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I. Introduction

The main purpose of asset pricing models is to explain differences in expected returns

among stocks and other risky assets. In the tradition of the Sharpe (1964) and Lintner

(1965) capital asset pricing model (CAPM) and its generalizations via the Merton (1973)

and Breeden (1979) intertemporal equilibrium models and the Ross (1976) arbitrage pricing

theory (APT), such performance differences arise due to differing sensitivities (‘betas’) to

some economic variables, either some explicit source(s) of risk or some underlying state

variable(s). We illustrate how formal tests of equality of betas across assets can be used to

interpret time series and cross sectional behavior of expected returns. We focus on the model

of returns in the spirit of Chen, Roll and Ross (1986) and combine beta equality tests with

point beta estimates and tests for zero intercepts (see Gibbons, Ross, and Shanken 1989) to

account for differences between large and small firms’ stock returns.

There is a vast number of studies involving beta estimation and some of the studies do

take into account standard errors of beta estimates. To our surprise though, we have not

been able to find a study, which compares formally betas across assets. The present work

attempts to fill this gap in the literature. While informal comparison of point estimates

maybe sufficient in some applications, it is not when we attempt to evaluate the effect of a

group of factors rather then just that of the market beta (market vs. non-market factors,

economic vs. statistical, etc.). Rather then merely stating that a multifactor model is needed

to explain time series and cross-sectional behavior of expected returns,1 we would like to

uncover more about the nature of these differences. Hence we propose various joint tests

for equality of factor sensitivities across assets. Applying these tests to portfolios of stocks

of large and small firms yields new insights. Namely, we are able to explain the somewhat

puzzling recent disappearance of a measurable difference in mean returns on stocks of small

and large firms.

1Cochrane (1999) lists this observation as one of the consensual results in recent financial research.
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To test formally for differences among particular betas, we make use of panel (time-

series + cross-section) regression models of excess returns. This is a standard modelling

framework for defining and discussing sensitivities of excess returns on covariates/regressors,

e.g. risk factors and/or state variables. For example, estimation of such a model using

panel data is the main focus of the influential papers by Fama and French (1993, 1996).

With sensitivities defined via the slope parameters in the model, differences in sensitivity

are clearly in the domain of formal, testable hypotheses. The financial data typically contain

some form of heteroskedasticity and autocorrelation (see for example French, Schwert, and

Stambaugh 1987 and Campbell, Lo, and MacKinlay, 1997, Ch. 2), which calls for the use of

robust tests. The heteroskedasiticity and autocorrelation consistent methods (HAC) built

on earlier work by White (1980) are developed in Newey and West (1987, 1994), Andrews

(1991) and Andrews and Monahan (1992), and are further studied by den Haan and Levin

(1996, 1997).

Robust tests often suffer from distortions arising due to the test rule, which relies on the

asymptotic distribution of test statistics, and which generally differs from rules based on

the exact (but unknown) finite-sample distribution.2 To find limitations of these methods in

our testing framework, we examine performance of Wald and Hansen (1982) tests with HAC

estimates of covariance matrices of residuals and compare it with that of classical F tests.

In simulation the HAC Hansen tests distort less than the F test and HAC Wald tests, and

simple pre-whitening is as good or better than other methods of handling serial correlation.

Consequently, we report results of estimation conducted using the Hansen method with

simple pre-whitening (see den Haan and Levin 1996, 1997).

2MacKinnon and White (1985) acknowledge the distortions problem for heteroscedasticity-robust tests,
proposing corrective methods, and Ferson and Foerster (1994) examine the importance of distortions for
heteroskedasticity-robust tests of some financial models. den Haan and Levin (1997) report on test distortions
for a variety of HAC tests in a single equation context (see also Cushing and McGarvey, 1999) and Cochrane
(2001, Ch. 15) studies the zero intercepts hypothesis in the multi-equation context, using HAC methods of
Newey and West.
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We use the afore-mentioned methods to test for differences in the economic sensitiv-

ity of small and large firm excess returns measured by the top and bottom deciles of the

CRSP Capitalization Indices since 1959. The potential for such differences has long been

recognized,3 and as covariates we include standard economic risk factors (market return and

consumption growth) as well as other standard economic variables (default premium, term

structure, industrial production, inflation, and money growth) related to the economy. Some

researchers use instead covariates consisting of size and book-to-market related portfolios (see

Fama and French, 1993, and Chan and Chen, 1991), or other statistical factors (Lehmann

and Modest, 1988, and Connor and Korajczyk, 1988), but since statistical and economic

covariates appear to have similar predictive power with respect to stock returns (see Ferson

and Korajczyk, 1995), we use just the latter, similarly to Chen, Roll and Ross (1986).

We first focus on the standard CAPM. Prior to 1982, the sample mean returns for small

and large firms are statistically different, indicative of the size effect. We then test for equality

of market betas and find that this difference in performance can be in part accounted for by

the difference in the level of risk of the two considered portfolios measured by the market

beta. The remaining part is due to the positive intercept for small firms’ stock returns and

corresponds to rejection of the CAPM by the test for zero intercepts, confirming the small

size effect. Since 1982, the mean excess returns for the small and large returns are formally

indistinguishable with returns on small firms’ stocks being smaller. However, the market

betas are statistically different and the market beta for stocks of small firm is actually the

smaller one. With the CAPM not rejected, this suggests that investment in small firms is

less risky and has the same (or greater if one considers only the point estimates) return,

making it clearly the better investment opportunity.

In the next step, we investigate bivariate models with the market as one factor and one of

3See Schwert (1983) for a review of early theories, and Fama and French (1992, 1993) and Cochrane
(1999) for further discussion.
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the above mentioned macroeconomic variables as the other. We also consider a model with

all seven risk factors. Implications of the bivariate and multivariate models are similar. The

point estimates of the market betas in both sub-periods do not change much as compared

with the CAPM. The formal test of their equality also shows that they are statistically

different at both sub-samples. Before 1982, test results lead to similar conclusions as in the

CAPM. Namely, the small firms’ stocks are somewhat riskier mainly due to differing market

betas and the risk premium is greater than it would be accounted for by the multifactor

asset pricing model. Since 1982, implications of our tests are very different from those of

the CAPM. Consistent with findings of Horowitz, Loughran and Savin (2000) and Fama

and French (1993), we find that the size effect has either disappeared or has been reversed

in favor of the large firms. Results of the joint test of beta equality for all variables but

the market return signal that there are other sources of risk differences then market beta.

