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Abstract

Reduced-rank restrictions can add useful parsimony to coefficient matrices of multivariate models, but
their use is limited by the daunting complexity of the methods and their theory. The present work takes the
easy road, focusing on unifying themes and simplified methods. For Gaussian and non-Gaussian (GLM,
GAM, mixed normal, etc.) multivariate models, the present work gives a unified, explicit theory for the
general asymptotic (normal) distribution of maximum likelihood estimators (MLE). MLE can be complex
and computationally hard, but we show a strong asymptotic equivalence between MLE and a relatively simple
minimum (Mahalanobis) distance estimator. The latter method yields particularly simple tests of rank, and
we describe its asymptotic behavior in detail. We also examine the method’s performance in simulation and
via analytical and empirical examples.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Reduced-rank restrictions can add useful parsimony to coefficient matrices of multivariate
models, but their use is limited by the daunting complexity of the methods and their theory.
In particular, reduced rank regression [4,29], which has been extensively researched, is not yet
included in most statistics textbooks, even at the graduate level, nor in most statistical software
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packages. This dearth of technical training and support exists in vicious cycle with the limited
number of applications attempted so far.

In an attempt to make reduced-rank methods more accessible to the average multivariate mod-
eller, the present work takes the easy road, focusing on unifying themes and simplified meth-
ods. For Gaussian and non-Gaussian (generalized linear models—GLM, generalized additive
models—GAM, etc.) types of multivariate models, the present work gives a unified, explicit the-
ory for the general asymptotic (normal) distribution of maximum likelihood estimators, and also
studies some simpler methods. To set the context of this theory, for a random variable y and
a k-vector x let F(y|x) be the conditional (cumulative) distribution function of y given x. Let
�(x) = �(F (·|x)) describe some feature of the conditional distribution of y, via a function(al)
� that maps conditional distribution functions to functions of x (alone). For each of g groups
i = 1, 2, . . . , g, with g�k, let Fi(y|x) be the conditional distribution of y in that group, and let
�i (x) = �(Fi(·|x)).

Let the general feature � be linear in parameters �:

�i (x) = �′
ix (1)

for i = 1, 2, . . . , g, with coefficient k-vectors �i subject to reduced rank, meaning that the g × k

coefficient matrix � = (�1, . . . , �g)
′ has rank r < g. For simplicity we suppose further that the

user has arranged the data so that the first r rows of � form a basis for all rows. The model then
has three important ingredients:

(i) a dependent variable for each of two or more groups,
(ii) linear linkage between dependent variable and independent variables,

(iii) limitations on links’ degrees of freedom, due to a rank condition.

In the Gaussian multivariate linear model, the feature �(x) is the conditional mean �(x) =∫
y dF(y|x). Here reduced-rank (iii) can be applied ad hoc, as an interesting model simplification,

or can be motivated by some scientific theory. For example, a literature in financial economics (see
[35, Chapter 8], for an excellent summary) takes the latter approach when modelling asset returns,
as in [23]. Related to reduced-rank regression models are factor analysis, growth curve models,
MIMIC (Multiple Indicator Multiple Cause) models, error-in-variables models, latent variables
models, index models, common trends, error correction models and co-integration models, and for
relevant discussion and applications we refer the reader to [4–6,8–11,47,32,25,43,21,22,39,2,3,41,
12,38,1,35, 48].

Reduced-rank parameterization has also been developed for some non-Gaussian multivariate
models. These include the multinomial logit model [6,7], the vector generalized linear model
(GLM) and vector generalized additive model (GAM), see [46] for recent discussion. Typically,
in these models the matrix � parameterizes a feature � which is not itself a (conditional) mean,
but is related to mean of some (transformed) variable.

For many non-Gaussian multivariate models, reduced-rank methods are rarely (if ever) at-
tempted. For example, as a measure of the center or location of a continuous distribution, an
alternative to the conditional mean is the conditional median m(x) = F−1

( 1
2 |x)

, this being the
median of y conditional on x, for which P(y�m(x)|x) = 1

2 . When data have an asymmetric
(hence non-Gaussian) distribution, the median typically differs from the mean. Linear models of
conditional median date back at least to [16], and [26] provide a review of theory and some appli-
cations of such models (see also [28] for linear models of other location measures, and [33] for
models of conditional quantiles including the median). Any time that reduced-rank MANOVA or
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multivariate linear regression models are employed, one can imagine trying out also reduced-rank
median-based models (without normality assumptions). However, we know of no such attempt,
perhaps due to the task’s perceived difficulty. As we show, there is a reasonably easy way to
approach such problems.

As another example, consider multivariate models of variability or scale, via the conditional
standard deviation:

�(x) =
√∫

(y − �(x))2 dF(y|x).

A linear model of variability is then �i (x) = �′
ix, i = 1, 2, . . . , g, in which case the coefficient

vectors �i describe a conditional variability/heteroskedasticity feature, rather than a conditional
location feature. We are not aware of linear models of conditional standard deviation in the
literature, but the example in Section 2 derives such a model from a form of stochastic dominance.
The linear model of �(x) has the ingredients (i)–(iii), with a linear form (ii) of conditional standard
deviation, and reduced-rank (iii) applied to the matrix � of conditional variability coefficients. We
can similarly apply reduced-rank structure to linear models of conditional variance �2(x) (these
being common in economics/econometrics) and other features of the conditional distribution.

Maximum likelihood is the usual method for multivariate analysis, and we provide a unified
theory for the general asymptotic (normal) distribution of maximum likelihood estimators (MLE)
of reduced-rank multivariate models. However, maximum likelihood is often not the simplest
method, and it may be computationally burdensome. By comparison, a relatively simple “mini-
mum (Mahalanobis) distance” estimator, which we interpret as a “maximum approximate density”
(MAD) estimator, is typically available, as in [23]. This sort of estimator has, under standard con-
ditions, an asymptotic normal distribution which is fairly easy to establish (via the Delta Method)
in broad form. We go further, describing the MAD estimator’s behavior in more detail.

We show a strong asymptotic equivalence between MAD and MLE estimators, these two being
perfectly correlated as sample size approaches infinity. To further interpret the MAD estimator,
we note that it maximizes a particular (asymptotically valid) density function associated with a
plug-in unrestricted (full-rank) estimator �̂. The MAD approach is intuitive and quite general,
and we describe further similarities between it and the maximum likelihood estimator.

For MAD estimation, we assume that the plug-in �̂ is asymptotically normal, and this covers
many cases of interest but time series models with unit root dynamics, where �̂ can be asymptoti-
cally non-normal (see for example [30,31,3,35, Chapter 5]), this being the subject of the project’s
sequel (in progress). The proposed MAD estimator takes as input an available full-rank estima-
tor and plug-in variance–covariance estimate, and is consistent with an asymptotically normal
distribution that we describe in detail (via explicit formulas for the relevant variance/covariance
matrix). The estimator does not require a fully specified probability model, yet mimics some
special behavior of maximum likelihood estimators. Also, the proposed estimator is identical,
asymptotically, to constrained MLE when �̂ is (unconstrained) MLE. An advantage of the pro-
posed method is its general practicality, whereas constrained MLE (for reduced-rank multivariate
conditional variability, etc.) may be hard to compute (when available) for non-Gaussian models.
We illustrate this advantage in the case of a mixed normal probability model.

