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This article considers the problem of testing for latent factors or reduced rank in a broad class of

(multivariate linear stationary) time-series models, wherein model errors have autocorrelation and

heteroskedasticity of unknown form. It is easy to motivate these models and methods in the context of

finance models, and we illustrate with a familiar macromodel of asset returns, proposed previously by

Chen, Roll, and Ross. Unfortunately, previously used tests for reduced rank are not sufficiently robust,

so we examine two heteroskedasticity and autocorrelation-consistent (HAC) methods, a HAC version

of Hansen’s GMM test and a lesser known but more user-friendly minimum-distance or ratio of

asymptotic densities (RAD) test. We recommend the RAD test, for which we supply computer code.

In application, the tests lend more HAC-robust support to the hypothesis that multiple factors drive

the link between the macroeconomy and the returns on bonds and stocks.

JEL Classification: G12, C3

1. Introduction

Empirical research in financial economics frequently suggests the existence of few latent factors

driving the systematic component of asset returns. Existence of such latent factors makes it easier to

understand the effect on asset returns of the many variables that comprise the systematic component.

Results depend on the number and type of assets used and the number and types of instruments, which

themselves serve as proxies for the latent factors (for examples, see Campbell 1987; Zhou 1995; and

Costa, Gardini, and Paruolo 1997). In econometric terms, the existence of latent factors translates into

a reduced rank restriction on the (array of) coefficients in an asset return regression system.

The present work considers the problem of testing for latent factors in a broad class of

(multivariate linear stationary) time-series models, wherein model errors have autocorrelation and

heteroskedasticity of unknown form. The generality of error dynamics is well suited to financial

models of bond and stock returns, as in the macro model of Chen, Roll, and Ross (1986). To deal with

such generality, we consider heteroskedasticity and autocorrelation consistent (HAC) methods,

a HAC version of Hansen’s (1982) Generalized Method of Moments (GMM) test and a lesser-known

but more user-friendly minimum distance or ratio of asymptotic densities (RAD) test.
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The primary benefit of using a HAC-type test of economic hypotheses, in time-series models, is

a certain kind of increased robustness relative to tests that rely on parametric assumptions about error

dynamics. This robustness implies that stated significance levels of HAC tests are frequently closer to

their true values, at least in sufficiently large samples. So, for the financial economist who wants to

know ‘‘Are there really multiple factors driving the link between the macroeconomy and the returns

on bonds and stocks?’’ HAC tests (and the underlying mental exercise regarding error dynamics) give

added insight. HAC tests may or may not agree with less robust tests. In our application, the HAC test

results agree with the results of simpler (and more popular) implementation of Hansen’s (1982) test

for reduced rank, but the crucial point is that stated significance levels in the popular version of

Hansen’s test are not correct, in statistical terms, when the data have dynamics that cause residual

serial correlation. Hence, to say that the HAC tests agree with the popular version of Hansen’s test is

really too liberal an interpretation; more accurate is to say that the nominal (but likely invalid)

conclusions from the popular test coincide with that of the autocorrelation-robust tests.

The HAC Hansen test and the RAD test each require some special calculation, and for this we

do some programming. The computational complexity is due partly to the presence of corrections

for residual autocorrelation and heteroskedasticity, and if instead we assumed that model errors

were independent and identically distributed, then we could test for reduced rank via Anderson’s

(1951) convenient likelihood ratio (LR) test (see Reinsel and Velu [1998] for discussion and Zhou

[1994] for a related test couched in GMM terms). It is, of course, possible to extend Anderson’s

LR test to (parametric) probability models with autocorrelated errors (see Reinsel and Velu 1998),

but this approach relies on a correctly specified error dynamic. We instead take the nonparametric

HAC approach, allowing a wider variety of error dynamics.

Is special calculation really necessary for our testing purposes? In application to asset pricing

models, Zhou (1994) gives an interesting modification of Hansen’s (1982) testing approach, with an

analytical (hence computationally convenient) test for latent factors in asset returns. However, to

implement his analytical test, Zhou relies on parametric assumptions about the model’s error

dynamics. Specifically, he considers the case of white noise errors and also the case of errors that are

uncorrelated but have a known (parametric) form of conditional heteroskedasticity. The method can,

in principle, be extended to models with a parametric form of error autocorrelation, and while this

is also the case with Anderson’s analytical LR test, both methods are necessarily parametric.

Because we pursue instead a nonparametric HAC objective, we undertake a computationally harder

problem.