This impression is confirmed by individual tests of beta equality; more specifically, all our

variables with the exception of industrial production have statistically different sensitivities

for the two portfolios. A brief look at point estimates indicates higher sensitivity of large

firms to the market but smaller to the other economic variables, which explains why mean

returns are similar since 1982.

Our analysis indicates that formal testing of betas, jointly and individually, can be a

useful source of information for a financial economist in addition to tests for zero intercepts

and point beta estimates. A possible strategy for comparison of groups of assets would be:

(i) Get point beta estimates and test for zero intercepts; (ii) Formally compare market be-

tas; (iii) Formally compare sensitivities of other available factors, jointly and individually.

Using this approach, we can draw conclusions regarding the disappearance of the statistical

difference in expected returns on stocks of small and large firms since 1982. The disappear-

ance is due to previously minor but lately significant differences in sensitivities of expected

returns to variables other than the market. Since the early 1980’s, the risk exposure to those
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variables works in the opposite direction than market risk. Consequently, the mean returns

on portfolios of small and large firms are similar.

The rest of the paper is organized as follows. Section II presents the formal test of equality

of betas in a time-series regression model and Section III discusses the asymptotic properties

of the HAC robust Wald and Hansen tests. Section IV addresses the data selection and

lists data sources. Section V studies the finite sample properties of the tests in a simulation

exercise. Section VI applies the tests to the data and Section VII concludes.

II. Model

For a collection of n risky assets, each earning a return during periods t = 1, 2, ..., T , let

rit denote the excess return to the i-th asset. We recall that a unifying implication of the

finance theories listed above is the following restriction (see Cochrane, 2001):

Erit = βiλ, i = 1, ..., n, (1)

where βi is a 1×K vector of betas (sensitivities) for asset i with respect to risk factors, and

λ a K × 1 vector of risk premia. It is obvious here that if the mean values Erit, i = 1, ..., n

are not all the same then neither are the betas βi, i = 1, ..., n.

To estimate the risk premia in (1), one needs to estimate betas first. This first step is

common for both the two-pass method and for the Fama and MacBeth (1973) empirical

method4. Both methods use the linear regression model of asset returns of the form:

rit = αi + βi xt + εit, i = 1, ..., n, t = 1, ..., T, (2)

where xt is a K × 1 vector of covariates (risk factors and/or state variables), βi is the

same beta as in (1), αi is the i-th intercept, and the errors εit have conditional expectation

E[εit|xt] = 0. In this model, βik is the expected increase in the excess return rit, given a one

4Shanken (1992) relates the time-series and cross-sectional regressions (2) and (1) with respect to these
two methods.
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unit increase in the covariate xtk, while αi = E[rit|xt = (0, ..., 0)′], e.g. αi is the expected

excess return when each covariate equals 0. The model is linear in the parameters α and

β, but xt itself may be non-linear in some underlying variables which themselves may be

non-contemporaneous with rt, hence the model may be both non-linear and dynamic in some

underlying variables (see Ferson and Harvey, 1999, for a recent example).

In the Sharpe-Lintner CAPM version of the model, x is the excess return on the market

portfolio, and the betas measure sensitivity to market risk. Other candidates for x include

consumption growth, as in the Breeden (1979) consumption-based CAPM, and other vari-

ables, possibly instruments for some latent factors (see Section V for a detailed discussion).

Such models offer an explanation of differences among average returns for various assets,

provided that sensitivities differ among assets. Informal comparisons of betas across as-

sets are widespread in the industry, facilitated by point and interval estimates, but formal

comparison via hypothesis tests has not received attention in the literature.

The hypotheses of present interest take the form of linear restrictions on β. To concisely

express such hypotheses for the purpose of testing, for each equation i we denote by θ[i] the

(K + 1)× 1 vector (αi, βi1, ..., βiK)′, and let θ be the n(K + 1)× 1 vector (θ′[1], θ
′
[2], ..., θ

′
[n])

′.

The intercept αi will be unrestricted with the exception of our simulation exercise. With 0p

the column vector consisting of p entries each equal to 0, and with A some user-specified

p× n(K + 1) matrix, each linear restriction on the model parameters takes the form:

H0: Aθ = 0p.

For testing differences in slopes across equations, and the relevant restriction is of the form:

D θ[i] = D θ[j], i, j = 1, ..., n, (3)

for some r × (K + 1) matrix D, some number r of restrictions, and all assets i, j. The
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appropriate form of the matrix A in H0 is then:

A = Jn ⊗D, (4)

where Jn is the (n−1)×n matrix with entries Jni1 = 1, Jn,i,i+1 = −1, and Jnij = 0 otherwise,

and ⊗ is the Kronecker product operator. For example, for the test of equality of slopes

across equations for n = 2 and K = 1, we have p = 1, A =
[

0, 1, 0, −1
]
, D = [0, 1],

and J2 = [1, −1].

III. Tests

In this section we describe methods of hypothesis testing based on HAC Wald and Hansen

tests which we later study as alternatives to the F test. The HAC robust tests are prone to

small sample distortion and we can only use in our models since we focus on just two port-

folios. In the standard modelling framework where a large number of assets is studied, these

robust methods would be impractical. Typically, a researcher attempting HAC estimation

would have to assume a certain form of heteroskedasticity and autocorrelation.

