, ..., n. If asset returns are IID normal then Rm = R̄, βi = 1 for each i, and
V [εi] = V [Ri](1− 1

n
). If, further, n gets large then risk has vanishing importance and:

1

n

n∑

i=1

V [Ri] ≈ 1

n

n∑

i=1

V [εi] (6)

That is, if risk is totally idiosyncratic, diversifiable, and unimportant then the errors in the
CAPM equation (5) should have the same variability as the asset returns themselves. The

3With Ri and Rm distributed multivariate normal, E[Ri|Rm] = γi + R0 + βi(Rm − R0), with γi =
E[Ri]−R0−βi(E[Rm]−R0). Also, from equations (1), (2), and (3), αi = E[Ri−R0−βi(Rm−R0)], hence
γi = αi.
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approximation (6) remains valid if we allow returns to have unequal mean values or unequal
variances, so long as such between-asset differences remain bounded as n →∞.

If some risk is systematic and hence important then equation (6) must not hold, a situ-
ation implied by the following condition:

1

n

n∑

i=1

V [εi] <<
1

n

n∑

i=1

V [Ri] (7)

That is, if the bound (7) holds then systematic risk is important in the CAPM, as can be fur-
ther demonstrated by decomposing return variance V [Ri] into systematic and idiosyncratic
components:

V [Ri] = β2
i V [Rm] + V [εi] (8)

for each asset i. For a given value of return variance V [Ri], if idiosyncratic variance compo-
nent V [εi] is relatively small then systematic variance component β2

i V [Rm] must be relatively
large.

2.2 APT

In the Ross (1976) APT, returns on assets conform to a strict factor model:

Ri = µi + γiz + εi (9)

where µi = E[Ri] as earlier, z is a K × 1 vector z of unobserved random factors, for some
K ≥ 0, γi is a 1 × K vector of constants – ‘factor loadings’, and εi is a random error.4

The factors z1, ..., zK each have zero mean, and they have a variance/covariance matrix, say
Ωz, which, without loss of generality, equals the K × K identity matrix IK . Each error εi

has zero mean, positive variance, and zero covariance with z. Distinct errors εi and εj are
uncorrelated, and since we assume asset returns are distributed jointly normal, without loss
of generality we suppose that z is a standard normal vector, and that ε1, ε2, ... are mutually
independent normal variables, all independent of z.

The factor model, as specified by equation (9), does not explicitly link asset returns Ri to
risk represented by the return RF on a commonly traded fund(s) F . Instead it links returns
Ri to a vector z of unobserved factors. To incorporate F , a possibility is to suppose that z
is linearly related to a vector RF of fund returns, with each fund composed of all assets, via:

z = ν + ΦRF (10)

for some K-vector ν and some K ×K invertible matrix Φ. Equation (10) is not generally
consistent with the factor model (9). This is easy to confirm in the case n = 2 and K = 1,
with ε1 and ε2 standard normal variables, and µ1 = µ2 = γ1 = γ2 = 1, RF = π1R1 + π2R2,

4The coincidence of notation εi in equation (9) and earlier ones like (2) is intentional and is discussed
below.
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since here the covariance of R1 and RF must be equal the covariance of R2 and RF : Φ(2π1 +
π2) = Φ(π1 + 2π2), implying that π1 = π2, in which case errors ε in equation (10) are the
same as those in regression of returns on their average R̄ = (R1+R2)/2, yielding Ri = R̄+εi,
for i = 1, 2, in which case errors ε1 and ε2 have negative covariance: −1

2
, a contradiction.

However, if we have instead n = 3 then this error covariance becomes −1
3
, closer to zero,

and it approaches 0 as n → ∞, so violations of (10) are not necessarily important in large
samples.

The APT theory is itself a large-sample theory, with the celebrated implication:5

E[Ri] = αi + R0 + βiτ (11)

for a K × 1 vector τ and some scalars α1, ..., αm for which:6

1

n

n∑

i=1

α2
i → 0 as n →∞ (12)

Applying equations (9), (10) and (11), we find that the vector τ in equation (11) has typical
element τk = E[RFk]−R0,

7 in which case:

Ri = αi + R0 +
K∑

k=1

βik(RFk −R0) + εi (13)

Under the APT restriction (12), the typical magnitude of αi should be small when n is large,
in which case we can interpret the large-n prediction E∗[Ri|RF ] to be:

E∗[Ri|RF ] = R0 +
K∑

k=1

βik(RFk −R0) (14)

By comparison, a generally valid expectation formula, under assumed normality of asset
returns, is:

E[Ri|RF ] = αi + R0 +
K∑

k=1

βik(RFk −R0) (15)

In the framework specified by equations (13)-(15), we can now endow the symbols αi

and εi with the meaning given earlier in equation (2), where αi is the bias component of the
model error δi = Ri −E∗[Ri|F ], and εi is the random component. As in the CAPM, bias αi

in the APT can be interpreted as an extraordinary return.
The importance of risk, in the APT, is unclear a proiri. Consider, as in the CAPM

discussion earlier, the large-n no-risk case where asset returns are IID normal. From the
APT regression (13), the covariance between asset returns is:

5Coincidence of ‘alpha’ notation αi in equations (11) and (2) is explained below.
6In equation (12), the average of squared alpha values converges to 0, for large m: somewhat more

generally, the APT stipulates that
∑m

i=1 α2
i remains bounded as m →∞.

7For discussion on this point see Huberman, Kandel, and Stambaugh (1987).
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COV [Ri, Rj] = β′iΩRF
βj (16)

for each i and j, where βi is the K-vector of factor loadings for asset i, and ΩRF
is the

variance-covariance matrix for RF . With ΩRF
a positive definite matrix, there can be at

most K assets for which βi has non-zero elements and such that, whenever paired, the i, j
covariance in equation (16) equals zero. Hence, for large n, if returns are IID normal then
βi equals the K × 1 zero vector 0K for almost all n, and in the APT regression (13) the
typical variance of returns Ri is about the same as the typical variance of errors εi. That is,
equation (6) holds, just as in the CAPM, in the absence of systematic risk. As earlier, (6)
holds even if we allow non-constant mean and variance values for returns Ri, provided that
such between-asset differences remain bounded as n gets large.

If some risk is systematic in the APT then equation (6) must fail, just as in the CAPM,
and if this risk is large then the bound (7) should hold. As earlier, we can usefully decompose
return variance into systematic and idiosyncratic components:

V [Ri] = β′iΩRF
βi + V [εi] (17)

for each asset i, in which case smaller idiosyncratic risk V [εi] implies a larger systematic risk
β′iΩRF

βi, for each given value of return variance V [Ri].

3 Statistics

3.1 Measures of error magnitude

We want to size up the errors δi in models of systematic risk. In the aggregate, across assets
i = 1, 2, ..., n, a simple measure of the magnitude of model error is the expected mean square
error, or equivalently the root mean squared error (RMSE), which we denote as φ:

φ =

√√√√ 1

n
E

[
n∑

i=1

δ2
i

]
(18)

For the economist that wants an economic model to have small error, a small value of φ may
be desired. However, the typical investor may hold a different view about φ: to see why,
first decompose each error δi as in equation (2), and express the i-th expected square error
E[(δi)

2] as:

E
[
δ2
i

]
= α2

i + σ2
i

with squared bias term α2
i and variance term where σ2

i = V [εi]. We can then write RMSE
as the contribution of two components:

φ =

√√√√ 1

n

n∑

i=1

α2
i +

1

n

n∑

i=1

σ2
i (19)
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We can further define constants χ1 and χ2:

χ1 =

√√√√ 1

n

n∑

i=1

α2
i , χ2 =

√√√√ 1

n

n∑

i=1

σ2
i

in which case φ =
√

χ2
1 + χ2

2. The constant χ1 is the root mean square of biases, and hence
represents the model’s non-stochastic error magnitude, whereas χ2 is the root mean square
of standard deviations, and is therefore the stochastic error magnitude.

If the typical investor views the existence of shared, or systematic, risk as bad, they may
prefer, for given values of asset return variances V [Ri], i = 1, 2, ..., n, that the stochastic
error magnitude ψ2 be relatively large, since this suggests a relatively small contribution of
systematic risk to V [Ri] (for relevant discussion see the previous section on the CAPM). But
if so then the investor may prefer to see a larger RMSE value φ, for the economic model,
under some conditions. At the least, it seems reasonable to seek information about RMSE
components χ1 and χ2, when one is investigating RMSE itself.

Concerning model bias (α), if bias is bad then presumably a smaller value of root-mean-
square bias (χ1) is preferred. But since bias is evaluated across n separate investments, the
individual biases α1, ..., αn may or may not be large on average.8 To address this possibility
we can define two more constants ψ1 and ψ2:

ψ1 = |ᾱ| , ψ2 =

√√√√ 1

n

n∑

i=1

(αi − ᾱ)2

where ᾱ is the average bias: 1
n

∑n
i=1 αi, in which case χ1 =

√
ψ2

1 + ψ2
2. The constant ψ1 is

the unsigned pooled bias, while ψ2 is the bias heterogeneity across assets. So, for a given
magnitude of bias – measured by χ1 – the relative contributions of ψ1 and ψ2 may be of
some interest.