Comparing the HAC robust Hansen-type and RAD tests for reduced rank, the latter is much

easier to implement with full flexibility regarding the reduced rank form, that is, selection of linearly

independent matrix rows in the reduced-rank coefficient matrix. For this reason, the RAD test is more

user friendly than the robust Hansen test and, with it, we obtain conclusions robust to the form of

reduced rank as well as the form of error dynamics. Both are calculated by minimizing a quadratic

form with the optimal weighting matrix given by the inverse of a relevant covariance matrix.

Covariance-matrix estimation is made robust to both heteroskedasticity and autocorrelation via

various nonparametric and parametric methods. We consider several kernel-based heteroskedasticity

and autocorrelation-consistent (HAC) procedures, with various combinations of kernel, bandwidth

selection, and prewhitening filter (see Newey and West 1987, 1994; Andrews 1991; Andrews and

Monahan 1992). We also implement a simple parametric procedure with prewhitening advocated by

den Haan and Levin (1997). For the Hansen test, we follow Hansen, Heaton, and Yaron (1996),

simultaneously iterating over both the weighting matrix and model parameters. For the RAD test, such

simultaneous iteration is unnecessary.
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Our empirical study, like the influential work of Chen, Roll, and Ross (1986), looks at the link

between asset markets and macroeconomic fundamentals. As dependent variables in our regression

system, we choose a set of excess returns broadly characterizing the U.S. bond and stock markets over

the last four decades. Specifically, we use monthly excess returns on the Treasury securities of

maturities of 90 days and 5 years. To capture main features of the U.S. stock markets, we sort returns by

firm size and use excess returns on the Center for Research in Security Prices (CRSP) small

capitalization and large capitalization portfolios. There are many candidates for our explanatory

variables. Given our dependent variables (a small number of both stock and bond returns), we do not

consider size and book-to-market-related portfolios of Fama and French 1993 (henceforth FF) and term

and default premia (FF; Chen, Roll, and Ross 1986). The size-related variables are mostly used in

studies focusing on stocks; also, in those studies, a large number of assets is involved. The problem

with bond-related factors is that we might run into econometric problems with term structure-related

dependent and independent variables.1 Moreover, while the FF factors do a good job in explaining

cross-sectional and time-series variation of stock returns, they are somewhat ad hoc. Hence, we focus

on macroeconomic variables that can be theoretically linked (at least loosely) to expected returns. We

are left with a subset of risk factors similar to Chen, Roll, and Ross (1986), consisting of the stock

market, consumption, industrial production, money supply, and the unexpected inflation rate.

The models of asset returns with macroeconomic explanatory variables are well specified

statistically, provided that the used time series are stationary. From the theoretical perspective, the

models used can be considered to be examples of the intertemporal capital asset pricing model

(CAPM), in which case the test for reduced rank is the test for the number of latent risk factors

inherent in this model.2 If we wanted to interpret the test of our model as a test of the arbitrage pricing

theory, all the explanatory variables would have to be excess returns on assets. Interpreting the growth

rate of consumption and the expected inflation rate literally as asset returns is problematic but the

return on the stock market is obviously an asset return, the industrial production growth rate may be

viewed as a return on physical assets, and the growth rate of money as a (negative) return on cash

holdings (due to inflation).

We analyze the rank structure in the bond and stock markets, both separately and jointly. We first

document the presence of autocorrelation and heteroskedasticity in residuals of all unrestric-

ted regression systems, using a battery of tests. Then we apply the RAD and the Hansen tests (as

a benchmark) with several HAC robust covariance-matrix estimators. We find that the one-factor

hypothesis is rejected both in the bond market and the stock market. A joint estimation and tests of

the stock and bond markets do not alter these results—statistically, at least four factors are needed for

an accurate description of both markets. The sources of differences between bonds of different

maturity can be traced to significantly different market and industrial production betas, suggesting

(consistently with existing theory; see Campbell [1999] for a survey on stylized facts regarding

various premia) that there is a term premium mainly due to a higher sensitivity to the market risk and

to business cycles. For stocks of different firm size, such differences can be traced to consumption and

monetary betas. This confirms that there are differences between stocks of different sizes but in

a sense diverging from the literature because the returns in our sample actually do not statistically

differ,3 only the betas do. Presence of consumption in our data is motivated by the consumption-based

CAPM and the higher consumption beta suggests that small firms are riskier from this perspective.

1 This is to some extent true for the size-related factors as well; see FF for a detailed discussion.
2 A special case of this model uses the stock market return as the only explanatory variable is the standard CAPM.
3 Similar findings of the diminishing firm size effect are reported by FF and by Horowitz, Loughran, and Savin (2000).