HAC Test Statistics

To conduct generalized Wald tests we let θ̂ denote the ordinary least squares (OLS)

estimator, and we let V̂θ̂ denote an estimator, further described below, of the variance-

covariance matrix for θ̂. For each given choice of V̂θ̂, the test statistic is:

W = θ̂′A′ (AV̂θ̂A
′)−1

A θ̂. (5)

The statistic W measures the distance ( in Rp, with norm ||v|| = v′(AV̂θ̂A
′)−1 v) between the

vector A θ̂ and the value 0p hypothesized under H0, hence larger values of W suggest larger

departures of the data from H0. Under the null hypothesis, W is distributed as chi square

asymptotically, with p degrees of freedom.
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To conduct generalized Hansen tests, for any parameter values αi and βi define the

regression residuals for the model (2):

eit = rit − αi − βi xt, i = 1, ..., n, t = 1, . . . , T .

The relevant sample moments comprise the n(K + 1)× 1 vector m(θ), given by:

m(θ) =
1

T

T∑

t=1

zt ⊗ et,

where zt is the (K + 1)× 1 vector (1, x′t)
′. Denoting by V̂m an estimator (specified below) of

the variance-covariance matrix of m(θ̂), the Hansen test statistic is:

S = min
θ∈H0

m(θ)′ V̂ −1
m m(θ). (6)

The Hansen test measures the distance (in Rn(K+1), with the norm ||v|| = v′V̂ −1
m v) between

the vector m(θ) of sample moments and the value 0n(K+1) hypothesized under H0, hence

larger values of S suggest larger departures from H0. Like the Wald statistic, S is distributed

chi square (asymptotically) under the null hypothesis, with p degrees of freedom.

For econometric testing of linear restrictions H0 on linear regression systems, Hansen

tests are seldom used while F and Wald tests are popular, whereas for nonlinear problems

the Hansen test is common, as in Hansen (1982) and Ferson and Foerster (1994). Yet our

simulations (reported later) suggest a useful role for HAC Hansen tests of parameter equality

across equations in linear systems.

Computation

To compute the test statistics we apply formulas (4), (5) and (6), with various specifica-

tions for the covariance matrix estimators V̂θ̂ and V̂m. For the HAC Wald and Hansen tests,
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we use a variety of HAC covariance estimators. Among these are the Bartlett kernel and

the data-dependent Newey and West (1994) bandwidth, with and without pre-whitening

(denoted NW and NW-P, respectively), the quadratic spectral kernel with the Andrews

(1991) data-dependent bandwidth (without prewhitening, denoted A), and the Andrews

and Monahan (1992) method (denoted AM) with pre-whitening. Further, we include the

simple pre-whitening method (denoted VARHAC) with parametric, vector autoregressive,

adjustment for serial correlation, studied by den Haan and Levin (1996, 1997). Finally, for

comparison purposes we include the White covariance estimator (WH) which is robust to

heteroskedasticity but not serial correlation. Since the technical details of covariance estima-

tors are neatly summarized in Campbell, et al. (1997) and Cushing and McGarvey (1999),

we omit them for brevity.

To carry out the minimization (6) required for the Hansen statistic S, we use the GMM

(simultaneous-iteration) routine, which at each iteration stage simultaneously solves for up-

dated parameter and covariance matrix estimates, as in Hansen, Heaton and Yaron (1996).5

IV. Data

We examine excess returns on stocks of firms ranked by capitalization. We use the

industry standard CRSP Stock File Capitalization Decile Indices, monthly time series based

on portfolios rebalanced annually. To limit the number of dependent variables (and the

potential for test distortions, reported later), we use one return for Decile 1 portfolio and

one for Decile 10 portfolio, respectively corresponding to the largest and smallest companies.

In all cases, we calculate excess returns using the 30-Day Treasury Bill return, also provided

by CRSP. We denote the excess returns as rLARGE and rSMALL, respectively.

Summary statistics, for monthly excess returns in the period 1959:02 - 2003:12, are in Ta-

ble 1. The starting period of the data series is determined by availability of the consumption

5We use the econometrics software Eviews 3.1 for all our calculations. The relevant code is available upon
request.
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series (defined below). We further split the sample in two sub-samples, 1959:02-1982:10 and

1982:11-2003:12, enabling us to examine stability of regression parameters. October 1982

marks the approximate ending of the Paul Volcker’s war on inflation in the early eighties.

In all considered sample periods, the excess return on small caps tends to be more volatile,

in accord with Malkiel and Xu (1997). A comparison of the sample means for excess re-

turns reveals that the excess return on the large capitalization portfolio is greater than the

excess return on the small-cap portfolio (by 9.93% annually) but the gap is much smaller

in the second sub-sample (2.07% annually), consistent with Fama and French (1993) and

Horowitz, at al. (2000) (in fact, for the Cap based portfolios, the large firms have actually

outperformed the small ones in the second sub-sample). To confirm the impression based on

a simple comparison we also conduct formal t-tests for differences in means, which account

for the covariance between the two portfolios. The t-statistics and p-values are respectively

2.29/0.02 overall, 2.43/0.02 for the first sub-sample, and 0.59/0.55 for the second sub-sample,

which substantiates our conclusions.

As covariates in the model (see Table 1 for summary statistics of covariates, and Table

2 for correlations with dependent variables), we choose ones likely to affect the stochastic

discount rate and/or the expected stream of cash flows. We follow Chen, Roll and Ross

(1986) and use data on the stock market, bond market, the business cycle and inflation, and

we augment the dataset by the growth of monetary base to address the issue of asymmetric

reaction of firms of different capitalization to restrictive monetary policy (see Gertler and

Gilchrist, 1994, Li and Hu, 1998, and Perez-Quiros and Timmermann, 2000).

To describe the stock market we use the CRSP NYSE value-weighted index. Again,

we use returns in excess of the 30-Day Treasury Bill, denoting the results by rV W . The

correlation with the large-cap return is close to one (see Table 2), and since the large-cap

firms account for most of the market value, this is not surprising.6

6Fama and French (1996) report a similar correlation.
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We consider two bond market variables. The effect of unanticipated changes in bond risk

premia is measured by the difference (denoted rDEF ) between interest rates on the low grade

bonds and long-term government securities. The low grade bond interest rate is measured

by the Seasoned Baa Corporate Bond Yield, collected by Moody’s Investors Service. The

long-term government bond return-to-maturity is from the 5-year Treasury Bonds, obtained

from the web site of the Board of Governors of the Federal Reserve System (BGFRS). To

describe the term structure we use the difference between the one-period holding return on

the 5-year Treasury Bond, collected by CRSP, and the first lag of the return on a 30-Day

Treasury Bill. This term premium (rTERM) proxies for the influence of changes in the term

structure on equity returns.