Heterogeneity of bias, ψ2, can be viewed as ex ante source of heterogeneity in model
errors, while stochastic error magnitude χ2 can can be viewed as ex post heterogeneity. We
can then define total heterogeneity component ω, of model errors as:

ω =
√

ψ2
2 + χ2

2

By construction, RMSE can be expressed as φ =
√

ψ2
1 + ω2,9 in which case the model’s overall

error magnitude, measured by RMSE, can be attributed to common (ψ1) and heterogeneous
(ω2) components.

To further interpret the RMSE (φ) and its various components χ, ψ, ω, note that all of
these constants are non-negative. It then follows that φ is greater than or equal to each

8In the market model (4), with market portfolio return Rm equal to a weighted sum
∑

i wiRi of asset re-
turns, the weighted average alpha necessarily equals zero:

∑
i wiαi = 0, though the simple average n−1

∑
i αi

may be non-zero. The same result holds for the APT regression equation (13).
9Note that, from equation (19), φ2 = χ2

1 + χ2
2 = ψ2

1 + ψ2
2 + χ2

2.
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component value (χ, ψ, ω). Similarly, non-stochastic error magnitude χ1 is no less than its
component values ψ1 and ψ2. Each of these error measures is computable in terms of bias α
and error variance σ, as shown in Table 1.

[ INSERT Table 1 about here ]

3.2 Estimation

To apply the RMSE value φ, and its components, note that all of these constants can be
computed if bias αi and error variance σ2

i is known for each asset i, as implied by Table 1.
It then suffices to have good estimators α̂ of α and σ̂ of σ. We can write αi as:

αi = E[ E[Ri|RF ]− E∗[Ri|RF ] ] (20)

where as earlier Ri is the return on an asset, RF is the return on a commonly traded fund(s),
E represents mathematical expectation, and E∗ is prediction from the economic model. To
obtain equation (20) apply (1) and (2) and note that, by the law of iterated expectations,
E[E[Ri|RF ]] = E[Ri]. Earlier we assumed joint normality of asset returns, in which case
mathematical expectation can be written:

E[Ri|RF ] = βi0 + R0 +
K∑

j=1

βij(RFj −R0) (21)

with, as earlier, R0 the risk-free rate of return, for some intercept values βi0 and slopes βij,
i = 1, 2, ..., n, j = 1, 2, ..., K, with K the number of funds. model prediction E∗ imposes on
E some economic restrictions which, from equation (21), is some restriction(s) on β. In the
CAPM and APT economic models, which we earlier interpreted as models of systematic risk
– the general class of models we are interested in, the economic restriction on β is that the
intercepts βi0 each equal 0, and with this approach we have:

E∗[Ri|RF ] = R0 +
K∑

j=1

βij(RFj −R0) (22)

Model bias αi, for asset i, then coincides with the intercept βi0 in equation (21), and we can
re-state (21) as a set of regression equations:

Ri = αi + R0 +
K∑

j=1

βij(RFj −R0) + εi (23)

with regression errors εi which are normal, with mean 0 and variance σ2
i .

10

10The symbol εi was earlier used in equation (2) to represent the random component of the error made
by an economic model, and is justified in regression (21) due to the intercept identification β0i = αi.
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To estimate the regression system (21), we suppose that for all asset and fund returns
there are observations at successive times, denoted t = 1, 2, ..., T , such that the return proba-
bility distribution exhibits independence over time. With assumed normality, the maximum
likelihood estimator (MLE) of (α, β) is the same as the ordinary least squares (OLS) esti-
mator applied to each separate instance i = 1, 2, ..., n of (21). Denoting thess MLEs by α̂, β̂,
which are unbiased estimators, let σ̂2

i be the OLS regression standard error (of the estimate),
which is a bias-corrected version of the MLE for σ2.

Plugging in α̂ and σ̂ into the above formulas for the economic model’s magnitude of error,
we obtain consistent estimates φ̂, χ̂, ψ̂, ω̂ of RMSE φ and its components χ, ψ, ω.11

4 Econometric Theory

The proposed RMSE statistics have sampling distributions which are unknown. These dis-
tributions can be useful, and we therefore derive features of them.

4.1 Quadratic Forms

Nominally, the proposed statistics are measures of goodness-of-fit. Standard measures of
goodness-of-fit are based on sums of squares, or more generally quadratic forms, and suitable
transformations thereof. The proposed statistics fit in this category, also.

To proceed, in terms of notation let x be the T ×K matrix of data on the excess returns
of funds F , and let y be the T × n matrix of data on the excess returns on assets. Given
y, let vector y be the “vec” version of y, this being the nT × 1 column vector consisting
of the columns of y stacked on top of each other, starting at the left of y. We introduce a
semi-norm:

||y||S =
√

y′Sy (24)

for some square nT × nT symmetric positive semi-definite matrix S, with rank r which is
user-specified, and which we will call the kernel. We restrict attention to the situation where
S is a known function of x.

Semi-norm ||y||S represents the magnitude, or size, of some r-dimensional feature of the
nT × 1 vector y. A semi-norm is a generalization of the concept norm, such that ||z|| = 0
is possible for z 6= 0 when || · || is a semi-norm, but not a norm – see for example Horn and
Johnson (1999, p. 259). Matrices of type S can always be factored S = A′A, for some r×nT
matrix A, so we can view ||y||S as the (Euclidean) length of the r × 1 vector z = Ay, and
intepret z as the feature measured by ||y||S. For example, let A = C ′, with C the Cholesky
root of S. There is more than one such factorization, as S = A′B′BA for any r × r matrix
B for which B′ ×B = Ir, where Ir is the r × r identity matrix.

11Note that φ represents the RMSE of the economic model, inclusive of bias, whereas in regression the
standard RMSE statistic describes model fit without bias.
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For any two features z1 and z2, if A1A
′
2 = 0r1,r2 , with 0r1,r2 the r1 × r2 matrix consisting

of 0s, then the features are orthogonal in the sense that the mappings y → A1y and y →
A2y have derivatives d

dy
A1y = A1 and d

dy
A2y = A2, such that the rows of A1 are vectors

orthogonal to those of A2. We call quadratic forms Q1 = yS1y and Q2 = yS2y orthogonal if
S1S2 = 0nT,nT . It follows that if z1 and z2 are orthogonal then so are Q1 and Q2. Conversely,
if Q1 and Q2 are orthogonal then z1 and z2 are orthogonal. To see this note that if S1S2 =
0n,n = A′

1A1A
′
2A2 then the rank of S1S2 equals 0, and this is no more than the maximum of

the ranks of matrices: A′
1, A1A

′
2, and A2 which, when multiplied, yield S1S2, with A′

1 and A2

having ranks r1 and r2, respectively, implying that A1A
′
2 has rank 0 and hence equals 0r1,r2 .

If the elements of y are independent and identically distributed (IID) normal then features
are orthogonal if and only if they are stochastically independent. To see this note that

cov(z1, z2) = E[(z1 − Ez1)(z2 − Ez2)
′] = E[A1(y − Ey)(y − Ey)′A′

2]

Hence cov(z1, z2) = A1VyA
′
2, with Vy the variance-covariance matrix of y. If y is IID then

Vy is a multiple of the identity matrix, and so cov(z1, z2) = 0 if and only if A1A
′
2 = 0r1,r2 . In

the CAPM and APT models discussed earlier, the IID assumption can fail if, for example,
different assets i have different error variances V [εi], in which case orthogonal features z1

and z2 may be stochastically dependent.
Table 2 presents various statistics expressible as quadratic forms ||y||2S = y′Sy.12 This

table present some formulas that involve matrix producs, and inverses, and direct products
– also called Kronecker products.13. Included are three univariate statistics: the average
squared value: T−1y′y, the squared average: T−1ŷ′ŷ, and the average squared deviation:
T−1(y−ŷ)′(y−ŷ). The rank r of the corresponding S matrices is T , 1, and T−1, respectively.
In the case of squared average, the semi-norm ||y||S = |ȳ| represents the magnitude of a 1-
dimensional feature of the data, represented by the average ȳ which we can write as z1 = A1y
with A1 = n−11n. For the average squared deviation, the feature of interest has dimension
T − 1, and can be represented via a vector of contrasts z2 = A2y, where, with the aid of
Helmert’s transformation, we can select A2 and z2 via:

z21 = 1√
2n

(y1 − y2),

z22 = 1√
6n

(y1 + y2 − 2y3), ...,

z2,n−1 = 1√
n(n−1)n

(y1 + y2 + · · ·+ yn−1 − (n− 1)yn)

Other specifications of z2 are possible, for example by permuting elements yi of y in each of
the above formulas for the elements of z2. The average and the contrast vector are orthogonal
features of y, a fact expressible as S1S2 = 0 for respective kernels S1 and S2, which from
Table 1 are S1 = T−21T,T and S2 = T−1(IT−T−11T,T ). For IID normal data yt, t = 1, 2, ..., T ,
this implies the well-known fact that (ȳ)2 is independent of the sample variance s2

y. On the

12The results in Table 2 are readily derived from standard least-squares formulas, as contained in econo-
metric texts like Greene (2003) and Ruud (2000).

13See Horn and Johnson (1999), Magnus and Neudecker (2002).
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other hand if, say, the covariance matrix Vy of y is of diagonal form with non-constant entries
on the diagonal, then (ȳ)2 and s2

y are dependent, as can be shown by computing A1VyA2 and
verifying that it is not equal to the zero matrix 0T,T .