238 Scott Gilbert and Petr Zemčı́k



Differing monetary betas may be due to greater sensitivity to tighter monetary policy of small firms

(see Gertler and Gilchrist 1994). The differences between bonds and stocks confirm the equity

premium puzzle. However, the perspective is rather novel in this case, as we combine reduced-rank

tests with cross-asset Wald tests.

The paper is organized as follows. Section 2 introduces the unrestricted and restricted asset

pricing models, section 3 describes the Hansen tests and the generalized Wald tests, section 4

discusses the data selection and data sources, and section 5 reports our results. Section 6 concludes.

2. Model

We are interested in testing for latent factors in a broad class of multivariate linear models.

However, to make the exposition more readable for the general economist, we will couch our discussion

in the specific context of asset-pricing models. The formal setup in Equation 1 is still quite general,

representing as it does a multivariate linear relationship between some (dependent) variable y and other

variables (x), so the same formal model and methods can be applied to other kinds of economic data.

For a collection of assets, let y1t, . . . , ynt denote the (excess) returns to holding each asset from

time t � 1 to time t. The regression model of interest is

yt ¼ bxt þ et; t ¼ 1; . . . ; T; ð1Þ

where b is an n 3 K coefficient matrix, with n , K, and et is an n 3 1 vector of regression errors for

which E[et j xt]¼ 0. xt is a K 3 1 vector of observables that may include a constant and such factors as

the market excess return, consumption growth, etc. (see section 3 for details). The series yt, xt, et are

presumed stationary and conformable to standard central limit theory, and the errors et can exhibit

conditional heteroskedasticity and/or autocorrelation, in the usual manner described in White (1984)

and Davidson (1994, 2000), for example.

Consider, in addition to the regression model (1), the following latent factor specification of the

conditional mean of asset returns:

E½yit j xit� ¼ ciE½zt j xit�; i ¼ 1; . . . ; n; t ¼ 1; 2; . . . ; T; ð2Þ

where zt is a q 3 1 vector of unobserved latent factors, for some q , K, and ci, i¼ 1, . . . , n, are their

1 3 q coefficient vectors. One can likewise specify a linear relationship between z and x,

E½zjt j xt� ¼ kjxt; j ¼ 1; . . . ; q; t ¼ 1; . . . ; T ð3Þ

for some 1 3 K vectors k1, . . . , kq. In this case, the observable variables in vector xt serve as proxies

of the underlying latent factors zt. The general null hypothesis is reduced rank q , K for the matrix b.

This reduced rank hypothesis is, equivalently, expressible as

H0: b ¼ ck for some n 3 q matrix c and some q 3 K matrix k: ð4Þ

To test H0 via the Hansen (1982) approach, it is common to impose further parameter

identification, as in Campbell (1987) and Ferson and Foerster (1994). We will follow this approach to

implementing the Hansen test due to the tremendous computational simplification it affords. At the
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same time, we will avoid these additional identifications when using the alternative RAD testing

approach.

To further identify parameters under H0, we can optionally specify c¼ [Id]9k, with I the q 3 q

identity matrix and d some q 3 (n� q) matrix, in which case the specialized null hypothesis is

H�0: b ¼ ½Id�9k for some q 3 q identity matrix I, q 3 (n - q) matrix d, and q3 K matrix k:

While hypothesis H*
0 is clearly stronger than H0, it is actually a very common normalization to impose

in reduced-rank regression models (of which our financial models are special cases) and is typically

invoked when reporting estimates of such models in economics (as in the cointegration output of

Eviews software). If we are worried that H*
0 is too strong, we may prefer to put more weight on the

RAD test rather than the version of Hansen’s (1982) test under study.

3. Tests

In this section, we describe two tests for reduced rank. We first define the test statistics, then

describe their computation, which, in each case, can be carried out using GMM. We first define the

minimum-distance or RAD test of interest. The RAD test statistic is

W ¼ min
b2H0

ðvecðb̂Þ � vecðbÞÞ9�̂�1

vecðb̂Þðvecðb̂Þ � vecðbÞÞ; ð5Þ

where vec(b̂) is the unconstrained ordinary least square (OLS) estimator and �̂
vecðb̂Þ is the associated

GMM covariance matrix estimate, both implemented via heteroskedasticity and autocorrelation-

robust covariance estimators. The RAD test can be viewed as a special case of a very interesting (but

little known) general econometric test proposed by Szroeter (1983).