We also propose a rank test, based on the ratio of asymptotic densities (RAD) for constrained
and unconstrained estimators. This testing principle is intuitive and general. Since we assume that
the unconstrained estimator �̂ is asymptotically normal, we report here test theory for this case
only. Our approach tests whether the first r rows of coefficient matrix � span the rest, and hence
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is consistent against two (overlapping) alternatives: (a) that � has rank > r , and (b) that the first r

rows are not a basis of �. Hence, our test allows us to check for misspecification of the posited row
basis. By comparison, other general rank tests (including [24,17,18,36]) are consistent against (a)
but not (b), because they test for the existence of reduced-rank regardless of which rows form a
basis. Further, we show that our test is equivalent, asymptotically, to a likelihood ratio test (which
may be hard to compute) when the plug-in �̂ is (unconstrained) MLE.

The remainder of the paper is organized as follows. Section 2 gives an economic example,
Section 3 defines the proposed estimator and test, and Section 4 provides asymptotic theory for
the methods. Section 5 continues the economic example, Section 6 studies performance through an
analytical example and simulation, Section 7 concludes, and an Appendix contains mathematical
proofs.

2. Example

We give a simple example that illustrates reduced-rank multivariate linear modelling of both
conditional location (via mean and median) and conditional variability. The model, which posits
a form of stochastic dominance between groups, has aforementioned ingredients (i), (ii) and
(iii), applied to conditional mean, median and standard deviation, respectively. Estimating these
models, subject to reduced-rank on the matrix of interest, is sometimes difficult via traditional
maximum likelihood methods, but can be more convenient using approximate density (MAD and
RAD) methods.

Let there be g = 2 groups of workers, the first group male and the second female. For a random
sample of workers, with n1 males and n2 females, let yij be the income of a worker in the ith
gender group and j th education level, with j = 1 indicating at most a high school degree, and
j = 2 indicating some college education.

We use data from the Integrated Public Use Micro-data Samples database (available at
www.ipums.umn.edu, see [37] for description). This data is a random sample, from the year
1990, of US persons 16 years and older who earn a positive amount of income and have at most
a bachelor’s degree. The sample has features typically observed in income data (see [13,15,14]),
including higher incomes for the more educated workers, and higher incomes for men. From
Table 1, both income and log-income show high kurtosis (fat tails), and there is positive skew for
income and negative skew for log-income, in each gender × education pairing.

Table 1
Income sample statistics, by sex and education

Male Female

Low ed High ed Low ed High ed

Income n 1556 403 1632 306
Mean 20,871.82 47,767.38 11,570.22 24,185.74
Median 17,000.00 36,000.00 8,344.00 20,057.50
SD 18,711.83 43,395.45 10,729.81 19,994.79
Skewness 3.28 2.49 2.35 2.93
Kurtosis 25.32 10.39 14.44 21.70

Log-income Skewness −1.63 −0.85 −1.38 −1.44
Kurtosis 8.81 5.99 7.03 5.60
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Table 2
Income, mixture model

Male Female

Low ed High ed Low ed High ed

Parameters
� 0.88 0.84 0.62 0.96
�1 17,056.30 33,999.09 6,159.57 22,058.32
�2 50,024.76 119,998.56 20,453.47 77,368.69
�1 11,452.10 17,944.54 3,923.93 14,520.58
�2 32,560.96 61,905.36 12,316.92 46,342.79

Descriptives
Mean 20,871.82 47,767.38 11,570.22 24,185.74
Median 18,380.37 37,685.91 8,250.88 22,617.45
SD 18,705.82 43,341.57 10,726.53 19,962.09
Skewness 1.99 2.32 1.275 2.46
Kurtosis 10.24 9.38 4.432 16.79

To model the skewed and fat-tailed income distribution for women and men at different edu-
cation levels, we apply a Mixed Normal (abbreviated MN) probability model, separately to each
of the four groups: male—low ed, male—high ed, female—low ed, female—high ed. The Mixed
Normal, with suitably many mixture components, provides a flexible generalization of the normal
(Gaussian) distribution. For each group, we model income as the probability mixture of two nor-
mal distributions. With gender labels i = 1, 2 for categories (male, female) and education labels
j = 1, 2 for categories (low, high), we specify the probability density for gender i and education
level j as

fij(y) = �fN (y; �ij1, �
2
ij1) + (1 − �)fN (y; �ij2, �

2
ij2),

where fN (y; �, �2) is the normal density function with mean � and variance �2. For our random
sample, income y is assumed independent across genders i and education levels j .

For each group we estimate the Mixed Normal model via maximum likelihood, using the EM
algorithm of [19]. We report parameter estimates in the top part of Table 2, and from the fitted
density functions f̂ij(y) we compute the fitted group-wise mean, median, and standard deviation:

�̂ij =
∫

yf̂ij(y) dy, m̂ij = F̂−1
ij

(
1

2

)
, �̂ij =

√∫
(y − �̂)2f̂ij(y) dy,

where F is the cumulative distribution function. The mean and standard deviation have known
formulas, based on the MN model (see for example [27,20]), and for the median we use simulation
of MN with a pseudo-sample of size 100,000. We report these results in the bottom part of Table 2,
as well as the skewness and kurtosis for each MN model, obtained via simulation.

The income descriptives in Tables 1 and 2 are consistent with the idea that women in 1990
tended to earn about half of what men did, in each education category. Formally,

y2j
d= cy1j , j = 1, 2, (2)
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where
d= means equality in distribution, and c a constant close to 1/2. This characterization, which

is a form of (first-order) stochastic dominance, allows a general income distribution for men at
each education level, and restricts only the relative performance of women versus men.

To put this form of stochastic dominance in the context of the feature model (1), define 2 × 1
vectors xi = (xi1, xi2)

′, i = 1, 2, with dummy variables xij, j = 1, 2, indicating education level
(low and high). Then, with y1 and y2 the incomes of males and females (irrespective of education
level), stochastic dominance (2) implies reduced-rank multivariate linear models of conditional
location, when specified in terms of either mean or median, and also implies a model of conditional
variability, specified in terms of standard deviation. That is

�i (yi |xi) = �′
�i xi , mi(yi |xi) = �′

mi xi, �i (yi |xi) = �′
�i xi

for some 2 × 1 vectors ��i , �mi, ��i , i = 1, 2, which yield 2 × 2 matrices ��, �m, �� having
typical rows �′

�i , �′
mi , �′

�i , respectively. More generally, (2) implies a model (1) of conditional
quantiles (including the median) and of higher-order (standardized) moments. In all of these
models, linearity (ii) is not a strong assumption since xi consists of dummy variables, and reduced-
rank (iii) is implied by the stochastic dominance condition.