As measures of real economic activity, we include the growth rates of industrial produc-

tion (gIP ) and real per capita consumption (gCONS). We obtain industrial production data

(series INDPRO, seasonally adjusted) the BGFRS web site, and we obtain consumption data

(series PCEND, non-durables, series PCES, services, POP, population, series CPIAUCSL,

Consumer Price Index For All Urban Consumers, All Items 1982-84=100, all series seasonally

adjusted), from the Bureau of Economic Analysis.

The consumer price index is used to as an inflation variable. Since the null hypothesis

of the unit root cannot be rejected in some sub-samples of this series, we use the first

difference in our analysis. For money growth, we use the growth rate of the seasonally

adjusted monetary base (gMON), obtained from the St. Louis Fed’s web site (series AMBSL,

seasonally adjusted).

V. Simulation

In this section, we attempt to find the limit of a sensible employment of the HAC methods

to see exactly what level of model complexity they can handle. We use computer simulation,

based on a calibrated model of asset returns, to assess test performance. Of interest are
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rejection rates under the null hypothesis and under the alternative. If the nominal distribu-

tion (F distribution for the F test, chi square distribution for the HAC tests) is an accurate

approximation then the tests should reject under H0 at a rate near the theoretical test size;

otherwise, the tests will exhibit noticeable distortions.

To set up the simulation, we define a first-order vector autoregressive (VAR) process for

covariates xt:

xt = c + Φ xt−1 + ut, (7)

where c is a K × 1 vector of constants, Φ is an K × K matrix of coefficients, and ut is a

K× 1 vector of random variables which are independent over time and normally distributed

with zero mean and cross-sectional variance-covariance matrix Λ.

To see what range of values might be realistic for the parameters of the xt process, we

estimate (7) for K = 4 by OLS using xt = (rV WNY , rTERM , gCONS, gMON)′. Estimates of

elements the matrix Φ range from -0.30 to 0.43. We also try several other combinations of

explanatory variables and while estimates differ to a large extent, the diagonal elements tend

to be greater then offdiagonal ones, which are often close to 0. Therefore, for our simulation

we set Φij = 0.10 for i = j and Φij = 0 for i 6= j. Estimates of the constant term tend to be

small relative to elements of Φ, and we set c = 0.002 in our simulation exercise. The diagonal

elements of the estimated residual covariance matrix Λ̂ are typically of order 0.0001, and the

off-diagonal elements are typically much smaller, hence we let Λ be a diagonal matrix with

each diagonal entry equal to 0.0001.

For the regression errors εit in (2), we posit a dynamic model with serial correlation and

generalized autoregressive conditional heteroskedasticity (GARCH), as follows:

εit = ψ1εi,t−1 + ψ2

√
1 + ψ3 ε2

i,t−1 ηit, i = 1, . . . , n,
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with η standard normal noise. Parameter ψ1 specifies the autocorrelation, and parameters ψ2

and ψ3 specify the conditional heteroskedasticity. We choose ψ so that the autocorrelation

of the error term εit, as well as its variance relative to that of x’s, corresponds to what we

observe in historical data series, with r1t and r2t excess returns on portfolios of small and

large firms, respectively. In this case, we set ψ1 = .1, ψ2 = .003 and ψ3 = .2. The cross-

sectional empirical covariance of ηit is sometimes positive and sometimes negative, and we

specify the population covariance between η1t and η2t to be 0.

To get a sense for the behavior of the F test and ‘robust’ HAC tests, we first generate

results for the case n = 2, with K = 2 and, alternatively, K = 4, using 500 simulated time

series for rit, i = 1, 2, with 250 and 500 observations, roughly corresponding to one half of

our sample and the whole sample of our historical monthly data, respectively. We conduct

a Monte-Carlo experiment based on a calibrated model, rather than a bootstrap method

as in Ferson and Foerster (1994), for two reasons: First, the calibrated model allows us

to identify the source of test success or failure; second, the regression errors have posited

dynamics which would not be replicated by standard bootstrap sampling.7 We record the

number of rejections of the null hypothesis using the chi square critical values at the 5%

level of significance.

Table 3 reports rejection rates under the null hypothesis of cross-equation equality for

all coefficients, e.g. the case where the restriction defining matrix D in Section II equals

the p × p identity matrix. We calibrate all β values to equal to 1, and all α values to

equal 0. Our simulations show a serious tendency for distortion in most but not all tests.

Specifically, the F test and the HAC Wald tests over-reject8, and the two of the Hansen tests

(Newey-West and Newey-West with pre-whitening) under-reject the null hypothesis. On the

other hand, three of the Hansen tests (VARHAC, Andrews and Andrews-Monahan) show

7Alternatively, one could employ a block-bootstrap method, as in Cochrane (2001, Ch. 15).
8For similar results see Cushing and McGarvey (1999) and Cochrane (2001, Ch. 15).
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minimal distortion, and of these three the VARHAC test is by far the simplest to compute

and interpret. We have examined the Hansen VARHAC test in numerous other simulations

exercises: For n = 2, we gradually increase the number of covariates K by two up to K = 8,

and rejection rates fall toward 0.03 and 0.04 for sample sizes 250 and 500. Since many studies

consider decile indices, we also look at n = 10 and increase the number of covariates from

two to eight, in which case the rejection rates for the VARHAC Hansen tests are respectively

0.01 and 0.02 for the two sample sizes. For no other test method do we find less distortion

than for the VARHAC Hansen test, and our results suggest that a researcher attempting to

investigate the relationship between various variables and asset returns is ‘safer’ when the

number of assets is smaller since the asymptotic and finite sample distributions of the test

statistic are closer.