The RAD test is a minimum-distance test, in that it is based on the minimum squared distance

between b̂ and the reduced-rank approximations to b̂. This minimum-squared distance can also be

interpreted as (proportional to the log of) the ratio of constrained and unconstrained approximate

(normal) densities for the parameter estimator b̂, with constraint given by the reduced-rank restriction

(see Gilbert and Zemčı́k 2004). Hence, the label RAD (ratio of asymptotic densities) is fitting and also

intuitive in its similarity to the likelihood LR test statistic. An advantage of RAD over LR is that we

can make RAD robust to error autocorrelation and heteroskedasticity of unknown form via a HAC

form for �̂
vecðb̂Þ, whereas consistency of LR requires a known form of error dynamics.

Next we define the relevant Hansen (1982) tests. For each given value of b in Equation 1, define

eit ¼ yit � bixt; i ¼ 1; . . . ; n; t ¼ 1; . . . ; T: ð6Þ

Relevant sample moments take the form

mðbÞij ¼
1

T

XT

t¼1

eit ujt; i ¼ 1; . . . ; n; j ¼ 1; . . . ; L; ð7Þ

with ujt, j¼ 1, . . . , L, is a set of instruments.
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The general Hansen (1982) GMM statistic is defined as

S ¼ min
b2H

�
0

vecðmðbÞÞ9�̂�1
vecðmðbÞÞvecðmðbÞÞ; ð8Þ

where �̂vecðmðbÞÞ is the GMM covariance-matrix estimator, which we later specify in ways robust to

heteroskedasticity and serial correlation. To arrive at the solution S to Equation 8, we iterate over

repeated trials, at each stage, simultaneously solving for updated parameter and covariance-matrix

estimates, as in Hansen et al. (1996).

Under the null hypothesis (H0 or H*
0) and suitable regularity conditions (stationarity, finite

moments, mixing, etc., as in White [1984] and Davidson [1994, 2000], for example), both the Hansen

test S and RAD test W can be shown to be distributed asymptotically as chi-square variables with (n�
q) (K�1) degrees of freedom. Hansen (1982) shows this result for S under general conditions (and for

recent discussion, see Harris and Mátyás [1999]). For the RAD test, Szroeter (1983) provides some

general (but quite abstract) theory, and Gouriéroux and Monfort (1989) give a somewhat more

streamlined and intuitive version of this broad theory. In specific application to reduced-rank linear

models, Gilbert and Zemčı́k (2004) give an extensive theoretical description of the RAD test.

To summarize briefly the logic of proving the asymptotic chi-square distribution of W: (a) By

construction, the statistic W is obtained as the minimum (the Malhanobis) distance between an

unconstrained parameter vector (consisting of b̂ elements) and a set of candidate values b 2 H0,

(b) the estimator b̂ is itself assumed to be consistent and asymptotically normal, with a covariance

matrix X
vecðb̂Þ, (c) the consistent estimator �̂

vecðb̂Þ of X
vecðb̂Þ is also the distance-defining matrix ap-

pearing in the Malanobis distance function. We can then view the constrained estimator ~b of b as a

function of b̂ and �̂vecðb̂Þ, and applying the Delta (asymptotic expansion) method (see, for example,

van der Vaart [1998]) to ~b, we can readily obtain a first-order normal approximation to the difference
~b� b̂, and from this conclude that W is asymptotically chi square. For other, more exhaustive proofs

of the asymptotic normality of the minimized (square) distance objective function, see Dahm and

Fuller (1986), Cragg and Donald (1995), and Gilbert and Zemčı́k (2004).

To compute the Hansen (simultaneous-iterated) J-type test S, we use the GMM routine in

EViews 3.1, with a variety of choices for the covariance estimation method. To compute the RAD test

W, we use a simple and convenient iterative method to get an alternating sequence of c and k
estimates, which are needed to estimate b under H0. The Appendix contains a derivation of the

required mathematical formulae. Alternatively, we could use the Newton–Raphson method of Ahn

and Reinsel (1988, 1990). At each stage of the iteration, we hold fixed the current estimate (c or k)

and solve the quadratic optimization problem (5) for the remaining parameters. We start with the

initial values

k̂i ¼ b̂i; i ¼ 1; . . . ; q: ð9Þ

Holding fixed the initial choice of k̂; we solve the quadratic problem in Equation 5 in terms of c:

vecðĉ9Þ ¼ ½ðIn � k̂9Þ9�̂�1

vecðb̂9ÞðIn � k̂9Þ��1ðIn � k̂9Þ9�̂�1

vecðb̂9Þvecðb̂9Þ: ð10Þ

We express the solution in terms of transposes c9, b9, and k9 due to the fact that the covariance matrix