Suppose we want to compare incomes of males and females, by education, in terms of a basic
descriptive such as mean, median, or standard deviation. Population descriptives can be estimated
by their sample counterparts, or by maximizing the likelihood of some flexible parametric proba-
bility model like MN. In either case we can arrange mean values for the four gender × education
groups into a matrix, and use a reduced-rank matrix restriction to state the idea that female mean
income is equal to a constant times male mean income, with the constant being the same for
each education category. To maximize MN likelihood subject to this restriction, we would need
something like an extended EM algorithm, with alternating least squares woven into each EM
pass. By comparison, the MAD estimator requires only simple EM followed by simple alternating
least squares, both computable with existing software.

If we use median income, rather than mean income, as our income descriptive, and con-
sider the matrix of median incomes (by gender and income), we can again use a reduced-
rank matrix restriction to compare male and female incomes. Here, maximum likelihood es-
timation of the MN model, subject to reduced-rank on the matrix of group median values, is
much more difficult computationally since the median of mixed normal distributions is gen-
erally not a closed-form function of model parameters. It is feasible via Monte Carlo or sim-
ulation methods, perhaps combined with grid search, but is not supported by existing soft-
ware, and would impose quite a programming/computation burden on statisticians attempting
it themselves. By comparison, the MAD estimator requires only simple EM followed by a single
Monte Carlo (to compute median values, a simple exercise) and then simple alternating least
squares.

3. Definitions

We define here the proposed estimator and test, and later explore their properties and perfor-
mance. When reduced-rank holds there is a factorization of the coefficient matrix:

� = AB, (3)
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with A and B being g × r and r × k full-rank matrices, respectively. With Ir the r × r identity
matrix, we specify

A =
[

Ir

C

]
, (4)

with C some (g − r) × r matrix which we will call the multiplier matrix. The first r rows of �
then form a basis, spanning the remaining rows, and we partition � as

� =
[

�1
�2

]
, (5)

with �1 the ‘basis’ sub-matrix consisting of the first r rows of �, and �2 consisting of the last
g − r rows. Then, under (4), for the factorization � = AB we have

�1 = B, (6)

�2 = C�1. (7)

Let S∗ be the set of g × k matrices whose first r rows are linearly independent and span the
remaining rows. The reduced-rank form of interest is then the hypothesis

H0: � ∈ S∗.
To introduce the proposed methods, let � = vec �′ and �̂ = vec �̂

′
(with full-rank plug-in �̂),

each gk × 1 vectors, and let f∗(�; �, �) be a known family of probability density functions for
gk × 1 vectors �, with density parametrized by its gk × 1 mean vector � and gk × gk variance–
covariance matrix �. Suppose that

�−1/2(�̂ − �)
d→ f∗(·; 0, I ),

for some gk × gk invertible variance–covariance matrix � which depends on sample size, with
each element �ij → 0 in large samples, and where �−1/2 = (�1/2)−1 with Cholesky root �1/2:
�1/2(�1/2)′ = �. Note that we assume invertibility and hence full rank of covariance matrix � for

the unrestricted estimator vec �̂
′
, while at the same time entertaining reduced-rank in �. This is

not a contradiction, provided that particular values of � elements are unrelated to the correlation

among the elements of estimator vector vec �̂
′
, as is the usual case in statistical estimation

of multiple parameters, like in ANOVA, regression, etc. For example, if we the parameters of
interest be the population mean income values for four groups (male—low education, male—
high ed., female—low ed., female—high ed.), then these mean values, when arranged into a
2 × 2 matrix (by gender and education), may or may not satisfy a reduced-rank matrix condition.
Regardless, provided that incomes are sampled at random from the population, when estimating
population mean income by sample mean income—for each group, the resulting group means are

uncorrelated, and the 4 × 1 vector vec �̂
′

has a 4 × 4 covariance matrix which is diagonal, with
positive diagonal elements of the form �2

ij/nij, and hence is full-rank.

We define f�̂(�; �, �) = f∗(�; �, �) as the asymptotic density function of �̂. Let �̃ maximize

the asymptotic density value f�̂(�̂; z, �̂) over z = vec M ′ such that M lies in the set S∗, where �̂

is a plug-in (invertible) estimator of �, for which we assume that �̂
−1

� → I (in probability). We
then call �̃ a MAD estimator, and call �̃ = ÃB̃ the MAD estimator of �, such that vec �̃

′ = �̃,
with component estimators Ã = [Ir , C̃

′]′ and B̃.
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To test H0 we introduce a Ratio of Asymptotic Densities (RAD) test statistic:

W = −2

⎛
⎝ln

⎛
⎝f�̂(�̂; �̃, �̂)

f�̂(�̂; �̂, �̂)

⎞
⎠

⎞
⎠ ,

which is based on the ratio f�̂(�̂; �̃, �̂)/f�̂(�̂; �̂, �̂) of restricted (via H0) and unrestricted
(asymptotic) density values.

In the remainder of this paper, we suppose that �̂ is asymptotically normal:

�−1/2 vec
(
�̂

′ − �′) → N(0, I ). (8)

Let Mpq be the set of p×q matrices, for some given p and q, and define the Mahalanobis metric

d(a, b; �) = [
vec′(a′ − b′) � vec( a′ − b′)

]1/2

for each a and b in Mpq and some symmetric positive definite pq × pq matrix �. Then, under

(8), the MAD estimator �̃ minimizes d(�̂, M; �̂
−1

) over M ∈ S∗, and hence is a “minimum

distance” estimator, while RAD test statistic W = d2(�̂, �̃; �̂
−1

). The decision rule for the
proposed test is to reject H0 if W exceeds the relevant critical value from the chi-square distribution
with (g − r)(k − r) degrees of freedom, in which case the test is a “minimum chi-square” test
(alternatively called a “generalized Wald” test by [40]).

When suitably applied to multivariate models of conditional mean (as in MANOVA, regression,
and errors-in-variables models), the proposed methods reduce to well-known maximum likelihood
estimators and likelihood ratio (LR) tests. For example, in the context of Gaussian reduced-
rank regression, if �̂ is the unconstrained MLE estimator, and �̂ is its maximum likelihood
variance/covariance estimate, then �̃ is a reduced-rank MLE and W is a likelihood ratio test
statistic for H0, as can be seen by applying [34, Theorem 3]) to [35, line 14 of p. 31]. Similarly, W
can take the form of a Rao/score/Lagrange multiplier test when �̂ is obtained from constrained
maximum likelihood. For models of conditional mean in which the errors can be non-normally
distributed, the proposed estimator is not necessarily maximum likelihood but can take the form
of “generalized least squares” (as in [21,43]).