[ INSERT Table 2 about here ]

In the context of single-equation regression models, also addressed in Table 2, the (scaled)
magnitude of fitted value ŷ and residual y − ŷ are orthogonal features whose magnitudes
take the form ||y||S. In the multi-equation context (Table 2, bottom), most relevant to our
study, these features are present again, though passage to multiple equations complicates
matters somewhat, in terms of the S formula.

To cast RMSE estimator φ̂ and its components (χ̂, ψ̂, ω̂) as semi-norms of the form y′Sy,
we apply the expectation model (21) to data observed at times t = 1, 2, ..., T , as follows:

yit = αi + xtβ + εti (25)

where yit = Rti − Rt0 is excess return on the i-th asset at time t, xt is the 1 ×K vector of
excess returns RtFk − Rt0 for factors k = 1, 2, ..., K, at time t, and β is a K × 1 vector of
factor loadings. For OLS estimators (α̂i, β̂i) of (αi, βi), we have:

α̂i = ȳi − x̄β̂i (26)

with ȳi = 1
T
1′T yi, and β̂i = (x∗′x∗)−1x∗′y∗i , where yi is the T × 1 vector with typical element

yit, x∗ and y∗i are de-meaned (centered) versions of x and yi, and 1T is the T -vector with all
entries equal to 1. We can write y∗i = (IT − 1

T
1T,T )yi, with 1T,T the T × T matrix consisting

of 1s, in which case equation (26) yields:

α̂i = a′xyi

for each i = 1, ..., n, with T × 1 vector ax as follows:

ax =
1

T
1T − (IT − 1

T
1T,T ) x∗(x∗′x∗)−1 x̄

We can then write the n× 1 vector α̂ as

α̂ =




a′xy1
...

a′xyn




In terms of the nT × 1 vector y, we then have:
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α̂ = (In ⊗ a′x)y

Theorem 1 The kernel matrix, S, for the quadratic forms underlying sample RMSE and
its components are as shown in Table 3.

[ INSERT Table 3 about here ]

Corollary 1 The kernel matrices S associated with sample RMSE and its components have
the following relationships:

i. Sφ = Sχ1 + Sχ2, Sχ1 Sχ2 = 0
ii. Sφ = Sψ1 + Sω, Sψ1 Sω = 0
iii. Sχ1 = Sψ1 + Sψ2, Sψ1Sψ2 = 0
iv. Sω = Sχ2 + Sψ2, Sχ2Sψ2 = 0

From Corollary 1, components χ̂1 and χ̂2 of the sample RMSE (φ̂) are orthogonal in the sense
that their associated quadratic forms are orthogonal. Likewise, ψ̂1 and ψ̂2 are orthogonal,
as are ψ̂1 and ω̂, and χ̂2 and ψ̂2. If, conditional on X, the joint distribution of vector y is
IID normal it follows that orthogonal statistics are also independent. In application to stock
returns the IID assumption requires CAPM regression errors to have equal variance across
all assets, for example, and this is likely unrealistic. Hence orthogonal components of RMSE
may be stochastically dependent.

4.2 Moments

For point estimates of model error measures (φ, χ, , ψ, ω), we would like to know their proba-
bility distribution. For a quadratic form expressible as Q = y′Sy, with normally distributed
random vector y, the probability distribution of Q is the same as that of a weighted sum
of independent chi square random variables (Imhof (1961)). This distribution depends on
the associated weights, and generally can not be tabulated independently of them. For ex-
ample, in our setup if K = 1 then the squared non-stochastic error χ̂2

1 is just the sum of
squared sample averages

∑n
i=1(ȳi)

2, and its distribution depends on means, variances, and
covariances among the y variables, hence while we can view this distribution as a weighted
sum of chi squares, the weights are unknown a priori. Morever, there is no tractable way
to ‘standardize’ such statistics, via some transformation Q → Q∗, with Q∗ having a known
distribution (standard normal, chi square, etc.), even if the moments of y are known. This
remains true in large samples, despite availability of the centeral limit theorem.
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With some work we can obtain moments of the distribution of model error statistics. For
a quadratic form Q = y′Sy, with vector y having mean vector µ and covariance matrix V ,
and square matrix S, the expected value µ of Q is:14

E(Q) = tr[SV ] + µ′Sµ (27)

with “tr” meaning the trace operator – summing a matrix’s diagonal elements. The expecta-
tion E is interpreted as conditional on data x for the independent variables in the regression
model. Under the additional assumption that y is normally distributed, the variance of Q
is:15

V (Q) = 2 tr[SV SV ] + 4µ′SV Sµ (28)

To apply the mean formula (27) and variance formula (28) for quadratic forms in normal
variables, we need the relevant mean µ and variance V values. In our application, the variable
of interest is y, and we use the distribution of y conditional on x. With yti = αi + β′ixt + εti,
introduce notation: zt = (1, x′t)

′, and θi = (αi, β
′
i)
′, i = 1, ..., n, each of which is a (K +1)×1

vector. Then yti = θ′izt+εti, and the conditional mean of yti, given xt, is θ′izt. With (K+1)×n
matrix θ having typical row θi, and T × (K + 1) matrix z having typical column zt, we then
have the conditional mean µy of the nT × 1 vector y:

µy = vec(zθ)

To get the variance/covariance of y, conditional on x, using yti = ztθi+εti we observe that the
conditional variance of yit is the error variance V (εti). Let Vε denote the variance-covariance
matrix for (εti, i = 1, 2, ..., n), and any fixed t.16 When then have a formula for the variance
Vy of vector y:

Vy = Vε ⊗ IT

A practical challenge, in applying equations 27 and 28 is that they require multiplication
of huge matrices, unless n and T are small, with the number of calculations proportional
to (nT )2. Fortunately, the matrices being multiplied are ‘sparse’, and can be simplified, as
follows.

Theorem 2 The expected value formula (27) for the RMSE statistic and its components can
be expressed in a form that is computationally tractable. For this, Table 4 provides formulas
for tr[SVy], and Table 5 provides formulas for µ′ySµy.

14See for example Wiley (1970), for a presentation of this classic result.
15See Wiley (1970). As with expectation E, variance V is computed conditional on x.
16We are assuming the data is independent and identically distributed, over time.
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[ INSERT Tables 4 and 5 about here ]

Theorem 3 The variance formula (28) for the RMSE statistic and its components can be
expressed in a form that is computationally tractable. For this, Table 6 provides formulas
for tr[SVySVy], and Table 7 provides formulas for µ′ySVySµy.

[ INSERT Tables 6 and 7 about here ]

In Theorem 2 and 3, the required number of matrix computational steps is proportional to
n + K2T , as compared to (nT )2 needed for direct evaluation of equations 27 and 28.17

For non-normal data, with finite variance, the mean formula (27) for quadratic forms
remains valid but the variance formula (28) may not. For our model error statistics φ̂, χ̂, ψ̂, ω̂,
some of the variance formulas in Tables 6 and 7 remain valid in large samples even if data are
non-normal. If we assume that α̂ is asymptotically normal, then for statistics expressible as
quadratic forms in α̂ the proposed variance formulas are (asymptotically) valid. From Table
1, these ‘robust’ statistics are χ̂1, ψ̂1, and ψ̂2. The remaining statistics: φ̂, χ̂2, and ω̂ each
are functions of sample (error) variances, and the (population) variance of sample variance
is well-known to be sensitive to data non-normality, fat-tailed distributions, etc.

4.3 Confidence Intervals

For quadratic forms Q we calculated in Theorems 2 and 3 their mean and variance, and we
can then construct intervals of the form:

(
E[Q]± k

√
V [Q]

)
(29)

for some number k ≥ 0. By Chebychev’s inequality, this interval contains the value Q with
probability:

P (|Q− µ| ≤ kσ) ≥ 1− 1

k2
(30)

Hence, the bound (30) renders formula (29) a conservative confidence interval for Q, with
probability at least 1 − 1/k2 of containing the true value. If Q is normally distributed, or
nearly so, then (29) with k = 2 will have approximately 95% probability coverage, and with

17Computer code, for the computations in tables 4,..., 7 are available from the authors’ website, as EViews
programs.
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k = 3 will have about 99% coverage. This compares to conservative coverage levels 75% for
k = 2 and 89% for k = 3.

The RMSE statistic, and its components, is of the form
√

Q, with Q one of the quadratic
forms described earlier. Each Z is non-negative, in which case the transformation Q → √

Q
is monotonic (increasing). This provides a conservative confidence interval for

√
Q also:18

( √
µ− kσ,

√
µ + kσ

)
(31)

To use the formulas 29 and 31, we substitute unkowns µ and σ with plug-in values µ̂ and
σ̂. To do this we apply the formulas for µ and σ appearing in Theorems 2 and 3, and plug
in OLS estimates for regression constants α, β, Vε. This yields approximate (conservative)
confidence intervals, with probability coverage that approaches the true level in large samples
due to the consistency of estimators µ̂ and σ̂.

5 Application

5.1 Descriptives

Model error (φ) and its components describe on the ability of systematic-risk models to ‘fit’
data an asset returns. We illustrate the use of the RMSE statistics using an updated version
of the dataset from Fama and French (1993). The data has been downloaded from the web
site of Kenneth R. French, see Appendix B for a data description.19 The sample is extended
from the original 1963:7-1991:12 to 1946:1-2007:12 to cover the post WWII period. The
returns to be modelled are for the 5 x 5 = 25 Fama and French portfolios, with 5 (quintile)
categories of firm ‘size’ – measured by market capitalization, and 5 categories of firm ’value’
– measured by the ratio of book value to market value. The systematic risk factors include
the market (excess) return, the Fama and French SMB (small minus big) factor – measuring
difference in returns for small vs. big firms, and the HML (high minus low) factor – measuring
difference in returns for high-value versus low-value firms, see Appendix D for further details.