�̂
vecðb̂9Þ is readily obtained from standard regression packages, whereas �̂

vecðb̂Þ is equivalent but

requires extra computation.
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Next, having computed the first-round choice ĉ, we hold it fixed and solve the quadratic problem

in Equation 5 in terms of k,

vecðk̂9Þ ¼ ½ðĉ � IKÞ9�̂�1

vecðb̂9Þðĉ � IKÞ��1ðĉ � IKÞ9�̂�1

vecðb̂9Þvecðb̂9Þ: ð11Þ

We repeat the alternating updates of ĉ and k̂ numerous times (at least 10). To ensure convergence, at

each round of the sequence, we normalize the matrix c by dividing each of its elements by its upper

left element. We carry out these computations using a program we wrote in the EViews 3.1

environment. This program is available from the authors upon request and is able to handle more

general reduced-rank structures where only some of the regressors are restricted.

We estimate the covariance matrices needed to calculate S and W in a number of different ways.

While we use mainly HAC-based estimators, for comparison purposes, we also examine the White

heteroskedasticity-consistent estimator (denoted White). Ferson and Foerster (1994) study the finite

sample properties of the Hansen/White test for reduced rank equal to 1 and 2, as implied by various

versions of the CAPM. As for HAC methods, we include ones based on the Bartlett kernel and the

data-dependent Newey and West (1994) bandwidth, with and without prewhitening (denoted NW and

NW-P, respectively). We also include the quadratic spectral kernel with the Andrews (1991) data-

dependent bandwidth (without prewhitening, denoted A), and the Andrews and Monahan (1992)

method (denoted AM) with prewhitening. We have also examined the simple prewhitening method

studied by den Haan and Levin (1997) (VARHAC). We have spot checked some of our EViews-

based computations using a Gauss code written by Hansen, Heaton, and Okagi, and we have noticed

that EViews 3.1 versions prior to June 2000 appear to have an error in computing some of the J-tests,

but versions June 2000 and later do not have this problem, as confirmed by the EViews technical staff.

Den Haan and Levin (1997) study finite sample properties of kernel-based and parametric

covariance-matrix estimators in a single-equation context with complex serial correlation structures.

Their Monte Carlo experiments favor a simple parametric method with prewhitening—VARHAC. In

computations, which we omit here for brevity, we extend their simulations to systems of equations in

which we study the small sample rejection rates of the S and W statistics under the hypotheses of

reduced and full rank. Our results also support the use of the VARHAC method in most cases. In

addition, we find that some finite-sample properties (including empirical size) worsen as we increase

the number of equations, increase the number of explanatory variables, increase rank and decrease the

sample size. We conclude that, for a sample size T of about 500 (our number of observations), four

equations and six explanatory variables (including a constant term), the S and W statistics are

reasonably close to the chi-square distribution under the null.

4. Data

Most studies focusing on factor models of expected asset returns either assume or ultimately

conclude that the number of factors equals 1, 2, or 3 (see Campbell 1987; Ferson and Foerster 1994;

Zhou 1995; Backus, Foresi, and Telmer 1998; de Jong 1998; Dai and Singleton 2000). To test for up

to three factors, we need at least four asset returns. Therefore, we choose two bond returns and two

stock returns to characterize the bond and stock markets, respectively.

Treasury 90-day Bills and 5-year Bonds seem a natural choice as representatives for the bond

market. While there is no difference in the default risk, there is a difference in levels of risk due to

differing maturities. The data source is CRSP (indno 1000707 for the 90-day T-bill and 1000704 for

the 5-year T-bond) and we subtract the 30-day T-bill rate (indno 1000708) to get excess returns rT90
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and rT5, respectively. The data frequency is monthly, the sample period 1959:02–2000:11 is given by

the availability of per capita consumption series (see below) and the summary statistics are in Table 1.

As expected, the rate of return on the longer maturity bond is higher and so is the corresponding risk

level as measured by the standard deviation.

To capture the basic features of the stock market, we need stock returns covering a wide range of

stocks but with different risk characteristics. We use CRSP NYSE Portfolio Indices ranked by

capitalization, combining deciles 1–5 for the large firms (indno 1000314) and 6–10 for the small firms

(indno 1000315). These monthly time series are based on quarterly rebalanced portfolios. Excess

returns are again calculated using the 30-day Treasury bill return and we denote them as rLARGE and

rSMALL, respectively. The summary statistics in Table 1 indicate an overall higher level of both return

and risk for small firms. The excess return on small caps is more volatile (consistent with Malkiel and

Xu [1997], for example) and this feature is independent of the chosen time period. On the other hand,

the mean excess return is actually greater for large firms since 1980, a trend noticed by Fama and

French (1993) and carefully documented by Horowitz, Loughran, and Savin (2000).