4. Theory

To proceed, for each reduced-rank matrix M ∈ S∗ write M = LQ for some g × r matrix
L = [Ir , N

′]′, r × k matrix Q, and (g − r) × r matrix N . Then we can view f�̂(�̂; z, �̂) as a

function of vectors v1 = vec Q′ and v2 = vec N ′, via z = vec([Ir , N
′]′Q)′. Let v = (v′

1, v
′
2)

′ and
� = ((vec B ′)′, (vec C′)′)′, each an (rk + (g − r)r)×1 vector. Recalling the connection between

f�̂ and distance d(�̂, M; �̂
−1

), it is useful to write

d2(�̂, LQ; �̂
−1

) = vec′(�̂′ − Q′L′) �̂
−1

vec(�̂
′ − Q′L′).

There can occasionally be multiple MAD estimators �̃, as when g = 2 = k, �̂ = I2 and �̂ = I4,
where there are two (readily obtained) candidates for �̃ and for �̃ = ((vec B̃ ′)′, (vec C̃′)′)′,
namely: �̃ = (1/2, 1/2, 1)′, �̃ = ((1/2, 1/2)′, (1/2, 1/2)′); and �̃ = (1, 0, 0)′, �̃ = ((1, 0)′,
(0, 0)′), each of which yield d(�̂, �̃; �̂

−1
) = 1. In this case, the matrix �̂ is such that the first r
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rows are orthogonal to the last g−r rows, but such orthogonality must fail to hold (with probability
approaching 1 in large samples, under (8)) if � satisfies H0.

Noting that vec Q′L′ = (L ⊗ Ik) vec Q′, using the chain rule we have the 1 × rk vector of
partial derivatives of ln(f�̂) with respect to v1:

� ln(f�̂)

�v1
=

� ln(f�̂)

�z

�z

�v1
= vec′(�̂′ − Q′L′) �̂

−1
(L ⊗ Ik). (9)

Likewise, using the fact that vec Q′L′ = (Ig ⊗ Q′) vec L′ we get the 1 × (g − r)r vector:

� ln(f�̂)

�v2
=

� ln(f�̂)

�z

�z

�v2
= vec′(�̂′ − Q′L′)�̂−1

(Ig ⊗ Q′)R, (10)

where R is the gr × (g − r)r matrix:

R =
[

0r2,(g−r)r

I(g−r)r

]
= � vec L′

�v2
,

with 0r2,(g−r)r the r2 × (g − r)r matrix with all entries = 0.

Setting derivatives equal to zero, we obtain partial solutions for B̃ and C̃:

vec B̃ ′ =
[
(Ã ⊗ Ik)

′ �̂−1
(Ã ⊗ Ik)

]−1
(Ã ⊗ Ik) �̂

−1
vec �̂

′
, (11)

vec C̃′ =
[
((Ig ⊗ B̃ ′)R)′ �̂−1

(Ig ⊗ B̃ ′)R
]−1

((Ig ⊗ B̃ ′)R)′ �̂−1
vec �̂

′
. (12)

The (rk + (g − r)r) × (rk + (g − r)r) Hessian matrix of second partial derivatives for ln(f�̂)

with respect to v is

H =
⎡
⎣ �

�v
(L ⊗ Ik)

′ �̂−1
vec(�̂

′ − Q′L′)
�
�v

R′(Ig ⊗ Q′)′ �̂−1
vec(�̂

′ − Q′L′)

⎤
⎦ =

[
H11 H12
H ′

12 H22

]
,

with H11 the upper-left rk × rk sub-matrix of H , H12 the upper-right rk × (g − r)r sub-matrix,
etc. Evaluating Q and N at B̃ and C̃, respectively, yields the result H̃ for H . Using the above-
mentioned formulas relating vec Q′L′ to vec Q′ and vec L′, respectively, we obtain

H̃11 = −(Ã ⊗ Ik)
′ �̂−1

(Ã ⊗ Ik), (13)

H̃22 = −R′(Ig ⊗ B̃ ′)′ �̂−1
(Ig ⊗ B̃ ′)R. (14)

For the cross-derivative term H̃12, we repeatedly make use of the chain rule and the fact that
vec(L⊗Ik)

′ = vec(L′⊗Ik) = (Ig⊗G) vec L′ where G is the k2r×r matrix (Kkr⊗Ik)(Ir⊗vec Ik)

and Kkr is the kr × kr commutation matrix (as discussed in [34, Chapters 3, 5]), for which
vec U ′ = Kkr vec U for each k × r matrix U . The result is

H̃12 = Z
[
Ig ⊗ G

]
R, (15)
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with Z the kr × gk2r matrix:

Z = −(vec �̂
′
)′ �̂−1 ⊗ Ikr + (vec B̃ ′)′ (Ã ⊗ Ik)

′�̂−1 ⊗ Irk + (Ã ⊗ Ik)
′ �̂−1 ⊗ (vec B̃ ′)′.

Using the fact that �̃ = ÃB̃ is a (weakly) consistent estimator of � under H0 and (8) (as is readily
shown, and can be obtained from Lemma A.1 in the Appendix), we get a convenient asymptotic

approximation H̃12 ≈ −(Ã ⊗ Ik)
′ �̂−1

(Ig ⊗ B̃ ′)R, where for sample-specific random matrices
a and b, a ≈ b means that a = b(1 + op(1)), with op(1) a term vanishing in probability in large

samples. From this we obtain −H̃V�̃
p→ Irk+(g−r)r , where

V�̃ = [P ′�−1P ]−1,

with P the gk × (rk + (g − r)r) matrix:

P = (A ⊗ Ik, (Ig ⊗ B ′)R).

Partition V�̃ as we did H , yielding upper-left rk×rk sub-matrix V�̃11, etc. in which case (using
the partitioned inverse formula) we have:

V�̃11 =
[
(A ⊗ Ik)

′�−1(A ⊗ Ik) −
(
(A ⊗ Ik)

′�−1(Ig ⊗ B ′)R
)

×
(
R′(Ig ⊗ B ′)′�−1(Ig ⊗ B ′)R)

)−1 (
(A ⊗ Ik)

′�−1(Ig ⊗ B ′)R
)′ ]−1

,

V�̃22 =
[

R′(Ig ⊗ B ′)′�−1(Ig ⊗ B ′)R −
(
(A ⊗ Ik)

′�−1(Ig ⊗ B ′)R
)′

×
(
(A ⊗ Ik)

′�−1(A ⊗ Ik)
)−1 (

(A ⊗ Ik)
′�−1(Ig ⊗ B ′)R

) ]−1

.

Defining V
B̃

= V�̃11
and V

C̃
= V�̃22

, we have:

Theorem 1. Under (8) and H0, each of the following holds:

(i) �̃ − � ≈ (P ′�−1P)−1P ′�−1 vec(�̂
′ − �′),

(ii) V
−1/2

�̃
(�̃ − �) converges in distribution to N(0, Irk+(g−r)r ),

(iii) V
−1/2
B̃

vec(B̃ ′ − B ′) d→ N(0, Irk),

(iv) V
−1/2
C̃

vec(C̃′ − C′) d→ N(0, I(g−r)r ).