Table 8 summarizes the historical performance of the 5 x 5 portfolios, in terms of monthly
excess return. There are six statistics, describing aspects of portfolio performance, each
labelled with a symbol (φ̂, χ̂1, etc.) which corresponds to symbols used later to describe model
performance. The typical magnitude or ‘size’ of excess returns is described by the normed
return vector ||y||, which from Table 8 equals 5.39. Of this value 5.39, the normed mean
vector ||ȳ|| and the pooled variability σ̂y can be viewed components, equal to 1.19 and 5.26
respectively, whose root mean square value equals pooled variability: 5.39 =

√
1.192 + 5.262.

The normed mean vector ||ȳ|| itself has components: pooled mean and mean heterogeneity,
equal to 1.17 and 0.20, whose root mean square equals 1.19. Total heterogeneity, among
returns, is composed of mean heterogeneity and pooled variability, and equals 5.26. We can

18If µ− kσ < 0 then we can replace the expression
√

µ− kσ with the value 0 in formula 31.
19See http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html.
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further interpret the magnitude ||y|| of excess returns in terms of pooled mean (=1.17) and
total heterogeneity (=5.26) components, whose root mean square equals ||y||. On the whole,
excess returns are rather small in mean value, relative to their variability, and there is little
heterogeneity in mean value across portfolios, relative to the typical mean value.

5.2 CAPM and APT models

Table 9 reports model errors, for the CAPM model and seven APT models. For each error
statistic a useful reference point is the descriptive statistic in Table 8 having the correspond-
ing symbol (φ, χ1, etc.). Note that each column value in Table 8 equals a row value in Table 9,
for the row that reports on the APT model with no factors: in this model systematic risk
is precluded, and the APT prediction is that all assets earn the riskless return on average,
over time. This model’s error (RMSE), equal to 5.39, is necessarily larger than that of the
CAPM and alternative APT models. The correspondence between columns in Table 8 and
the ‘factorless’ APT row in Table 9 motivates our use of symbols φ, χ, etc. in Table 8.

[INSERT Table 9 about here]

The CAPM model’s RMSE error equals 2.89, mostly attributable to stochastic error
(=2.83) rather than non-stochastic error (=0.58). The latter is attributable more to pooled
bias (=0.52) than to bias heterogeneity (=0.25). Also, in reference to Table 8, the CAPM
model’s error is considerably less than the magnitude ||y|| of excess returns (=5.39).

Based on the economic theory discussion in Section 2, if the CAPM holds then the
model’s true non-stochastic error (χ1) should equal 0, and the sample value χ̂1 = 0.58 may
or may not be viewed as ‘close’ to zero. Concerning risk, if risk is unimportant and returns
are mutually independent with (nearly) equal variance then, from equation (6) Section 2,
stochastic error (χ2 = 2.83) should be about equal to pooled variability (=5.26, see Table 8),
but is instead more consistent with the bound (7) from Section 2, whereby stochastic error
is much less than pooled variability. That is, systematic risk seems important in the CAPM.

The remaining six APT models take the form of regression models orginally reported
in Fama and French (1993).20 In Table 9, these models are reported in the last six rows,
with the final row (“all”) including all 3 Fama-French factors – this being the well-known
“3-factor” model of stock returns. The non-stochastic error χ1 is estimated at 0.38 for the
3-factor model, compared to 0.58 for the CAPM, and consists more of pooled bias (=0.35)
than bias heterogeneity (=0.13). The estimate of stochastic error χ2 equals 2.83 for the
CAPM, versus 1.64 for the 3-factor model. Across the board, for each category of error
(φ, χ, etc.), the 3-factor model has smaller estimated error.

If the APT holds then, as discussed in Section 2, the true non-stochastic error (χ1) should
be equal to zero, or close to it. For the 3-factor model, the estimate χ̂1 = 0.38 may or may
not be viewed as ‘close’ to zero: it is about two-thirds the value of the CAPM χ̂1 = 0.58, so

20In their paper, Fama and French do not define these as APT models.
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if CAPM pricing errors were deemed far from zero – on the whole – it would be hard to say
that the 3-factor model’s pricing errors were close to zero. Also, sampling variability may
account for some of the difference between these χ̂1 values, an issue we address below.

The data suggests that risk is important in the 3-factor APT: stochastic error (χ̂2 = 1.64)
is small in comparison to pooled variability (=5.26), consistent with the bound (7) in Section
2. This compares to χ̂2 = 2.83 in the CAPM.

5.3 Error Distributions

For each of the model error statistics shown in Table 9, we report in Tables 10 and 11
some distribution characteristics of the quadratic forms underlying each statistic.Shown are
estimates of mean value, standard deviation, and intervals of form: mean ±3 std. dev., using
the methods spelled out in Section 4.

[INSERT Tables 10 and 11 about here ]

From the tables, the effect of sampling variability on model error statistics is sometimes
substantial, particularly in reference to non-stochastic error (χ1) and its components ψ1 and

ψ2, where the estimated standard deviation
√

V̂ (Q) is not negligible in comparison to the

estimated mean value Ê(Q). Earlier we noted that the CAPM and 3-factor Fama-French
model do not differ by a great margin, in terms of non-stochastic error estimates. Table
9 further suggests that whatever difference exist may be largely attributable to sampling
variability, rather than to a true difference in model performance. On the other hand, the
two models seem convincingly different in terms of stochastic error (χ2) and total error (φ).

5.4 Simulation

To check our theory-driven error distributions, we simulate error statistics via Monte Carlo.
As indicated in Tables 12 and 13, simulation is consistent with theory (Tables 10 and 11)
for those error statistics which involve alpha estimates only: χ̂1, ψ̂1, ψ̂2. For the other sta-
tistics: φ̂, χ̂2, ω̂, which involve variance estimates, simulation indicates greater variability
than suggested by the theory. This contrast is consistent with data non-normality which, as
mentioned in Section 4, does not have a large-sample impact on alpha-only statistics, but
can impact the other statistics.21

[INSERT Tables 12 and 13 about here ]

For purposes of comparing errors across models, in the case of the CAPM and 3-factor APT
models the simulation results give the same impression as did the theoretical distributions
reported earlier: the models differ convincingly in terms of stochastic error (χ2), but not in
terms of non-stochastic error (χ1).

21Estimates of kurtosis suggest fat-tailed, non-normal distributions for the 5x5 return data: with average
kurtosis equal to 5.534.
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6 Discussion

6.1 Methods

The proposed measures of model error, as presented in Table 1, are intended for models of
risk, as in the CAPM and APT, with risks proxied by portfolio returns. These (population)
measures, and their sample analogues, can be extended to other risk models as well, specif-
ically the Merton (1973) intertemporal capital asset pricing model (ICAPM). For this it is
necessary to allow for time-varying alphas and betas, perhaps by constructing annual alphas
and betas from daily data. Also, the econometric theory in Section 4 – for the distribution
of sample errors – would need to be extended to allow serial correlation in the data.

Our measures of model error are based of simple averages, across assets, of regression
intercept values, or regression errors. Value-weighted averages may be an attractive alter-
native, and these are easy to compute so long as the relevant weights are available. The
probability distribution, for the weighed averages, will generally differ from that described
in Section 4, but Theorems 1, 2, and 3 can be extended to handle this case.

Our econometric theory assumes that asset returns are normally distributed. For non-
normal data we can generalize variance equation (28) and Theorem 3 in Section 4. The
theory already calls for rather involved computations, and generalizing it will surely add
more. Also, simulation – reported in Section 5 – suggested that non-normality may not
matter much in terms of the theory’s usefulness.

6.2 Application

Section 5 applied the proposed methods to return data for the Fama and French (1993) 5x5
collection of portfolios. As a ‘universe’ of returns, this collection is highly aggregated, a fact
that may bias the application of CAPM and APT models. Specifically, in assessing the im-
portance of risk in the stock market, aggregation across assets may smooth out idiosyncratic
risk, causing estimates of stochastic error (χ2) to look smaller than they would if had used a
more disaggregated menu of assets. In other words, we may be understating the importance
of idiosyncratic risk, and overstating the importance of systematic risk, in the stock market.
As a remedy, we can disaggregate the data and again apply our methods, though some care
is needed in using the econometric theory, as well-behaved estimates of the stochastic error
(ε) variance/covariance matrix require that the number n of assets is reasonably small in
relation to the number of time periods T . The modelling approach of Campbell, Lettau,
Malkiel and Xu (2001) may be helpful here.

In applying the APT theory to Fama-French regressions, we assumed that the APT
factor model in Section 2 was valid. The model assumes zero correlation among errors εi

appearing in regressions for different assets i. The essential results of the APT remain valid
if such correlation is mild (Chamberlain and Rothschild (1983)). Pairwise sample correlation
is 0.152, on average, for 3-factor model residuals, not too large, and compares to 0.375 for
the CAPM model.
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Our sample period covers January 1947 through December 2007, for the Fama-French
data set. The original data, studied by Fama and French (1993), covered July 1963 through
December 1991. Our earlier remarks apply also to the original sample.22 Specifically, the
following three facts are valid for both samples. First, heterogeneity in historical mean values
– across the 5x5 Fama-French portfolios – is small relative to return values: on the original
sample the mean heterogeneity statistic equals 0.23, small in comparison to normed return
value 5.87. Second, the CAPM and 3-factor models are broadly comparable in terms of
model bias (alpha) statistics: on the original sample non-stochastic error estimates equal to
0.80 and 0.58, respectively, for the two models. Third, the 3-factor model has much smaller
stochastic error (=1.45) than does the CAPM (=2.68), as was reported earlier on the full
sample.