As covariates, we opt for variables for which there is an established theoretical link to expected

excess returns. This excludes the size-related stock market factors (see Fama and French 1993; Chan

and Chen 1991) and term structure and default risk-related bond factors (see Chen et al. 1986; Fama

and French 1993). Inclusion of these variables could also lead to econometric problems, with firm size

and term-structure-related dependent and independent variables.

Both the static CAPM and the intertemporal CAPM suggest the use of the market excess return

as an explanatory variable. We use the CRSP value-weighted index of the S&P 500 Universe (indno

1000502) in excess of the 30-day T-bill (rSP). The time series characteristics in Table 1 are similar to

those of rLARGE due to the fact that the value weighted index is dominated by large firms.

The consumption CAPM and business-cycle models specify the relationship between expected

returns, consumption, and production. Hence, we include the growth rates of industrial production (gIP)

and real per capita consumption of nondurables and services (gCONS) as measures of real economic

activity. We obtain both series from the St. Louis Fed’s website. Specifically, we use the variable

Table 1. Summary Statistics

rT90 rT5 rSMALL rLARGE rSP gC gI gM p

Mean 0.58 1.44 8.13 6.21 6.50 2.09 3.45 6.55 4.30
Standard deviation 1.21 18.69 66.54 50.49 50.85 5.56 10.47 5.56 3.92
Skewness 2.36 0.20 �0.17 �0.37 �0.36 �0.25 �0.10 0.17 0.92
Kurtosis 18.63 7.19 7.38 5.15 5.06 4.00 9.08 12.71 4.28

Correlation
rT90 1.00 0.62 0.13 0.11 0.11 �0.02 �0.20 �0.05 �0.02
rT5 1.00 0.16 0.25 0.24 0.01 �0.17 �0.06 �0.11
rSMALL 1.00 0.85 0.82 0.21 �0.03 �0.04 �0.17
rLARGE 1.00 0.99 0.15 �0.02 0.00 �0.18
rSP 1.00 0.15 �0.02 0.01 �0.17
gC 1.00 0.15 0.10 �0.45
gI 1.00 0.02 �0.12
gM 1.00 0.02
p 1.00

Sample 1959:02–2000:11, rT90 and rT5 are excess returns on 90-day T-bills and 5-year T-bonds; rSMALL and rLARGE

denote the excess returns on the small-cap and large-cap portfolios; rSP is the excess return on the market portfolio; gI, gC, and gM

are growth rates of real per-capita consumption, industrial production, and money supply, respectively. p denotes the inflation

rate. Reported numbers for means and standard deviations are annualized, in percentages.
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INDPRO to calculate gI and variables PCEND, PCES, and POP to calculate gC. The per-capita

consumption is adjusted to inflation using the CRSP price index (indno 1000709). The FED series are

seasonally adjusted. Interestingly, the correlation of consumption with stock-market variables (see

Table 1) is greater than with bond-market variables, and the opposite is true for industrial production.

We also include the monetary growth as one of the explanatory variables. The link between

expected returns and money can be motivated by overlapping generations models (see Brock [1990]

for a survey), models with money in the utility function (Brock 1975), and models with the cash-in-

advance constraint (Svensson 1985).4 We use the seasonally adjusted monetary base series from the

St. Louis Fed’s website (series AMBSL) to calculate the monetary growth rate, gM, which seems to

move more closely with the bond market than the stock market (see Table 1).

Finally, we control for the effect of inflation. Because inflation happens to be the only

nonstationary series (the augmented Dickey Fuller test does nor reject the unit root), we use its first

difference, which is the unexpected inflation.

5. Empirical Results

In this section, we investigate the latent variable structure of the bond market, the stock

market, and the market for both bonds and stocks. In each case, we first estimate the unrestricted

model of the form (1), test corresponding residuals for heteroskedasticity and correlation, and then

conduct tests for reduced rank. In this application, the afore-mentioned GMM setup will reduce to

a simple method of moments setup, with u consisting of regressors x and with L ¼ K. We report

reduced-rank test results for both Hansen and RAD tests with VARHAC covariance matrix.

However, our results are robust with respect to the choice of covariance matrix estimators described

in section 3 (i.e., besides VARHAC, we also use White, NW, NW-P, A, and AM).