To describe performance under the alternative hypothesis, we generate simulated time

series for excess returns via:

r1t = x1t + x2t + . . . + xKt + ε1t,

r2t = x1t + x2t + . . . + xK
2

,t + (1 + 0.2
K

)( x(K
2

+1),t + x(K
2

+2),t + . . . + xKt) + ε2t.

Table 4 reports rejection rates under the alternative hypothesis for K = 2 and K = 4, with

relatively high rejection rates for the F test, and with higher rejection rates for the HAC

Wald test than for the corresponding HAC Hansen test. Among the HAC Hansen tests, the

Andrews, Andrews-Monahan and VARHAC methods reject more frequently than the others.

These results describe the frequency with which an economist would correctly reject the null

hypothesis, using the nominal (F or chi square) distribution of the relevant statistic. A

related, but different, issue is the frequency of correct rejection for an economist who knows

and uses the exact test distribution. The latter power calculations are not interesting here

because the economist does not know the exact distribution, and it is impossible to concisely

report on this distribution in a way that would be broadly useful for asset return regression.
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We have nevertheless done such power calculations, with the same rankings described above,

for the various tests.

Overall, the simulations reveal some serious problems with the F test and with the ‘ro-

bust’ HAC Wald tests, in terms of over-rejection under the null hypothesis, whereas three

of the HAC Hansen tests avoided serious distortions and were also best among Hansen tests

under the alternative hypothesis. Among these favored three we recommend the VARHAC

Hansen test, with it’s simple, parametric pre-whitening approach to serial correlation ad-

justment. For the range of sample sizes under study, the VARHAC Hansen test performance

under null and alternative hypotheses suggests that for a small number of assets, n = 2, we

can have as many as 8 covariates and still avoid major test distortions. In cases of n = 10

asset returns, the number of covariates in a restricted econometric model should be kept

small, perhaps no more than 4 or 6. In cases where larger models and a greater number of

restrictions are desired, larger sample sizes (weekly rather than monthly data, for example)

may be necessary for satisfactory results.

VI. Empirical results

Having scrutinized a variety of test methods, we turn now to the problem of testing for

differences in sensitivity among firms of different size. As our simulations warn against the use

of overly large models, we only use up to seven explanatory variables in our two-asset model.

To save space we report only the Hansen-type tests with parametric VARHAC adjustment

for residual serial correlation and heteroskedasticity, as these tests showed relatively little

distortion in simulation, and are generally in agreement with the other tests for the models

we analyze. The tests are formulated by defining the matrix D in Section II accordingly.

We first examine the CAPM. Table 5 gives results for the full monthly sample (1959-2003)

and two sub-samples. The test of equality of market betas suggests significant difference in

risk exposure, for large and small firms, in both sub-samples but not overall. This is a result
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of changing beta for small firms, which is 1.28 in the first but only 0.81 in the second sub-

sample. We also test for whether the intercepts are each 0; since the only factor in the CAPM

is the market excess return, the test of zero intercepts is essentially a HAC robust version of

the standard F-test commonly applied in testing the CAPM.9 The CAPM is rejected overall

and in the first sub-sample but not in the second sub-sample.

In our discussion of the results, we will focus on the two sub-samples since the results

for the whole time period are (more) likely to reflect changing betas over time. The theory,

on which CAPM is based, offers the following interpretation. Higher betas in the first sub-

sample are not sufficient to explain higher mean returns for the same period. The CAPM is

rejected and the intercept for small firms is significantly positive, suggesting that investment

in small firms delivers a premium higher than accounted for by the CAPM. This is in fact

the so called firm size effect. In this case, statistically different betas do not provide us

with information that makes a difference. The recommendation here is clear: invest in

small firms. The theory of CAPM gives no such recommendation for the second sub-sample,

where any differences in expected returns are simply due to differing market betas. However,

statistically different betas (at 10% level of significance) are in contrast with mean returns,

which do not differ for small and large firms from a statistical point of view. In other words,

the mean returns are approximately the same but the large firms are riskier (recall that small

firms’ beta is now 0.81). Using this interpretation, the recommendation is again clear: buy

stocks of small firms.

We next examine bivariate models, with covariates given by the market return and one of

the remaining five economic variables, with results reported in Table 6. The properties of the

market betas are not changed with addition of another covariate, i.e. the market slopes differ

in the first sub-sample as well as in the second one. Sensitivity to the second covariate shows

9As pointed out in Gibbons, Ross, and Shanken (1989), the test of the CAPM is equivalent to the test of
ex-ante mean-variance efficiency of a particular portfolio and the test statistic (either F , S or W ) can then
be interpreted as a measure of distance from the mean-variance frontier.
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in each case no significant differences in the first sub-sample. In the second sub-sample, there

are now significant differences in slopes for the default premium and consumption. We also

conduct the joint test for zero intercepts, which can be loosely interpreted as a test of our

asset pricing model10 In the first period, three out of six models have non-zero intercepts and

all have either an insignificant or positive intercept for small firms. In the second period, only

one out of six indicates non-zero intercepts (the default premium being the second variable),

in this case with a positive intercept for large firms. The recommendation for the period from

1959:02 till 1982:10 stands: statistical differences in mean returns are driven by differences

in market betas and there is extra premium on investment in small firms, which dominates

investment in large ones. For the second period, the situation has become more complex.

We have statistically undistinguishable mean returns and statistically differing market betas.

The smaller market beta for small firms indicates a better investment opportunity. However,

we also have other variables whose beta differ, namely the default premium and consumption.

The results with default premium even indicate that it might be the large firms, which have

become a bargain. So, while performance of the two portfolios is similar in the second sub-

sample there are significant differences in risk exposure between the large and small firms

in addition to previously identified differences in market betas. These differences indicate

that returns on small firms’ stock is more sensitive (i.e. riskier) to variables other than the

market excess return.