The asymptotic variance matrices for vec B̃ ′ and vec C̃′ coincide (asymptotically) with −H̃ 11

and −H̃ 22, respectively, where H̃ ij is the (i, j)th partitioned block of the inverse H̃−1 of Hessian
matrix H̃ (with partitioning as in H ); hence the asymptotic theory of MAD estimators mimics
classical asymptotics for maximum likelihood estimators. [45] exploits this sort of resemblance
in his study of the likelihood ratio statistic (see also [42, p. 240]). We can further this resemblance

by introducing the (rk + (g − r)r) × 1 vector s̃ =
(

� ln(f�̂)

�v1
|M=�,

� ln(f�̂)

�v2
|M=�

)′
, consisting of

partial derivatives (9) and (10) evaluated at M = �, in which case, from Theorem 1 we conclude:

�̃ − � ≈ −H̃−1s̃,
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mimicking the asymptotic behavior of maximum likelihood estimators (as described in [42],
Section 5.5, for example).

It is interesting to interpret the asymptotic variance matrices V
B̃

and V
C̃

in light of formulas
(11) and (12). If in (11) the value of A were known we could re-define Ã = A, in which
case vec B̃ ′ would be a linear function of vec �̂

′
and would have asymptotic variance matrix

[(A⊗Ik)
′ �−1 (A⊗Ik)]−1, but with A unknown V

Ã
is larger (by a positive definite matrix) than this

‘ideal’ variance matrix. Similarly, V
C̃

is larger than the ‘ideal’ variance [((Ig ⊗ B ′)R)′ �−1 (Ig ⊗
B ′)R]−1 that could be obtained for vec C̃′ if B were known.

With �̃ = ÃB̃ we obtain the asymptotic distribution of �̃ from that of its components:

Theorem 2. Under (8) and H0, vec(�̃
′ −�′) ≈ P(P ′�−1P)−1P ′�−1vec(�̂

′ −�′), and hence
asymptotically vec(�̃

′−�′) is normal with zero mean and variance matrixV�̃=P (P ′�−1P)−1P ′.

To examine the proposed estimators in the context of probability models and likelihood func-
tions, consider the following general situation. Let L(x; �) be a (generalized) log-likelihood
function with some a × 1 parameter vector �. Let the restricted form of the model have � = q(�)
for some b × 1 vector �, b < a, and differentiable function q. Let �† and �̂ be the maximum like-
lihood estimators with and without the restriction, respectively, and let �† be the MLE estimator
of �. L� is the 1 × a vector of partial derivatives of L with respect to �1, . . . , �a , and L��′ is the
a × a second derivative matrix of L, each evaluated at �, and q� is the a × b derivative matrix of
q, evaluated at �. Define a × a matrix V�̂ = (−EL��′)−1. Let V̂�̂ be an invertible estimate of V�̂.
With f�̂(	; �, V�̂) the normal density function with mean vector � and variance matrix V�̂, let �̃
be the “MAD” estimator of �, maximizing the asymptotic density f�̂(�̂; q(u), V̂�̂) over u, and let
�̃ = q(�̃).

Assumption 1. Suppose that

(i) �̂ − � ≈ −(EL��′)−1L′
� and

(ii) �† − � ≈ −(q ′
�EL��′q�)

−1q ′
�L′

�,

(iii) V
−1/2
�̂ (�̂ − �)

d→ N(0, Ia),
(iv) V�̂ converges to zero (element-wise) in large samples,
(v) V̂ −1

�̂ V�̂ converges (in probability) to the identity matrix.

The conditions on the likelihood imposed by Assumption 1 are standard (see for example
[42, Chapter 5.5]).

Theorem 3. Under Assumption 1, MAD estimators are asymptotically equivalent to maximum
likelihood estimators of the restricted model: �̃ ≈ �† and �̃ ≈ �†.

To apply Theorem 3 to our case of reduced-rank matrix estimators, let � be partitioned � =
(�′

1, �
′
2)

′, with �1 = �, and let � be partitioned as � = (�′
1, �

′
2)

′, with �1 = �. Also, let q(�) =
(t (�1)

′, �′
2)

′, with t : � = t (�). The MAD estimator of � contains components �̃1 and �̃2, and
because the specification �1 = t (�1) and �2 = �2 allows �1 and �2 (likewise �2 and �1) to freely
vary with respect to each other, �̃1 minimizes d(�̂1, t (u); V̂ −1

�1
) over u, with V�̂1 the upper-left sub-

matrix (corresponding to �1) of V�̂. Setting V̂�1 = �̂, we have d(�̂1, �̃1; V̂ −1
�1

) = d(�̂, �̃; �̂
−1

),

hence �̃1 is of the form �̃, and �̃1 is of the form �̃.
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To compute the MAD reduced-rank matrix estimator �̃ and its component matrices B̃ and C̃,
various numerical routines are possible. A simple method is to start with the estimator B̂ = �̂1
of B, plug this into (11) to get an estimate of C, then plug this C estimate into (12) to get
an updated estimate of B, etc., until convergence. Another approach is the Newton–Raphson

sequence: �̃
(j+1) = �̃

(j) − H−1(�̃
(j)

) s(�̃
(j)

), j = 1, 2, . . . , given some initial value �̃
(1)

, with
H as above and s the matrix of first partial derivatives given by (9) and (10) (forming the upper and

lower rows of s, respectively), each evaluated at �̃
(j)

. Note that we do not here prove convergence
of the computational routines, but recommend the first of these routines (which we have used
extensively, with real data and in simulations, with no problems).

Regarding the proposed RAD test of reduced-rank we have:

Theorem 4. Under (8) and H0 the RAD test statistic W converges in distribution to chi-square,
with (g − r)(k − r) degrees of freedom.

Further, writing V�̂ = � we have

W ≈ (�̂ − �̃)′V −1
�̂

(�̂ − �̃),

under (8) and H0. This behavior of W imitates that of the likelihood ratio test, as we now explain.
In the setting described in Assumption 1, define the likelihood ratio test statistic LR = −2(L(0) −
L(1)), with L(1) and L(0) the unconstrained and constrained log-likelihoods, respectively.

Assumption 2.

LR ≈ (�̂ − �†)′V −1
�̂ (�̂ − �†).

This high-level assumption about LR is standard and valid under known low-level primitive
conditions, such as smoothness of the data density function (see for example [42, Chapter 16]).

Theorem 5. Under H0 and Assumptions 1 and 2, the RAD test statistic W is (asymptotically)
equivalent to the likelihood ratio test statistic LR.

We can extend the test equivalence in Theorem 5 to local alternatives. For this, generalize

Assumption 1 so that V
−1/2
�̂ (�̂ − �0)

d→ N(
, Ia), for some �0 = q(�0), some �0, and a vector


. Also, in the Appendix setup for Lemmas A.1–A.3 let V −1/2(�̂ − �0)
d→ N(�, Im), with �0

satisfying a hypothesized restriction on parameter vector �, and a vector �. Local alternatives
arise when vectors 
 and � have non-zero elements. To cover this situation we can readily extend
Theorem 3 under Assumption 2 and generalized Assumption 1, and from this find that the (local)
power of the RAD test and likelihood ratio test are the same, given by the non-central chi square
distribution �2

(g−r)(k−r)(

′
).