Bond Market

The estimates of the unrestricted model for expected bond excess returns are reported in panel

A of Table 2. The intercepts are small but significantly different from zero, indicating presence of

a term premium unexplained by the simplistic asset pricing model. A Wald test for zero intercepts

in both equations at once can be loosely interpreted as a test of an asset pricing model—see

Gibbons, Ross, and Shanken (1989); Fama and French (1993, 1996); and Cochrane (2001). The

Wald test statistic is, in this case, 17.10 and the corresponding p-value is 0, so our explanatory

variables themselves do not entirely explain the time-series behavior of bond returns, a result

consistent with the notion of the risk-free rate puzzle (see Campbell 1999, for example). Because

we can think of our risk factors as proxies for the underlying latent factors, this should not

undermine our reduced-rank analysis.

According to CAPM and the intertemporal CAPM, the beta of excess market return is

expected to be close to zero because the default risk is presumably very small for U.S. government

bonds. The beta is likely to be higher for excess returns on bonds with higher maturity where the

differences in the overall risk level increase. Panel A of Table 2 confirms this prediction with the

market beta being insignificant for rT90 and somewhat larger and significant for rT5. The

4 As Feenstra (1986) shows, the cash-in-advance models can be interpreted as a special case of the money in utility function

models.
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consumption growth rate is insignificant in both equations, and this is consistent with first-order

conditions of the consumer optimization problem (in the power utility consumption CAPM) only

for large risk-aversion coefficients (see Eqn. 1.16 in Cochrane [2001]). The beta for industrial

production is significantly negative for both types of bonds, reflecting the fact that industrial

production is a leading indicator for output. Because we consider a multiple regression that includes

industrial production in addition to the market excess return, the industrial production beta

characterizes reaction of returns to output fluctuations unusually large for a given level of market

return. Bond prices are typically higher earlier in contractions, which pushes down the next period’s

interest rates and returns. Bonds with higher maturity seem to be more sensitive to business cycles.

The sign of the monetary beta is in accord with a simple intuition of lower interest rates as a result

of increasing the money supply, but this beta is insignificantly different from zero. The estimate of

the expected inflation coefficient is also insignificantly different from zero, thus suggesting that,

while the expected inflation affects the returns according the Fisher equation, it does not influence

excess returns.

Preliminary to testing for reduced rank, we first document the need for the HAC robust

methodology by testing for heteroskedasticity and various forms of correlation in the regression

residuals of our unrestricted model. Panel B of Table 2 indicates the residuals are correlated across

equations and time and heteroskedastic, thus justifying our HAC robust estimation methods. The

Hansen and RAD tests of the null hypothesis of rank ¼ 1 are then conducted using the VARHAC

covariance-matrix estimator.

Table 2. Bond Market

Panel A: Unrestricted Model

Interest rSP gC gI gM �p R2

rT90 0.00060
(0.00012)

0.00242
(0.00182)

�0.00473
(0.01572)

�0.02242
(0.01069)

�0.01058
(0.01167)

�0.02166
(0.02428)

0.05807

rT5 0.00276
(0.00138)

0.08835
(0.02322)

�0.00533
(0.21187)

�0.29870
(0.09078)

�0.21372
(0.16409)

�0.07272
(0.26758)

0.09216

Panel B: Tests for Residual Heteroscedasticity and Correlation

Correlation Across equations Pearson 0.60 (0.02)
Across time rT90 Q 35.11 (0.00)

rT5 Q 21.36 (0.05)

Heteroskedasticity rT90 White 8.15 (0.00)
rT5 White 5.33 (0.00)

Panel C: Reduced Rank Tests

Test Rank 1

Hansen 30.23 (0.00)
RAD 21.00 (0.00)

The estimated model for panel A is yit¼bixtþ eit, i¼1, 2, sample 1959:02–2000:11, where y1t¼ rT90, y2t¼ rT5, bi is a (6 3

1) vector of coefficients, xt¼ (intercept, rSP, gI, gC, gM, �p)9 and eit is the regression error. rT90 and rT5 are excess returns on 90-

day T-bills and 5-year T-bonds, rSP is the excess return on the market portfolio, gI, gC, and gM are growth rates of real per capita

consumption, industrial production, and money supply, respectively. �p is the first difference in the inflation rate. We report

OLS coefficient estimates, and p-values in parentheses are calculated using the VARHAC standard errors.

Residuals in panel B are calculated using OLS estimates, equation by equation; Pearson¼ chi-square test for correlation;

White test ¼ F-test with no cross terms; Q¼ Q-statistic for testing 12 lags of autocorrelation; p-values in parentheses.