Results from bivariate models call for a model with more explanatory variables. We

examine the model in which all seven covariates are included at once. Table 7 reports

parameter estimates and their standard errors, computed via the VARHAC method.11 To

further describe the model we report in Table 8 residual diagnostic tests. As indicated, there

10Loosely because not all the variables can be interpreted as asset returns.
11The reported estimates are also in accord with other studies on firm-size effects, which use multi-factor

models - see Fama and French (1993, market beta, betas for the default and term premia), Chan, Chen, and
Hsieh (1985, all but the money supply beta), and Li and Hu (1998, industrial production and money supply
betas).
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is strong evidence of both residual heteroskedasticity and autocorrelation, in which case our

use of HAC test methods is highly appropriate.12 Finally, Table 9 reports results of tests of

cross-section restrictions.

Table 7 indicates that market betas still differ in both sub-periods and the point estimates

are similar to those in the uni- and bivariate regressions. For other sensitivities, with the

exception of the monetary slope, the differences in the point estimates have grown in the

second sub-sample. The test for zero intercepts interestingly indicates non-zero intercepts in

the second rather then the first sub-period. Table 9 shows slopes for the default premium and

consumption betas statistically different in the period from 1982:11 to 2003:12 and they are

joined, for this sub-sample, by sensitivities to the term premium, inflation and money supply.

Consumption betas differ also for the first period. In addition, a joint test of beta equality

for all but the market variables results in rejection of the null in the second sub-sample.

We will now attempt to interpret our results. Let us start with the period from 1959:02

to 1982:10. Risk measured by betas is different mainly due to differences in the market beta,

which partly explains differing mean returns. Stocks of small firms appear underpriced, and

hence are a better investment opportunity. The situation is more complex in the period from

1982:11 to 2003:12 where the recommendation based solely on market betas is essentially

reversed when one uses additional factors. While investment in small firms appears less risky

based on market betas, it is riskier as measured by other betas. Being underpriced, the large

firms seem to be the bargain here.

VII. Conclusion

As finance theory suggests, differing sensitivities (betas) of economic factors translate

in differing asset performance (unless they affect expected returns in opposite directions).

While this connection is widely recognized, almost no attention has been paid to formal

12We found similarly strong evidence of conditional heteroskedasticity and serial correlation in a majority
of the univariate and bivariate models we studied.
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differences in betas. The present work explicitly acknowledges this link by testing for sta-

tistical differences of betas across assets and by considering implications of these differences

for mean excess returns.

We first provide a general regression framework, which can be easily used to test for

equality of betas across equations. A number of methods can be used to conduct such

tests. We consider the standard F, Wald, and Hansen tests. The advantage of the Wald

and Hansen methods is relatively simple accommodation of robustness to general forms of

autocorrelation and heteroskedasticity, often present in the financial data. The price for

generality in this case is potential distortion of the tests in larger regression systems. In a

simulation exercise tailored to our data application, we find that finite sample distortions are

relatively minor and that the Hansen method with parametric pre-whitening outperforms

the other methods.

We illustrate the usefulness of formal comparison of betas in application to stocks sorted

by firm capitalization. Namely, a simple t-test indicates that small firms outperformed

the larger firms prior to 1982:10 but not since then. We attempt to shed some light on

this empirical observation by carefully analyzing betas of several economic factors. We

find that the market beta difference is the main source of differing mean returns before

1982:10. However, while the market beta differ also since 1982:10, the mean returns do not.

Moreover, it is the small firms, which appear safer. Testing of beta equality of factors other

than the market reveals the reason behind this seeming inconsistency. The other sensitivities

(especially to the default premium) also differ but are higher (in absolute value) for the small

firms, making them riskier from this perspective.

Overall, our empirical analysis suggests that formally comparing, individually and jointly,

market betas and betas of other macroeconomic variables can be helpful in explaining be-

havior of expected returns and can lead to investment recommendations. While individual

statistical comparison of betas may be redundant at times, joint comparisons are useful in

19



any case as they summarize information contained in a number of point beta estimates.

They can be combined with mean returns, regression intercepts and point beta estimates to

form a clearer basis for judging investment opportunities. A by-product of our calculations

is confirmation of the now widely accepted need for multi-factor models. Default premium

and consumption growth seem to be two important sources of risk differences other than the

market.

There are several directions for future research. As our results indicate, any two assets

or a group of assets can be compared by formally testing equality of betas across equations.

For instance, one could revisit the influential Fama and French (1993) paper to evaluate

whether the stocks sorted by size and book-to-market ratios really differ as the point beta

estimates suggest. The importance of formal comparison of betas across assets also leads to

the possibility of uncertainty in betas being priced by the market. This possibility could be

investigated by the Fama and MacBeth (1973) method using some measure of uncertainty in

the market beta as one of the factors in the time-series regression. One such measure could

be the difference in publicly available beta estimates. The cross-sectional regression would

then reveal whether this factor is priced or not.
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TABLE 1

Summary Statistics

rSMALL rLARGE rV W rDEF rTERM gIP gCONS π gMON

1959:02-2003:12
Mean 11.22 4.98 5.67 23.76 3.15 3.16 2.02 4.12 6.60
Median 8.25 6.83 9.32 22.68 2.39 3.52 2.16 3.57 6.48
Max 694.93 210.29 195.37 57.36 113.86 71.98 21.63 21.53 47.03
Min -367.96 -241.97 -266.66 1.68 -86.59 -43.36 -21.58 -6.58 -32.16
St.Dev. 78.56 49.92 50.98 10.87 19.48 9.81 5.24 3.65 5.49
Skewness -0.29 1.20 -0.39 0.38 0.22 0.03 -0.18 0.97 0.67
Kurtosis 4.73 15.61 4.98 2.62 6.58 9.67 4.54 4.64 18.38

1959:02-1982:10
Mean 11.84 1.91 3.21 18.29 0.74 3.22 1.95 5.13 5.98
Median 6.86 4.63 4.69 15.84 0.57 3.60 2.29 3.99 6.08
Max 694.93 210.29 195.37 47.16 113.86 71.98 21.63 21.53 23.48
Min -321.65 -157.32 -145.90 1.68 -86.59 -43.36 -21.58 -3.90 -5.56
St.Dev. 89.24 49.51 51.84 9.50 21.11 12.07 6.01 4.26 3.96
Skewness 1.61 0.06 0.00 0.74 0.47 0.00 -0.17 0.69 0.01
Kurtosis 15.40 4.25 3.90 2.70 7.98 7.77 3.95 3.16 4.04