5. Example, continued

We apply the convenient approximate density (MAD and RAD) methods to income descriptives
(mean, median, standard deviation) of males and females, in two ways. First, we use sample
descriptives as the input to the approximate density methods. Second, we use as input descriptives
obtained from the Mixture of Normals model.
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To proceed with inputs given by sample descriptives, let the full-rank estimator �̂ consist
of sample means, medians or standard deviations. For the estimated variance matrix �̂ of �̂,
let all off-diagonal elements equal zero (since each two-way cell is sampled independently of
the others) and, for diagonal elements �̂mm (with m = 1, . . . , 4 corresponding to (i, j) =
(1, 1), (1, 2), (2, 1), (2, 2)), (I) in the case of means let �̂mm = s2

ij/nij, where s2
ij and nij are

the sample variance and sample size for ith sex × j th education level, (II) for medians let �̂mm =
(y(n−kij+1) − y(kij))

2/(4z2
0.995), with kij = (nij + 1)/2 − z0.995

√
nij/4, z0.995 the 0.995 quantile of

the standard normal distribution, and y(1), . . . , y(nij) the (i, j)th cell’s data in ascending order (see

[44, p. 134]), (III) for standard deviations let �̂mm = (4nijs
2
ij)

−1((nij − 1)−1 ∑nij
k=1(yijk − ȳij)

4 −
(s2

ij)
2).

To proceed with inputs given by descriptives of the Mixture of Normals model, let the full-rank
estimator �̂ consist of means, medians or standard deviations associated with the MN models
which in Section 2 we estimated via maximum likelihood. For the covariance �̂ of vec �̂

′
, we

use �̂ = DE V̂ D′
E , with V̂ the outer-product-of-scores estimator of covariance for the maximum

likelihood parameter estimates, and with DE the 1 × 5 vector of estimated partial derivatives for
the MN model’s descriptive E—either mean, median, or standard deviation, with respect to the
MN parameters:

D� = (
�1 − �2, �, 1 − �, 0, 0

)
,

Dm = − 1

f (m)
×

(
F�(m), F�1

(m), F�2
(m), F�2

1
(m), F�2

2
(m)

)
,

D� = q ×
(
�2

1 + �2
1 − (�2

2 + �2
2) − 2(��1 + (1 − �)�2)(�1 − �2), 0, 0, �, (1 − �)

)
,

with

q = 1

2
√

�(�2
1 + �2

1) + (1 − �)(�2
2 + �2

2) − (��1 + (1 − �)�2)
2
,

f (m) the MN density function evaluated at the median m, and F�, F�1
, F�2

, F�2
1
, F�2

2
the partial

derivatives of the MN cumulative distribution function, with respect to �, �1, etc., in which case
F�(m) = ∫ m

−∞ f�(y) dy, etc., with f� the partial derivative of MN density f with respect to
�, etc. For example, when E is given by population mean �, in the MN model � = ��1 +
(1 − �)�2, a function of MN parameters, and D� contains the partial derivatives of this function
�(�, �1, �2, �

2
1, �

2
2).

For income effects measured by sample descriptives and, alternatively, Mixture Model descrip-
tives, Table 3 reports estimates of reduced-rank matrix components, and their standard errors,
and well as tests of reduced-rank in the 2 × 2 matrix �. To obtain standard errors for MAD
estimators, we use the (asymptotically valid) variance matrix V�̃ with unknown �, A, B replaced

by �̂, Ã, B̃. With male and female income coefficients (by education level) given by the 1×2 row
vectors �1 and �2, the reduced-rank (r = 1) restriction is �2 = c�1, and the proposed estimates
of c are near 1/2 for each coefficient concept (mean, median, etc.), consistent with Table 1 and
our earlier discussion. The proposed rank tests mostly fail to reject H0, with p-values �0.20
in all cases except for the test of median incomes, based on the MN model, where evidence is
marginal—p = 0.05.
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Table 3
Income MAD estimators and RAD test

Coefficient c b1 b2 Rank test

concept Est. SD Est. SD Est. SD Stat. p

Based on sample descriptives
Mean 0.545 0.02 21054.04 451.01 46040.11 1653.02 1.55 0.21
Median 0.500 0.02 16855.69 427.46 36851.49 1440.65 1.62 0.20
SD 0.547 0.04 19288.92 1106.27 41091.85 2987.49 1.67 0.20

Based on mixture model
Mean 0.542 0.022 21172.61 728.10 46493.51 2018.04 0.91 0.34
Median 0.504 0.014 16793.28 325.18 37219.28 1067.16 3.81 0.05
SD 0.557 0.038 19057.44 1071.08 39694.13 3995.35 1.15 0.28

6. Performance

Let g = 2, k = 2 and r = 1, in which case A = [1, c]′, B = (b1, b2) and � = [1, c]′(b1, b2),
for some scalars b1, b2, c. Also, let each of the four (i, j) classifications have a sample of the
same size n. To describe estimator performance we first obtain some asymptotic formulas, then
report on some finite-sample simulations.

6.1. Asymptotics

For asymptotics we set � = �2I4/n, for some �2 > 0 and sample size n = 25, 50, 100, 200.
To analyze the proposed estimator �̃ of � = (b1, b2, c)

′, we require the matrix P (defined earlier)
which here takes the form

P =

⎡
⎢⎢⎣

1 0 0
0 1 0
c 0 b1
0 c b2

⎤
⎥⎥⎦ .

Applying Theorem 1 yields

⎡
⎣ b̃1 − b1

b̃2 − b2
c̃ − c

⎤
⎦ ≈ M�̃

⎡
⎢⎢⎢⎣

�̂11 − �11

�̂12 − �12

�̂21 − �21

�̂22 − �22

⎤
⎥⎥⎥⎦ ,

where M�̃ = (P ′�−1P)−1P ′�−1 is the 3 × 4 matrix:

M�̃ = 1

(1 + c2)(b2
1 + b2

2)

×
⎡
⎣ b2

1(1 + c2) + b2
2 b1b2c

2 b2
2c −b1b2c

b1b2c
2 b2

1 + b2
2(1 + c2) −b1b2c b2

1c−b1c(1 + c2) −b2c(1 + c2) b1(1 + c2) b2(1 + c2)

⎤
⎦ .
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This ties the performance of �̃ explicitly to that of �̂. Further, we find by direct computation the
Hessian matrix H̃ and the probability limit:

plim n−1H̃ = − 1

�2

⎡
⎣ 1 + c2 0 cb1

0 1 + c2 cb2

cb1 cb2 b2
1 + b2

2

⎤
⎦ ,

and using the fact that −H̃V�̃ → I3 in probability, we compute V�̃ = −n−1(plim n−1H̃ )−1 to
obtain

V�̃ = �2

n(b2
1 + b2

2)

⎡
⎣ b2

1 + b2
2/(1 + c2) b1b2c

2/(1 + c2) −cb1

b1b2c
2/(1 + c2) b2

1/(1 + c2) + b2
2 −cb2

−cb1 −cb2 1 + c2

⎤
⎦ ,

which agrees with formula V�̃ = (P ′�−1P)−1 given in Section 4. With �̃ = (b̃1, b̃2, c̃)
′, the

asymptotic variance of b̃1 and b̃2 is falling in |c|, and the asymptotic variance of c̃ is falling in
|b1| and |b2|.