Fama and French (1993) report that the 3-factor regression model outperforms the CAPM
model on two fronts – pricing errors (α) are smaller and explanatory power is greater. In
terms of explanatory power, they find the 3-factor model to be superior both in terms of
capturing variation over time for specific portfolios, and for capturing differences in historical
mean return across portfolios.

In terms of pricing errors, unlike Fama and French (1993) we find that pricing errors are
similar, on the whole, for the CAPM and 3-factor models. In terms of explanatory power,
heterogeneity in historical mean values – across the 5x5 Fama-French portfolios – is small
relative to return values. So, there is not much for the economic models to capture, in terms
of mean heterogeneity. The 3-factor model does have smaller stochastic error (χ2) than
does the CAPM, and this implies a larger measured value for systematic risk, as discussed
in Section 2. With a larger systematic component, the 3-factor model is capturing more
variability in returns, and most of this return variation is over time. Hence, the 3-factor
model appears superior to the CAPM in capturing time series variation of returns on the
5x5 portfolios.

On the whole, we find that previous evidence for superior ‘fit’ of the 3-factor model
versus the CAPM model to be somewhat overstated, as pricing errors are comparable across
models, and there is little explained cross-sectional variation. The superior fit of time-series
variation, within each given portfolio’s history, does seem compelling, though both models
create the impression that sytematic risk makes an important contribution to this temporal
variation in asset performance.

22See the authors’ website for tables corresponding to this sample.
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Appendix A: Proofs of Theorems

Proof of Theorem 1:
For the χ1 result in Table 3, we have:

1
n

∑
i α̂

2
i = 1

n
α̂′α̂ = 1

n
y′(In ⊗ a′x)

′(In ⊗ a′x)y.

To evaluate (In ⊗ a′x)
′ in the above equation, for any matrix of the form M1 ⊗ M2, its

transpose is M ′
1⊗M ′

2,
23 hence (In⊗ a′x)

′ = In⊗ ax. Consequently, we can write the product
(In ⊗ a′x)

′(In ⊗ a′x) as (In ⊗ ax)(In ⊗ a′x), which can be re-written as In ⊗ axa
′
x.

24 Plugging
this in, above, we obtain part (i) of the theorem.

To get the rank of kernel S in the χ1 case, note that S is of the form AA′, with A =
n−1/2ax⊗In. The rank of S is then equal to the rank of A (see Magnus and Neudecker (2002,
page 9)). By construction, the matrix A has dimensions nT × n, hence has rank at most n.
Also, the columns of n are orthogonal to each other, hence span a space of dimension n, so
A has rank n, as does S.

For the χ2 result in Table 3: See Table 2, last row, for a formula for (nT )−1 ∑
(yit − ŷit))

2.

For the φ result: It suffices to apply our results for the kernel of components χ1 and χ2, and
note that the sum Sχ1 + Sχ2 equals the kernel Sφ of φ.

For the ψ1 result: Note that (
∑

i α̂)2 = α̂′1n,nα̂. Also, from the proof of Theorem 1, α̂ =
(In ⊗ a′x)y. Therefore, Ssae = 1

n2 (In ⊗ a′x)
′1n,n(In ⊗ a′x). Also, (In ⊗ a′x)

′ = In ⊗ ax, as noted
earlier. With 1n,n = 1n1′n, and ax a T ×1 vector, we can write (In⊗ax)1n = 1n⊗ax, likewise
1′n(In⊗a′x) = 1′n⊗a′x. Hence (

∑
i α̂)2 = (1n⊗ax)(1

′
n⊗a′x). The last expression is of the form

(M1 ⊗ M2)(M3 ⊗ M4), which simplifies (M1M3) ⊗ (M2M4) when the products M1M3 and
M2M4 are well-defined (see Magnus and Neudecker...), in which case to (1n⊗ ax)(1

′
n⊗ a′x) =

(1n1′n)⊗ (axa
′
x). Since 1n1′n = 1n,n, the result follows.

For the ψ2 result: Note that
∑

i(α̂i− ( 1
n

∑
i α̂i))

2 = (
∑

i α̂
2
i )−n( 1

n

∑
i α̂i)

2. Applying Theorem
1.1 to

∑
i α̂

2
i and Theorem 1.4 to ( 1

n

∑
i α̂i)

2, we get
∑

i(α̂i − ( 1
n

∑
i α̂i))

2 = In ⊗ (axa
′
x) −

1
n
1n,n ⊗ (axa

′
x). Simplifying, the result follows.

For the ω result: It suffices to apply our earlier kernel results for the components χ2 and ψ2

of ω, and note that the sum Sχ2 + Sψ2 of these kernels equals the kernel Sω for ω.

23See Magnus and Neudecker (2002,p. 28).
24Each of these block matrices is a Kronecker sum, and their product is also a Kronecker sum with square

block axa′x repeating on the diagonal.
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PROOF of Corollary 1
Here and later, we will make use of:

Lemma 1 (Magnus and Neudecker (2002, page 28)): For matrices M1,M2, M3,M4 such that
matrix products M1M3 and M2M4 are well-defined, the following holds: (M1 ⊗M2)(M3 ⊗
M4) = (M1M3)⊗ (M2M4).

It is easy to verify, via Table 3, that Sφ = Sχ1 + Sχ2 = Sψ1 + Sω, Sχ1 = Sψ1 + Sψ2 ,
Sω = Sχ2 + Sψ2 . To show that Sχ1Sχ2 = 0nT,nT , first note that:

α′x(InT − In ⊗ (X(X ′X)−1X ′)) = 0T,T (32)

this being a standard result which indicates, in terse matrix terms, that the regression
residuals, if themselves regressed on x, must generate an intercept (vector) equal to 0. Con-
sequently:

Sχ1 Sχ2 = (In ⊗ ( 1
n
axa

′
x)) (InT − In ⊗ (X(X ′X)−1X ′) =

In ⊗ ( 1
n
axa

′
x)− In ⊗ (( 1

n
axa

′
x)(

1
nT

(X(X ′X)−1X ′)) =

In ⊗ (( 1
n
ax(a

′
x(InT − 1

nT
(X(X ′X)−1X ′))) = In ⊗ 0T,T = 0nT,nT

with the last line following from equation 32 and Lemma 1.
We can similarly verify that Sψ1Sψ2 = 0nT,nT since, from Table 3,

Sψ1Sψ2 =
(

1
n
1n,n ⊗ (axa

′
x)

) (
1
n
(In − 1

n
1n,n)⊗ (axa

′
x)

)

Applying Lemma 1, this expression simplifies to:

Sψ1Sψ2 =
(

1
n
1n,n

1
n
(In − 1

n
1n,n)⊗ (axa

′
x)

2
)

= 0n,n ⊗ (axa
′
x)

2 = 0nT,nT

For the result Sψ1Sω = 0nT,nT , we have Sω = Sχ2 + Sψ2 , and since we showed above that
Sψ1Sψ2 = 0nT,nT , it suffices to show that Sχ2Sψ1 = 0nT,nT . For this we can apply Table 3
and equation 32, applying arguments similar to those used earlier to show Sχ1Sχ2 = 0nT,nT .
Likewise, we can verify that Sχ2Sψ2 = 0nT,nT .

Proof of Theorem 2
i. Table 4 results. To get the χ1 result, with Sχ1 = 1

n
In⊗ (axa

′
x) = In⊗ ( 1

n
axa

′
x) and Vy =

Vε⊗IT , we have Sχ1Vy = (In⊗( 1
n
axa

′
x))(Vε⊗IT ). This is of the form (M1⊗M2)(M3⊗M4), with

matrices M1, ..., M4 for which M1M3 and M2M4 are defined, so by Lemma 1 the expression
equals M1M3 ⊗M2M4. Hence Sχ1Vy = Vε ⊗ 1

n
axa

′
x. Since tr[M1 ⊗M2] = tr[M1]tr[M2] for

any square matrices M1 and M2 (see Magnus and Neudecker 2002, equation 8, page 28),
tr[Sχ1Vy] = tr[Vε]tr[

1
n
axa

′
x].

To get the χ2 result, we apply the same ‘tricks’ used above, but here using Sχ2 =
1

n(T−K−1)
( InT − (In ⊗ (X(X ′X)−1X ′)) ) rather than Sχ1 . First,
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Sχ2Vy = ( 1
n(T−K−1)

( InT − (In ⊗ (X(X ′X)−1X ′)) )(Vε ⊗ IT ),

which we can write as:

Sχ2Vy = 1
n(T−K−1)

(Vε ⊗ IT − (In ⊗X(X ′X)−1X ′)(Vε ⊗ IT )).

The expression (In ⊗ X(X ′X)−1X ′)(Vε ⊗ IT ), is of the form (M1 ⊗M2)(M3 ⊗M4), in the
sense discussed above, hence this expression simplifies to Vε⊗X(X ′X)−1X ′. Combining this
with the above results, we get

Sχ2Vy = Vε ⊗ ( 1
n(T−K−1)

(IT −X(X ′X)−1X ′)).