1983:11-2003:12
Mean 10.51 8.44 8.43 29.90 5.85 3.09 2.10 2.99 7.30
Median 9.77 10.93 12.20 28.56 5.81 3.51 2.00 2.94 7.09
Max 291.21 156.09 149.07 57.36 56.35 23.83 16.03 11.35 47.03
Min -367.96 -241.97 -266.66 13.92 -40.34 -14.49 -14.78 -6.58 -32.16
St.Dev. 64.68 50.24 49.95 8.84 17.12 6.42 4.22 2.34 6.74
Skewness -0.19 -0.67 -0.87 0.72 -0.06 0.15 -0.10 -0.20 0.56
Kurtosis 9.53 5.48 6.58 2.97 3.06 3.31 4.71 5.14 16.29

Notes: rSMALL and rLARGE denote respectively the excess returns on the small-cap and large-cap
portfolios, rV W is the excess return on the market portfolio, rDEF and rTERM are the default and risk
premium, respectively, gIP and gCONS are growth rates of industrial production and per capita consumption,
respectively, π measures the inflation rate and gMON the growth rate of the money supply, respectively. All
reported numbers are annualized, in percentages.



TABLE 2

Correlations

rSMALL rLARGE

1959:02-2003:12 rV W 0.69 0.99
rDEF 0.16 0.12
rTERM 0.11 0.19
gIP -0.01 0.00
gCONS 0.20 0.16
π -0.12 -0.18
gMON -0.07 -0.01

1959:02-1982:10 rV W 0.74 0.98
rDEF 0.21 0.21
rTERM 0.18 0.22
gIP 0.05 0.07
gCONS 0.20 0.18
π -0.13 -0.19
gMON -0.05 -0.01

1982:11-2003:12 rV W 0.63 0.99
rDEF 0.19 -0.03
rTERM -0.01 0.13
gIP -0.18 -0.14
gCONS 0.22 0.14
π -0.12 -0.13
gMON -0.10 -0.03

Notes: See notes in Table 1 for variable definitions.



TABLE 3

Rejection Rates Under the Null Hypothesis

Covariance Matrix Estimator

K Sample Size Test WH NW NW-P A AM VARHAC

2 250 F 0.08
Hansen 0.07 0.03 0.02 0.05 0.05 0.05
Wald 0.08 0.08 0.07 0.07 0.07 0.07

2 500 F 0.07
Hansen 0.07 0.05 0.05 0.06 0.05 0.05
Wald 0.08 0.08 0.07 0.07 0.06 0.06

4 250 F 0.07
Hansen 0.05 0.02 0.01 0.04 0.04 0.04
Wald 0.10 0.13 0.13 0.10 0.08 0.08

4 500 F 0.06
Hansen 0.05 0.03 0.03 0.04 0.04 0.04
Wald 0.06 0.08 0.08 0.06 0.05 0.05

Notes: We simulate 500 times the series rit = x1t + x2t + . . . + xKt + εit, i =
1, 2, t = 1, ..., T, T = 250 or 500, K = 2 or K = 4. xjt = 0.002 + 0.10 xj,t−1 + ujt,
j = 1, 2, . . . , K, where u1t, ..., uKt are mutually independent and i.i.d. normally
distributed with zero mean and variance 0.0001. εit = 0.1εi,t−1 + 0.003×√

1 + 0.2 ε2
i,t−1ηit, i = 1, 2, with η standard normal noise. We test the null hy-

pothesis of equality of all parameters across the two assets.



TABLE 4

Rejection Rates Under the Alternative Hypothesis

Covariance Matrix Estimator

K Sample Size Test WH NW NW-P A AM VARHAC

2 250 F 0.89
Hansen 0.87 0.78 0.77 0.85 0.84 0.84
Wald 0.90 0.89 0.89 0.88 0.87 0.87

2 500 F 1.00
Hansen 0.99 0.99 0.99 0.99 0.99 0.99
Wald 1.00 1.00 1.00 1.00 1.00 1.00

4 250 F 0.58
Hansen 0.51 0.26 0.26 0.43 0.48 0.48
Wald 0.61 0.62 0.61 0.61 0.58 0.58

4 500 F 0.89
4 500 Hansen 0.86 0.76 0.74 0.82 0.84 0.84

Wald 0.89 0.87 0.87 0.88 0.88 0.88

Notes: We simulate 500 times series

r1t = x1t + x2t + . . . + xKt + ε1t,
r2t = x1t + x2t + . . . + xK

2 ,t + (1 + 0.2
K )( x( K

2 +1),t + x( K
2 +2),t + . . . + xKt) + ε2t,

t = 1, 2, . . . , T , T = 250 or 500, K = 2 or K = 4. xjt = 0.002+0.10 xj,t−1+ujt, j = 1, 2, . . . , K,
where u1t, ..., uKt are mutually independent and i.i.d. normally distributed with zero mean
and variance 0.0001. εit = 0.1 εi,t−1 +0.003

√
1 + 0.2 ε2

i,t−1 ηit, i = 1, 2, with η standard normal
noise. We test the null hypothesis of equality of all parameters across the two assets.



TABLE 5

Tests of the CAPM

Hypothesis Years rV W

equal slopes 59:02-03:12 1.16
(0.28)

59:02-82:10 5.32
(0.02)

82:11-03:12 3.25
(0.07)

zero intercepts 59:02-03:12 5.07
(0.08)

59:02-82:10 5.73
(0.06)

82:11-03:12 1.94
(0.38)

Notes: The model is rit = αi +βixt +εit, i = 1, 2, where αi is the i-th intercept, βi is the i-th
slope, r1t = rSMALL, r2t = rLARGE , xt is rV W (see notes for Table 1 for variables’ definitions)
and εit is the regression error. Reported are HAC Hansen statistics (VARHAC method) for
testing equality of slopes and zero values for intercepts. p-values are in parentheses.