For reduced-rank estimation of � we have the proposed MAD estimator �̃:

�̃ =
[

b̃1 b̃2

c̃ b̃1 c̃ b̃2

]
,

and applying Theorem 2 yields

⎡
⎢⎢⎣

�̃11 − �11

�̃12 − �12

�̃21 − �21

�̃22 − �22

⎤
⎥⎥⎦ ≈ M�̃

⎡
⎢⎢⎢⎣

�̂11 − �11

�̂12 − �12

�̂21 − �21

�̂22 − �22

⎤
⎥⎥⎥⎦ ,

where M�̃ = P(P ′�−1P)−1P ′�−1 is the 4 × 4 matrix:

M�̃ = 1

(1 + c2)(b2
1 + b2

2)

×

⎡
⎢⎢⎣

b2
1(1 + c2) + b2

2 b1b2c
2 b2

2c −b1b2c

b1b2c
2 b2

1 + b2
2(1 + c2) −b1b2c b2

1c

b2
2c −b1b2c b2

1(1 + c2) + b2
2c

2 b1b2

−b1b2c b2
1c b1b2 b2

1c
2 + b2

2(1 + c2)

⎤
⎥⎥⎦ .

This ties �̃’s performance explicitly to that of �̂. Further, evaluating the asymptotic variance of
�̃ (as given in Theorem 2) yields

V�̃ = M�̃
�2

n
,

in which case the elements of the MAD restricted estimator �̃ have smaller asymptotic variance
than those of the unrestricted estimator (which has asymptotic variance matrix = �2I4/n), to an
extent that depends on the values of b and c.



940 S. Gilbert, P. Zemčík / Journal of Multivariate Analysis 97 (2006) 925–945

6.2. Simulation—exponential model

Turning to finite-sample performance, we first simulate a model of random variables yij, i =
1, 2, j = 1, 2, mutually independent with exponential distributions, having density functions:

fij(y) = 1

�ij
e−y/�ij

for y�0, fij(y) = 0 otherwise. In this model mean values are E[yij] = �ij, and standard deviations
are �[yij] = �ij. With � the 2 × 2 matrix having (i, j)th element �ij, we consider the case where
matrix � has reduced rank = 1.

For the exponential multivariate model, subject to reduced rank, we study the approximate
density (MAD and RAD) methods and maximum likelihood methods, in simulation. For the
former, as plug-ins we use the unconstrained MLE �̂ij = ȳij, with covariance matrix �̂, for

vec �̂
′
, being diagonal with variance estimates of form (ȳij)

2 on the diagonal.
To obtain (constrained) reduced-rank MLE, we phrase the rank restriction as: �11 = b1,

�12 = b2, �21 = cb1, �22 = cb2, for some b1, b2, c. With this form, we maximize the likelihood
with respect to b1, b2, c. For this, we apply a repeated partial maximizations with respect to c and
(b1, b2), iterating until convergence. Evaluating the restricted likelihood, and also the unrestricted
likelihood, we then compute the likelihood ratio test statistic.

Using the above-described methods, we simulate the methods on pseudo-samples of size n =
25, 50, 100. For each sample size, we loop through 10,000 rounds of our sample-generating rou-
tine, each time-generating pseudo-data having the posited exponential distributions. The particular
choice of parameter values is: �11 = 1, �12 = 2, �21 = 2, �22 = 4, in which case � has rank
= 1, with b1 = 1, b2 = 2, c = 2. For each pseudo-sample we compute the desired statistics,
recording the results. The result is a record of 10,000 trial values of the various statistics, and
we summarize these in Table 4, with rej(10), rej(5), rej(1) being dummy variables that equal 1
if the relevant test statistic exceeds its critical value at significance level 10, 5, 1, respectively.
The simulations are consistent with our earlier claim that the MAD estimator is asymptotically
perfectly correlated with the (reduced-rank) maximum likelihood estimator. Also, the MAD esti-
mator requires only unconstrained maximum likelihood estimation (trivial here) and a generically
available minimum-distance algorithm, whereas maximum likelihood for the reduced-rank ex-
ponential model requires a tailor-made algorithm. The RAD test and LR test perform similarly,
again consistent with theory.

6.3. Simulation—Student’s t model

To further describe the approximate density (MAD and RAD) methods, consider again incomes
for genders i = 1, 2 (male, female), and education levels j = 1, 2 (low, high). For each two-way
classification, we create a pseudo-sample of sample size n, mutually independent realizations
distributed as

y1j = �1j + �1j u1j

1.42
, y2j = c�1j + c

�1j u2j

1.42
, j = 1, 2,

with uij a Student’s t random variable (degrees of freedom = 4, matching income kurtosis, Table 1),
where (�11, �12) = (20871.82, 47767.38), (�11, �12) = (18711.83, 43395.45), c = 0.545 and
the constant 1.42 is such that the variables u1j /1.42 and u2j /1.42 have unit variance. Numerical
values are chosen to approximate the income features reported in Table 1.
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Table 4
Simulation, under exponential distribution

n Statistic Statistical method Method correl.

Approx. density Likelihood

Mean SD Mean SD

25 c 2.04 0.43 2.12 0.48 0.89
b1 0.98 0.17 1.00 0.20 0.84
b2 1.96 0.35 2.00 0.40 0.84
rej(10) 0.11 0.12 0.84
rej(5) 0.06 0.06 0.81
rej(1) 0.01 0.01 0.69

50 c 2.02 0.29 2.06 0.32 0.92
b1 0.99 0.12 1.00 0.14 0.85
b2 1.98 0.25 2.00 0.28 0.85
rej(10) 0.10 0.11 0.87
rej(5) 0.05 0.06 0.86
rej(1) 0.01 0.01 0.75

100 c 2.01 0.20 2.03 0.22 0.93
b1 1.00 0.09 1.00 0.10 0.85
b2 1.99 0.18 2.00 0.20 0.86
rej(10) 0.10 0.11 0.91
rej(5) 0.05 0.05 0.88
rej(1) 0.01 0.01 0.78

As in Section 5, let the 2×2 coefficient matrix � consist of population mean values (by gender
and education), or medians, or standard deviations. For MAD and RAD methods we use as plug-
in inputs �̂ and �̂ the sample descriptives and their associated covariance, the same ones as in
Section 5.