Proceeding as we did with the form Sχ1Vy earlier, we then get

tr[Sχ2Vy] = tr[Vε]tr[(
1

n(T −K − 1)
(IT −X(X ′X)−1X ′))].

To get the φ result, first note that SφVy = (Sχ1 + Sχ2)Vy. Applying formulas for Sχ1Vy and
Sχ2Vy, from the preceeding discussion, we get

tr[SφVy] = tr[(Vε ⊗ 1
n

axa
′
x + Vε ⊗ 1

(n(T−K−1))2
(IT −X(X ′X)−1X ′))]

= tr[Sχ1Vy] + tr[Sχ2Vy].

Deriving the ψ1 and ψ2 results is analogous to deriving the χ1 and χ2 results. The ω result
is likewise similar.

ii. Table 5 results. To derive the χ1 result, recall that Sχ1 = In ⊗ ( 1
n
axa

′
x) is a block-

diagonal (nT × nT ) matrix with the T × T matrix 1
n
axa

′
x on its diagonal. The expression

for µ′ySχ1µy then readily follows. Similarly for the χ2 result, where the T × T matrix on the
diagonal is (IT −X(X ′X)−1X ′)). This stems from the observation that

Sχ2 = 1
n(T−K−1)

( InT − (In ⊗ (X(X ′X)−1X ′)) )

= 1
n(T−K−1)

( In ⊗ IT − In ⊗ (X(X ′X)−1X ′))
= 1

n(T−K−1)
( In ⊗ (IT − (X(X ′X)−1X ′)) .

With this, the fact that Sφ = Sχ1 +Sχ2 provides the φ result in Table5. To get the ψ1 result,
note that Sψ1 = 1

n
1n,n⊗ (axa

′
x) is a matrix consisting of n×n matrix-blocks 1

n
⊗ (axa

′
x) with

dimensions (T ×T ). Therefore, the summation is over both i and j indexes. To arrive at ψ2

result, it is sufficient to observe that Sψ2 =
1

n
(In− 1

n
1n,n)⊗ (axa

′
x) = Sχ2 −

1

n
Sψ1 . Similarly

for the ω result, where Sω = Sχ2 + Sψ2 .
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Proof of Theorem 3
i. Table 6 results
To get the χ1 result, we simply extend the proof of Theorem 2 where we showed that
Sχ1Vy = Vε ⊗ 1

n
axa

′
x. Likewise, Sχ1VySχ1Vy = (Vε)

2 ⊗ ( 1
n
axa

′
x)

2. Again using properties of
Kronecker products, tr[Sχ1VySχ1Vy] = tr[(Vε)

2]tr[( 1
n
axa

′
x)

2].
To get the χ2 result, we build on the expression Sχ2Vy from the proof of Theorem 2.

Proceeding as we did with the form Sχ1Vy earier, we get tr[Sχ2Vy] = tr[V 2
ε ]tr[( 1

nT
(IT −

X(X ′X)−1X ′))2]. Noting that the matrix M given by M = IT −X(X ′X)−1X ′ is idempotent
(e.g. M2 = M),25 we then get tr[Sχ2Vy] = tr[V 2

ε ]tr[( 1
(n(T−K−1))2

(IT − X(X ′X)−1X ′))], as
desired.

To get the ψ1 result, first note that SφVy = (Sχ1 + Sχ2)Vy. Applying formulas for Sχ1Vy

and Sχ2Vy, from the preceeding discussion, we get

tr[SφVySφVy] = tr[(Vε ⊗ 1

n
axa

′
x + Vε ⊗ 1

(n(T −K − 1))2
(IT −X(X ′X)−1X ′))2].

Using same properties of the trace and Kronecker operators as above, this expression can be
further written as:

tr[((Vε)
2 ⊗ (

1

n
axa

′
x)

2 + (Vε)
2 ⊗ (

1

n(T −K − 1)
(IT −X(X ′X)−1X ′))2 +

2((Vε)
2 ⊗ (

1

n
axa

′
x(

1

n(T −K − 1)
(IT −X(X ′X)−1X ′)2)].

We now make use of the fact that matrix M = IT −X(X ′X)−1X ′ is idemponent (as noted
earlier). Also, we have axa

′
xM = 0T,T because a′xM = 0, as discussed earlier. Applying these

two restrictions to the above form for tr[SφVySφVy], the result follows.
The ψ1 and ψ2 results are derived in a manner similar to the χ1 and χ2 results, and the

ω result then follows.

ii. Table 7 results
For the χ1 result, applying the ‘tricks’ used earlier we can write Sχ1VySχ1 = Vε ⊗ ( 1

n
axa

′
x)

2.
This matrix, having dimensions Tn× Tn, has as its upper-left T × T block Vε,11(αxα

′
x)

2, its
lower-right T × T block Vε,nn(axa

′
x)

2, and so on, with the common T × T block ‘repeating’
itself (axa

′
x)

2 a total of n times in each row, and in each column. At the same time, the
Tn×1 vector µy has as its upper-most T ×1 sub-vector the expression Xθ1, with θ1 the first
column of θ; its next T × 1 sub-vector is Xθ2, and so on. Matching T × T blocks with T × 1
vectors, during multiplications represented by µ′ySχ1VySχ1µy, the common form X ′(axa

′
x)

2X
‘repeats’ itself, multiplied by differing vectors on the left and right. Simplifying, the result
follows.

For the χ2 and φ results, the same ‘tricks’ apply, but with ( 1
n
axa

′
x)

2 replaced by

25This is a standard regression result, see Goldberger (1991, Ch. 14.2).
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1
(n(T−K−1))2

(IT − X(X ′X)−1)X ′ and (( 1
n
axa

′
x)

2 + 1
(n(T−K−1))2

(IT − X(X ′X)−1X ′), respec-

tively. Also, for the φ result use the fact that Sχ1VySχ2 = 0, in which case µ′ySφVySφµy =
µ′ySχ1VySχ1µy + µ′ySχ2VySχ2µy.

To derive the ψ1 result, note that Sψ1VySψ1 = (1n,nVε1n,n)⊗( 1
n
axa

′
x)

2. This is an nT ×nT
matrix with elements equal to (

∑n
i,j=1 Vε,ij

1
n
axa

′
x)

2. Multiplying by µy from both sides delivers
the result. Similarly for the ψ2 result with Sψ2VySψ2 = Ω ⊗ ( 1

n
axa

′
x)

2 where Ω = (In −
1
n
1n,n)Vε(In − 1

n
1n,n). Deriving the ω result resembles deriving the corresponding result in

Table 5: Sψ2VySχ2 = 0 and µ′ySω2VySω2µy = µ′ySψ2VySψ2µy + µ′ySχ2VySχ2µy.

27



Appendix B: Data description

The dependent variables to be explained are excess stock returns on 25 portfolios, sorted
on size and (independently) on book-to-market equity (BE/ME). The portfolios are con-
structed by Fama and French (1993) as follows. The quintile breakpoints for size in a given
year are based on market capitalization of NYSE stocks in June of the same year. The
quintiles for book-to-market ratios are calculated using NYSE stocks using BE and ME
from December of the previous year. The portfolios are then formed using stocks from
NYSE, AMEX and NASDAQ, for which there is a positive book equity (from COMPUS-
TAT) available from December of the previous year and market equity available in June of
the given year and December of the previous year. Finally, value-weighted monthly portfolio
returns are computed starting in July of the current year and ending in June of the following
year (stock prices are from CRSP). The excess returns are calculated using the one-month
Treasury bill rate (from Ibbotson Associates).

The explanatory variables are the market excess return plus the two additional empirically
motivated factors – SMB and HML – related to size and book-to-market ratios. The market
excess return is defined as the value-weight return on all NYSE, AMEX, and NASDAQ
stocks (from CRSP) minus the one-month Treasury bill rate (from Ibbotson Associates).
The two latter factors are constructed from six portfolios, again sorted on size and book-to-
market equity. The algorithm to construct these portfolios is the same as above, with size
breakpoint being the median and book-to-market equity breakpoints being respectively the
30th and the 70th NYSE percentiles.

To construct the SMB factor, all available stocks are divided into two groups based on
median market equity (size), Small and Big. For the HML factor, the stocks are grouped
by their book-to-market equity ratios (BE/ME), and the breakpoints are the 30th and
the 70th BE/ME percentiles, resulting in three BE/ME categories: High, Medium and
Low. High BE/ME is consistently associated with low earnings on assets (the so called
value stocks) and vice versa (the growth stocks). The returns on SMB and HMB are
respectively calculated as

SMB = 1/3 (Small High + Small Medium + Small Low)
− 1/3 (Big High + Big Medium + Big Low).