TABLE 6

Tests of Assorted Bivariate Models

independent variable (in addition to market return)

Hypothesis Years rDEF rTERM gIP gCONS ∆π gMON

equal slopes 59:02-03:12 0.83 1.23 1.16 0.62 1.17 1.15
(market) (0.36) (0.27) (0.28) (0.43) (0.28) 0.28

59:02-82:10 5.28 4.90 5.09 4.63 5.15 5.04
(0.02) (0.03) (0.02) (0.03) (0.02) (0.02)

82:11-03:12 3.34 2.71 4.02 3.90 3.04 3.59
(0.07) (0.10) (0.04) (0.05) (0.08) (0.06)

equal slopes 59:02-03:12 1.82 3.13 0.06 7.67 0.00 0.68
(other) (0.18) (0.08) (0.81) (0.01) (0.98) (0.41)

59:02-82:10 0.64 0.01 0.04 0.80 0.19 0.02
(0.42) (0.92) (0.85) (0.37) (0.66) (0.88)

82:11-03:12 13.42 2.61 1.52 5.15 0.04 0.27
(0.00) (0.11) (0.22) (0.02) (0.84) (0.60)

Notes: The model is rit = αi +βixt +εit, i = 1, 2, where αi is the i-th intercept, βi is the i-th
vector of slopes, r1t = rSMALL, r2t = rLARGE , elements of xt are rV W and of one the following
variables: rV W , rDEF , rTERM , gIP , gCONS , ∆π, gMON (see notes for Table 1 for variables’
definitions) and εit is the regression error. Reported are HAC Hansen statistics (VARHAC
method) for testing equality of slopes. p-values are in parentheses.



TABLE 7

Estimated Model with Seven Covariates

independent variable

Years Size Intcpt. rV W rDEF rTERM gIP gCONS ∆π gMON

59:02-03:12 small -0.005 1.036 0.660 -0.185 -0.097 1.442 1.139 -1.058
(0.005) (0.079) (0.248) (0.138) (0.269) (0.499) (0.713) (0.608)

large 0.000 0.973 -0.081 -0.005 0.047 -0.156 0.123 0.171
(0.001) (0.011) (0.036) (0.022) (0.035) (0.071) (0.107) (0.067)

59:02-82:10 small 0.003 1.247 0.584 -0.125 0.014 0.985 0.643 -1.342
(0.007) (0.126) (0.495) (0.209) (0.304) (0.548) (0.874) (1.870)

large 0.000 0.950 -0.048 -0.058 0.036 -0.109 0.071 0.007
(0.001) (0.018) (0.063) (0.030) (0.041) (0.088) (0.141) (0.206)

82:11-03:12 small -0.022 0.778 1.260 -0.387 -1.042 2.306 2.554 -0.909
(0.010) (0.099) (0.405) (0.232) (0.759) (1.071) (1.031) (0.484)

large 0.004 1.000 -0.219 0.067 0.096 -0.218 0.116 0.201
(0.001) (0.011) (0.059) (0.027) (0.064) (0.119) (0.154) (0.058)

Notes: The estimated model is: rit = αi+βixt+εit, i = 1, 2, where αi is the i-th intercept, βi

is the i-th vector of slopes, r1t = rSMALL, r2t = rLARGE , xt = (rV W , rV W , rDEF , rTERM , gIP ,
gCONS , ∆π, gMON )′ (see notes for Table 1 for variables’ definitions) and εit is the regression
error. Reported are OLS estimates of the model parameters with VARHAC standard errors in
parentheses.



TABLE 8

Tests for Residual Heteroskedasticity and Correlation

Residual Property Size Test from 59:02 59:02 82:11
to 03:12 82:10 03:12

correlation across equations Pearson –0.70 -0.70 -0.57
(0.14) (0.02) (0.03)

across time small Q 98.11 66.42 45.47
(0.00) (0.00) (0.00)

large Q 41.47 25.14 14.80
(0.000) (0.01) (0.25)

heteroskedasticity small White 4.61 5.88 3.35
(0.00) (0.00) (0.00)

large White 4.77 6.17 2.17
(0.00) (0.00) (0.01)

Notes: The estimated model is: rit = αi + βixt + εit, i = 1, 2, where αi is the
i-th intercept, βi is the i-th vector of slopes, r1t = rSMALL, r2t = rLARGE , xt =
(rV W , rV W , rDEF , rTERM , gIP , gCONS , ∆π, gMON )′ (see notes for Table 1 for
variables’ definitions) and εit is the regression error. Residuals are calculated using
OLS estimates, equation by equation ; Pearson = chi-square test for correlation;
White test = F test with no cross terms; Q = Q statistic for testing 12 lags of
autocorrelation; p-values in parentheses.



TABLE 9

Tests of Seven Covariate Model

period

Hypothesis 1959:02 2003:12 1959:02 1982:10 1982:11 2003:12

equal slopes:
rV W 0.51 3.84 4.78

(0.48) (0.05) (0.03)
rDEF 6.84 1.16 10.57

(0.01) (0.28) (0.00)
rTERM 1.36 0.08 2.81

(0.24) (0.78) (0.09)
gIP 0.24 0.00 1.88

(0.62) (0.95) (0.17)
gCONS 7.77 3.01 3.59

(0.01) (0.08) (0.06)
∆π 1.86 0.37 4.39

(0.17) (0.54) (0.04)
gMON 2.99 0.40 3.52

(0.08) (0.53) (0.06)
equal slopes: 14.99 5.60 20.89
(all but mkt.) (0.02) (0.47) (0.00)

Notes: The model is rit = αi +βixt + εit, i = 1, 2, where αi is the i-th
intercept, βi is the i-th vector of slopes, r1t = rLARGE , r2t = rSMALL, xt

= (rV W , rDEF , rTERM , gIP , gCONS , πUI , gMON )′ (see notes for Table
1 for variables’ definitions) and εit is the regression error. Reported are
respectively statistics for the Hansen tests (VARHAC method) of equality
of slopes across equations for a given covariate and of equality of all slopes
with the exception of the market. p-values are in parentheses.