With 10,000 simulation rounds, Table 5 reports on the performance of the MAD estimator
and RAD test of reduced rank. Reported are the (simulation pseudo-sample) mean and standard
deviation of the estimators, and the rejection rate (under H0) for the RAD test at 5% significance
level. The results suggest reasonable accuracy of the MAD estimator, even in smaller samples,
and reasonable fidelity between the RAD test rejection rates and the claimed significance level
(5%). An analogous simulation (omitted, for brevity), with standard normal uij, yields similar
results. If desired we could also examine the MAD and RAD methods based on a Mixed Normal
MLE plug-in, as described in Section 5, with potentially greater efficiency; however, we have
found such simulations to take much longer, hence do not attempt a large number of them here.

7. Conclusion

The present work proposes reduced-rank estimators, and a test, of ‘coefficient’ matrices, with
coefficients for multivariate linear models of features (such as mean, median, standard deviation)
of conditional distributions. We demonstrate the feasibility of the methods, and give a first-order
asymptotic theory for the proposed estimator. It would be interesting to attempt some second-order
analysis of bias and variance, and to conduct a simulation study of the power of the proposed test.
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Table 5
Simulation, under t distribution

n Coefficient MAD estimator RAD

concept c b1 b2 rej. rate

Mean SD Mean SD Mean SD

25 Mean 0.554 0.10 20867.01 3178.92 47794.65 7342.20 0.054
Median 0.553 0.10 20862.08 3089.65 47846.53 7141.72 0.026
SD 0.557 0.13 17119.06 3603.43 39856.26 8471.59 0.059

50 Mean 0.550 0.07 20861.13 2268.24 47762.44 5193.21 0.053
Median 0.550 0.07 20864.86 2145.99 47758.13 5000.90 0.036
SD 0.551 0.09 17610.16 2718.04 40867.94 6415.60 0.051

100 Mean 0.547 0.05 20865.35 1594.68 47785.38 3628.10 0.055
Median 0.546 0.05 20866.05 1519.53 47795.84 3521.67 0.044
SD 0.548 0.07 17937.34 2100.88 41593.80 4819.97 0.041

200 Mean 0.546 0.03 20863.92 1120.12 47738.62 2636.02 0.047
Median 0.546 0.03 20855.67 1067.55 47713.45 2517.72 0.045
SD 0.547 0.05 18143.43 1597.39 42057.02 3650.23 0.045

Also, while the proposed reduced-rank coefficients estimator and rank test rely on an asymptotic
normal distribution for the unrestricted coefficients estimator, we are currently pursuing the case
of non-normal distributions (as arise in unit root time series), including error correction models
of conditional medians.

Appendix A.

For an m × 1 vector � let � = q() for an (unknown, unique) l × 1 vector , with l < m,
and a (known) continuously differentiable function q. Let q(v) = �q(v)/�v be the m × l

matrix of partial derivatives, and suppose that q() is full-rank. Let �̂ be an estimator for which

V −1/2(�̂ − �)
d→ N(0, Im) in large samples, where V is the variance/covariance matrix of �̂,

with (the elements of) V → 0 in large samples. Let ̄ minimize (�̂ − q(v))′V̂ −1(�̂ − q(v)) over

v, with V̂ a (positive definite) estimator of V such that V̂ −1V
p→ Im, and let �̄ = q(̄).

Lemma A.1. ̄ −  ≈ ((q ′
()V −1q())−1q ′

()V −1(�̂ − �), and hence

((q ′
()V −1q())−1)−1/2(̄ − )

d→ N(0, Im),

in large samples.

Proof. The (weak) consistency of ̄ follows from that of �̂, and for minimizer ̄ the first-order
condition is (�̂ − q(̄))′V̂ −1q(̄) = 0. Further, since q is continuously differentiable and q()

has full rank, with the approximation q(̄) ≈ q() + q()(̄ − ) the first-order condition yields
̄ −  ≈ ((q ′

()V −1q())−1q ′
()V −1(�̂ − �). Since �̂ ≈ N(�, V ), the result follows. �
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Proof of Theorem 1. We apply Lemma A.1 with � = � = vec �′,  = �, � = q() given by
the restriction H0 : � = (Ir , C

′)′B, and V = �.
We have two equivalent forms of q: � = (A ⊗ Ik)B and � = (Ig ⊗ B)R C , where B, C

partition  into its first rk and last (g − r)r elements. To compute q() we proceed component-
by-component, using (respectively) the two forms of q, in which case we arrive at q() =
(A ⊗ Ik, (Iq ⊗ B)R). Lemma A.1 then yields the desired result. �

Lemma A.2. q(̄) ≈ q() + q()(̄ − ), and hence, asymptotically, �̄ is normal with mean
vector � and variance matrix q(q

′
()V −1q())−1q ′

.

Proof. With �̄ = q(̄) we obtain �̄ ≈ q() + q()(̄ − ), so the result follows from
Lemma A.1. �

Proof of Theorem 2. It suffices to apply Lemma A.2, with the same notational conventions as
in the proof of Theorem 1, and with the fact that V�̃ = (P ′�−1P)−1. �

Proof of Theorem 3. UnderAssumption 1, �̂−� ≈ −(EL��′)−1L′
� and �†−�≈−(q ′

�EL��′q�)
−1

q ′
�L′

�, so with V�̂=(−EL��′)−1 we obtain

�† − � ≈ (q ′
�V

−1
�̂ q�)

−1q ′
�V

−1
�̂ (�̂ − �).

Applying Lemma A.1 with � = � and  = � and ̄ = �̃, we get

�̃ − � ≈ (q ′
�V

−1
�̂ q�)

−1q ′
�V

−1
�̂ (�̂ − �),

hence �̃ ≈ �†. Moreover, with �† = q(�†), weak consistency of �̂ (implied by convergence of V�̂
to zero element-wise) implies weak consistency of �† and �†, in which case �† − � ≈ q�(�† − �).
Hence

�† − � ≈ q�(q
′
�V

−1
�̂ q�)

−1q ′
�V

−1
�̂ (�̂ − �).

Applying Lemma A.2 with � = � and  = � and ̄ = �̃, we conclude that �̃ − � ≈ q�(�̃ − �).
Hence �̃ ≈ �†. �

Lemma A.3. (�̂ − �̄)′V −1(�̂ − �̄)
d→ �2

m−l in large samples.

Proof. Write �̄ − � = q(̄) − q(). From the proof of Lemma A.1, q(̄) − q() ≈ q()(̄ − ),
with ̄ −  ≈ ((q ′

()V −1q())−1q ′
()V −1(�̂ − �). Hence, �̄ − � ≈ JV −1(�̂ − �), with J the

m × m matrix J = q()(q ′
()V −1q())−1q ′

(). Hence (�̂ − �̄)′V −1(�̂ − �̄) ≈ (�̂ − �)′(Im −
J )′V −1(Im − J )(�̂ − �), and since the matrix (Im − J )′V −1(Im − J ), when multiplied by V , is
an idempotent matrix of rank m − l, the result follows from the fact that �̂ ≈ N(�, V ). �

Proof of Theorem 4. It suffices to apply Lemma A.3, with the same notational conventions as
in the proof of Theorems 1 and 2. �

Proof of Theorem 5. Follows from the equivalence of RAD and reduced rank estimators
(Theorem 3). �
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