(33)

and
HML = 1/2 (Small High + Big High)

− 1/2 (Small Low + Big Low).
(34)
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Table 1: Measures of Model Error

measure symbol formula

total error (RMSE) φ

√√√√ 1

n

n∑

i=1

α2
i + σ2

i

non-stochastic error χ1

√√√√ 1

n

n∑

i=1

α2
i

stochastic error χ2

√√√√ 1

n

n∑

i=1

σ2
i

(unsigned) pooled bias ψ1 |ᾱ|

bias heterogeneity ψ2

√√√√ 1

n

n∑

i=1

(αi − ᾱ)2

total heterogeneity ω

√√√√ 1

n

n∑

i=1

(αi − ᾱ)2 + σ2
i
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Table 2: Known Statistics Expressible as y′Sy

type statistic S rank(S)

univariate,
y′y
T

1

T
IT T

descriptive

(ȳ)2 1

T 2
1T,T 1

1

T
(y − ȳ)′(y − ȳ)

1

T
(IT − 1

T
1T,T ) T − 1

univariate,
ŷ′ŷ
T

1

T
X(X ′X)−1X ′ K + 1

regression
1

T
(y − ŷ)′(y − ŷ)

1

T
(IT −X(X ′X)−1X ′) T − (K + 1)

multivariate
y′y
nT

1

nT
InT nT

ŷ′ŷ
nT

1

nT
( In ⊗

(
X(X ′X)−1X ′) ) n(K + 1)

(y − ŷ)′(y − ŷ)

nT

1

nT
( InT − (In ⊗

(
X(X ′X)−1X ′)

)
) T − n(K + 1)

Note: y denotes an T × 1 vector (y1, ..., yT )′, as does ŷ, where ŷt = α̂ + β̂′xt, with α̂, β̂ the OLS estimators
of α and β. β is a K × 1 vector, xt is a K × 1 vector, and X = [1T , x]. y denotes the nT × 1 vector
(y11, ..., y1T , ..., yn1, ..., ynT )′.
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Table 3: Kernel S for quadratic forms underlying RMSE and components

Note: As described in Table 1, φ = total error (RMSE), χ1 = stochastic error, χ2 = non-
stochastic error, ψ1 = pooled bias, ψ2 = bias heterogeneity, ω = total heterogeneity.

error kernel rank of
component S S

φ
1

n
(In ⊗ axa

′
x) +

1

nT
(IT − In ⊗ (X(X ′X)−1X ′)) T − nK

χ1
1

n
(In ⊗ axa

′
x) nK

χ2
1

nT
(InT − In ⊗ (X(X ′X)−1X ′)) T − n(K + 1)

ψ1
1

n
1n,n ⊗ (axa

′
x) 1

ψ2
1

n
(In − 1

n
1n,n)⊗ (axa

′
x) n− 1

ω
1

nT
(IT − InT ⊗ (X(X ′X)−1X ′)) +

1

n
(In − 1

n
1n,n)⊗ (axa

′
x) T − nK − 1
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Table 4: Formulas for tr[SVy], in computing mean of RMSE Distributions

kernel
S tr[SVy]

Sχ1 tr[Vε] tr[
1

n
axa

′
x]

Sχ2 tr[Vε] tr[(
1

(n(T −K − 1))
(IT −X(X ′X)−1X ′)]

Sφ tr[Sχ1V ] + tr[Sχ2V ]

Sψ1 tr[(1n,nVε)] tr[
1

n
axa

′
x]

Sψ2 tr[(In − 1

n
1n,n)Vε)] tr[

1

n
axa

′
x]

Sω tr[Sψ2Vy] + tr[Sχ2Vy]

Note: tr[ 1
n

axa
′
x] = 1

n

∑T
t=1 a2

x,t

Table 5: Formulas for µ′ySµy, in computing mean of RMSE distributions

kernel
S µ′ySµy

Sχ1

n∑

i=1

θ′i X
′(

1

n
axa

′
x)X θi,

Sχ2

n∑

i=1

θ′i X
′
(

1

n(T −K − 1)
(IT −X(X ′X)−1X ′

)
X θi

Sφ µ′ySχ1µy + µ′ySχ2µy

Sψ1

n∑

i,j=1

θ′i X
′(

1

n
axa

′
x)X θj

Sψ2 µ′ySχ1µ−
1

n
µ′Sψ1µy

Sω2 µ′Sχ2µ + µ′Sψ2µ
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Table 6: Formulas for tr[SVySVy], in computing variance of RMSE Distributions

kernel
S tr[SVySVy]

Sχ1 tr[V 2
ε ] tr[(

1

n
axa

′
x)

2]

Sχ2 tr[V 2
ε ] tr[(

1

(n(T −K − 1))2
(IT −X(X ′X)−1X ′)]

Sφ tr[Sχ1V Sχ1V ] + tr[Sχ2V Sχ2Vy]

Sψ1 tr[(1n,nVε)
2] tr[(

1

n
axa

′
x)

2]

Sψ2 tr[(In − 1n,n)Vε)
2] tr[(

1

n
axa

′
x)

2]

Sω tr[Sχ2VySχ2Vy] + tr[Sψ2VySψ2Vy]

Table 7: Formulas for µ′ySVySµy, in computing variance of RMSE distributions

kernel
S µ′ySVySµy

Sχ1

n∑

i,j=1

Vε,ij θ′i X
′(

1

n
axa

′
x)

2X θj

Sχ2

n∑

i,j=1

Vε,ij θ′i X
′(

1

(n(T −K − 1))2
(IT −X(X ′X)−1X ′)X θj

Sφ

n∑

i,j=1

Vε,ij θ′i X
′( (

1

n
axa

′
x)

2 +
1

(n(T −K − 1))2
(IT −X(X ′X)−1X ′)X θj

Sψ1

n∑

i,j=1

θ′i X
′(

n∑

l,m=1

Vε,ml
1

n
(axa

′
x)

2)X θj

Sψ2

n∑

i,j=1

Ψij θ′i (X
′(

1

n
axa

′
x)

2X) θj

Sω

n∑

i,j=1

Ψij θ′i (X
′(

1

n
axa

′
x)

2X) θj

+
∑n

i,j=1 Vε,ij θ′i (X
′( 1

(n(T−K−1))2
(IT −X(X ′X)−1X ′)X) θj
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Table 8: Descriptive Statistics for Fama-French 5x5 Stock Portfolios

Notes: (i) For 5x5 = 25 portfolios, observed on common history 1947:01 - 2007:12, yit

denotes the monthly excess return on portfolio i at time t, y denotes the the nT × 1 vector
(y11, ..., y1T , ..., ..., yn1, ..., ynT ), ȳi denotes the sample mean return for the i-th portfolio, ȳ
denotes the n-vector of mean returns, and σ̂2

yi
= T−1 ∑T

t=1(yit−ȳi)
2 is the Gaussian maximum

likelihood estimator of sample variance for the i-th portfolio. (ii) φ =
√

χ2
1 + χ2

2 =
√

ψ2
1 + ω2,

χ1 =
√

ψ2
1 + ψ2

2.

statistic formula symbol value

normed return vector ||y|| =
√√√√ 1

nT

n∑

i=1

T∑

t=1

y2
it φ 5.39

normed mean vector ||ȳ|| =
√√√√ 1

n

n∑

i=1

(ȳi)2 χ1 1.19

pooled variability σ̂y =

√√√√ 1

n

n∑

i=1

σ̂2
yi

χ2 5.26

pooled mean ¯̄y =
1

n

n∑

i=1

ȳi ψ1 1.17

mean heterogeneity

√√√√ 1

n

n∑

i=1

(ȳi − ¯̄y)2 ψ2 0.20

total heterogeneity
√

χ2
2 + ψ2

2 ω 5.26
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Table 9: Sample Errors of CAPM and APT Models, for Fama-French 5x5 Stock Portfolios

Notes:
(i) For 5x5 = 25 portfolios, sample 1947:01 - 2007:12, a model for monthly excess returns (in
percent form) for a portfolio i at time t is given by yit = αi + βixt + εit, i = 1, 2, ..., 25, t =
1, 2, ..., T.

(ii) φ = model error (RMSE) =
√

χ2
1 + χ2

2 =
√

ψ2
1 + ω2, χ1 =

√
ψ2

1 + ψ2
2, ω =

√
ψ2

1 + χ2
2.

Definitions of φ, χ, etc. appear in Table 1.

total non-stochastic stochastic pooled bias total
systematic error error error bias heterog. heterog.

model risk φ χ1 χ2 ψ1 ψ2 ω

CAPM market 2.89 0.58 2.83 0.52 0.25 2.84
APT none 5.39 1.19 5.26 1.17 0.20 5.26

smb 4.56 1.08 4.43 1.06 0.21 4.43
hml 5.23 1.30 5.06 1.29 0.14 5.06
smb, hml 4.43 1.11 4.29 1.10 0.11 4.30
market, smb 2.15 0.57 2.08 0.51 0.26 2.09
market, hml 2.60 0.43 2.56 0.41 0.14 2.57
all 1.68 0.38 1.64 0.35 0.13 1.65

Updated: Petr, May 22, 2008
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Table 10: Theoretical Distribution of Model RMSE and its Components, based on the Sample
1947:01 2007:12, Part 1/2

Notes:
(i) φ = model RMSE =

√
χ2

1 + χ2
2 =

√
ψ2

1 + ω2, ω =
√

ψ2
1 + χ2

2, χ1 =
√

ψ2
1 + ψ2

2. Definitions
of φ, χ, etc. appear in Table 1.
(ii) The mean and variance of the statistics are calculated as E(Q) = tr[SV ] + µ′Sµ and
V (Q) = 2 tr[SV SV ] + 4µ′SV Sµ with elements of these formulas given in Tables 4-7.

(iv) The interval Ê(Q)± 3
√

V̂ (Q) has, from Chebychev’s inequality, has at least 89 percent
chance (=100(1− 1

32 )) of containing the true Q value, in large samples.

model risks Ê(Q)
√

V̂ (Q) Ê(Q)− 3
√

V̂ (Q) Ê(Q) + 3
√

V̂ (Q)

total error φ̂2 = 1
n

∑
i α̂

2
i + 1

n

∑
i σ̂

2
i

CAPM mkt 8.34 0.25 7.60 9.08
APT none 29.03 1.26 25.25 32.81

smb 20.74 0.90 18.02 23.45
hml 27.55 1.26 23.78 31.33
smb, hml 19.62 0.90 16.90 22.33
mkt, smb 4.63 0.12 4.28 4.97
mkt, hml 6.75 0.22 6.07 7.42
all 2.82 0.04 2.69 2.96

non-stochastic error χ̂2
1 = 1

n

∑
i α̂

2
i

CAPM mkt 0.35 0.07 0.14 0.56
APT none 1.45 0.41 0.23 2.67

smb 1.19 0.31 0.25 2.14
hml 1.80 0.47 0.40 3.21
smb, hml 1.25 0.33 0.26 2.24
mkt, smb 0.33 0.05 0.18 0.49
mkt, hml 0.20 0.05 0.04 0.36
all 0.15 0.02 0.10 0.19

stochastic error χ̂2
2 = 1

n

∑
i σ̂

2
i

CAPM mkt 7.99 0.24 7.29 8.70
APT none 27.58 1.19 24.00 31.16

smb 19.54 0.85 17.00 22.08
hml 25.75 1.17 22.25 29.25
smb, hml 18.37 0.84 15.84 20.89
mkt, smb 4.29 0.10 3.99 4.60
mkt, hml 6.55 0.22 5.89 7.20
all 2.68 0.04 2.55 2.80

Updated: Petr, June 3, 2008
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Table 11: Theoretical Distribution of Model RMSE and its Components, based on the Sample
1947:01 2007:12, Part 2/2

Notes:
(i) φ = model RMSE =

√
χ2

1 + χ2
2 =

√
ψ2

1 + ω2, ω =
√

ψ2
1 + χ2

2, χ1 =
√

ψ2
1 + ψ2

2. Definitions

of φ, χ, etc. appear in Table 1. Each statistic is of the form
√

Q, for a qudratic form Q = y′Sy.
(ii) The mean and variance of the statistics are calculated as E(Q) = tr[SV ] + µ′Sµ and
V (Q) = 2 tr[SV SV ] + 4µ′SV Sµ with elements of these formulas given in Tables 4-7.

(iv) The interval Ê(Q)± 3
√

V̂ (Q) has, from Chebychev’s inequality, has at least 89 percent
chance (=100(1− 1

32 )) of containing the true Q value, in large samples.

model risks Ê(Q)
√

V̂ (Q) Ê(Q)− 3
√

V̂ (Q) Ê(Q) + 3
√

V̂ (Q)

pooled bias ψ2
1

CAPM mkt 6.89 1.62 2.03 11.74
APT none 35.10 10.21 4.47 65.73

smb 28.62 7.90 4.94 52.31
hml 44.39 11.60 9.60 79.19
smb, hml 30.83 8.29 5.97 55.70
mkt, smb 6.56 0.94 3.75 9.36
mkt, hml 4.35 1.24 0.64 8.07
all 3.11 0.41 1.89 4.33

bias heterogeneity ψ2
2

CAPM mkt 0.07 0.02 0.01 0.13
APT none 0.05 0.01 0.00 0.09

smb 0.05 0.02 0.00 0.10
hml 0.03 0.01 -0.01 0.06
smb, hml 0.02 0.00 0.00 0.03
mkt, smb 0.07 0.02 0.01 0.13
mkt, hml 0.02 0.01 0.01 0.04
all 0.02 0.01 0.01 0.03

total heterogeneity ω2

CAPM mkt 8.06 0.24 7.36 8.77
APT none 27.63 1.19 24.05 31.21

smb 19.59 0.85 17.05 22.13
hml 25.78 1.17 22.28 29.28
smb, hml 18.38 0.84 15.86 20.91
mkt, smb 4.36 0.10 4.05 4.68
mkt, hml 6.57 0.22 5.92 7.23
all 2.70 0.04 2.57 2.82

Updated: Petr, June 3, 2008
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Table 12: Bootstrapped Distribution of Model RMSE and its Components, 10,000 simula-
tions, based on the Sample 1947:01 - 2007:12, 1/2

model risks mean stdev 1% 5% 10% 90% 95% 99%

total error: φ̂2 = 1
n

∑
i α̂

2
i + 1

n

∑
i σ̂

2
i

CAPM market 8.34 0.54 7.19 7.50 7.67 9.04 9.26 9.77
APT none 29.03 1.90 24.93 26.05 26.64 31.50 32.30 33.81

smb 20.75 1.18 18.17 18.88 19.26 22.27 22.74 23.68
hml 27.28 1.88 23.24 24.34 24.94 29.75 30.53 32.09
smb, hml 19.63 1.16 17.11 17.83 18.16 21.14 21.60 22.51
capm, smb 4.62 0.26 4.05 4.21 4.29 4.97 5.08 5.27
capm, hml 6.74 0.43 5.86 6.09 6.21 7.31 7.49 7.86
all 2.82 0.10 2.59 2.66 2.69 2.96 3.00 3.08

non-stochastic error: χ̂2
1 = 1

n

∑
i α̂

2
i

CAPM market 0.35 0.07 0.21 0.24 0.26 0.44 0.47 0.53
APT none 1.45 0.40 0.66 0.84 0.96 1.97 2.15 2.50

smb 1.20 0.31 0.56 0.72 0.81 1.61 1.74 2.00
hml 1.72 0.45 0.82 1.04 1.16 2.30 2.49 2.87
smb, hml 1.25 0.33 0.59 0.75 0.84 1.68 1.83 2.10
capm, smb 0.33 0.05 0.22 0.25 0.27 0.40 0.42 0.47
capm, hml 0.20 0.05 0.10 0.12 0.13 0.27 0.29 0.35
all 0.15 0.02 0.11 0.12 0.13 0.17 0.17 0.19

stochastic error: χ̂2
2 = 1

n

∑
i σ̂

2
i

CAPM market 7.99 0.52 6.90 7.20 7.34 8.67 8.88 9.38
APT none 27.58 1.93 23.45 24.57 25.19 30.11 30.93 32.36

smb 19.55 1.15 17.04 17.74 18.11 21.05 21.54 22.39
hml 25.56 1.89 21.56 22.63 23.21 28.03 28.83 30.38
smb, hml 18.38 1.12 15.95 16.61 16.97 19.85 20.31 21.19
capm, smb 4.29 0.25 3.76 3.90 3.98 4.61 4.72 4.90
capm, hml 6.55 0.41 5.70 5.92 6.04 7.09 7.26 7.62
all 2.68 0.10 2.46 2.52 2.55 2.81 2.85 2.93

Updated: Petr, June 3, 2008
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Table 13: Bootstrapped Distribution of Model RMSE and its Components, 10,000 simula-
tions, based on the Sample 1947:01 - 2007:12, 2/2

model risks mean stdev 1% 5% 10% 90% 95% 99%

pooled bias: ψ2
1

CAPM market 6.86 1.63 3.60 4.37 4.84 8.99 9.68 11.09
APT none 35.04 10.04 15.14 19.75 22.71 48.22 52.73 61.59

smb 28.65 7.83 12.92 16.83 18.87 39.04 42.31 49.08
hml 42.35 11.03 20.09 25.56 28.58 56.75 61.48 70.79
smb, hml 30.84 8.23 14.28 18.33 20.60 41.71 45.32 52.19
capm, smb 6.54 0.93 4.51 5.10 5.39 7.78 8.16 8.86
capm, hml 4.34 1.24 1.84 2.45 2.83 5.95 6.48 7.64
all 3.11 0.41 2.24 2.48 2.60 3.65 3.81 4.13

bias heterogeneity: ψ2
2

CAPM market 0.07 0.02 0.03 0.04 0.05 0.10 0.11 0.13
APT none 0.05 0.01 0.02 0.03 0.03 0.07 0.07 0.09

smb 0.05 0.02 0.02 0.03 0.03 0.07 0.08 0.09
hml 0.03 0.01 0.01 0.01 0.01 0.04 0.05 0.06
smb, hml 0.02 0.00 0.01 0.01 0.01 0.02 0.02 0.03
capm, smb 0.07 0.02 0.03 0.04 0.05 0.10 0.10 0.12
capm, hml 0.02 0.01 0.01 0.01 0.02 0.03 0.04 0.05
all 0.02 0.01 0.01 0.01 0.01 0.03 0.03 0.04

total heterogeneity: ω2

CAPM market 8.06 0.52 6.97 7.27 7.41 8.74 8.96 9.44
APT none 27.63 1.93 23.49 24.62 25.24 30.16 30.98 32.40

smb 19.60 1.16 17.08 17.78 18.15 21.11 21.59 22.44
hml 25.59 1.89 21.58 22.65 23.24 28.06 28.85 30.40
smb, hml 18.39 1.12 15.97 16.63 16.98 19.86 20.33 21.21
capm, smb 4.36 0.25 3.82 3.97 4.05 4.69 4.79 4.98
capm, hml 6.57 0.42 5.72 5.94 6.06 7.12 7.29 7.64
all 2.70 0.10 2.48 2.54 2.57 2.83 2.87 2.95

Updated: Petr, June 3, 2008
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