Calculation for panel C conducted using the VARHAC covariance matrix estimator. p-values in parentheses.
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For the Hansen test (but not the RAD test), for ease of computation, we apply the more

specialized version H*
0 of reduced-rank hypothesis H0, via the specification

y1t ¼ kxt þ e1t;

y2t ¼ dy1t þ e2t: ð12Þ

Here, the first asset serves as the reference asset, through which we can describe (up to a multiple d)

the dependence of y2 on x.

For data, we use the sample 1959:02–2000:11, where y1t¼ rT90, y2t¼ rT5, k is a (6 3 1) vector of

coefficients, xt¼ (1, rSP, gI, gC, gM, pUI)9, eit is the regression error, and d is the multiple coefficient

characterizing the different sensitivity of the second asset. We also use the vector xt as instruments in

the J-test.

Both tests strongly reject the (respective) null hypothesis—see panel C of Table 2. These results

suggest that behavior is very different for the two government bonds even though the only source of

difference in risk is the maturity term. More than one macroeconomic factor is needed to explain the

cross-section of expected bond returns. Implicitly, the term premium is thus characterized by at least

two underlying factors. To identify potential sources for differences between bonds of different

maturities, we run simple Wald tests of equality of individual coefficients across equations. The

equality of coefficients is only rejected for the market and industrial production betas, which were also

the only sensitivities statistically different from zero in our unrestricted model.

While we focus on bond excess returns, our study is complementary to research concentrated on

the term structure of interest rates (Cochrane [1999] relates bond returns and interest rates with respect

to the yield curve and Campbell, Lo, and MacKinlay [1997, ch. 10] provide basic formulae tying

returns and yields together). For example, Backus et al. (1998) give a survey of (multi) factor models

of the term structure and Ang and Piazzesi (2001) use a VAR model with macroeconomic and latent

variables. The latent variables are often referred to as slope, curvature, and level factors and

correspond to the shape of the yield curve. Ang and Piazzesi (2001) treat macroeconomic variables

characterizing inflation and the business cycle as observable and argue that the slope and curvature

factors can be related to macro factors. Consistent with our results, this leaves them with three factors

needed to explain the term structure—the inflation, business cycle, and level factors.

Stock Market

Panel A of Table 3 reports the OLS estimates of betas in the unrestricted model.5 Neither the

Wald test (with the statistic equal 0.16 and corresponding p-value 0.92) nor individual t-tests can

reject the hypothesis of zero intercepts for this stock return model. This is rather different than the case

of bonds returns mentioned earlier.

As implied by the CAPM and the intertemporal CAPM, the market beta is positive and

significant. It is higher than 1 for small firms, reflecting a higher level of risk associated with their

returns. For large firms, the market beta is close to 1 due to the fact that the time series characteristics

of the stock market portfolio are dominated by firms of a greater market value. The consumption beta

is significant for small firms but still too small as compared with predictions of the consumption

CAPM with power utility function (see Eqn. 1.16 in Cochrane [2001]), confirming the equity

5 The estimation of the unrestricted model is often used as the first step of the Fama and MacBeth (1973) method. For example,

see Chen, Roll, and Ross (1986), who also use macroeconomic variables.

246 Scott Gilbert and Petr Zemčı́k



premium puzzle. Industrial production is again negative but insignificant. The money betas are both

negative but only the small-firm money beta significantly so. The expected inflation coefficient is

positive for both portfolios and significant for small firms. A positive coefficient suggests that

expected inflation affects stock returns more that it affects the riskfree rate.6

Turning to tests for reduced rank, we first test for residual heteroskedasticity and correlation.

Results in panel B of Table 3 indicate that both are present, further justifying the use of HAC robust

methods. The restricted model for the Hansen test is specified by the system (12) with y1¼ rSMALL and

y2¼ rLARGE. As shown in panel C of Table 3, the null hypothesis of rank one is strongly rejected by

both the Hansen and RAD test. This result is robust to exclusion of intercepts and to the choice of the

covariance-matrix estimator. Interestingly, because the signs of all coefficients are the same, this

outcome is due to disproportionately greater sensitivities for small firms. Specifically, Wald tests for

equality of individual coefficients across the two equations show that only consumption, monetary,

and expected inflation betas differ at a 5% level of significance. The market betas are statistically

indistinguishable, consistent with recent evidence suggesting that returns on stocks sorted by size may

not differ as much as previously thought.7 Our results suggest that, while differences between small

and large firms are more subtle, they do exist, mainly due to quantitative variation of sensitivities to

Table 3. Stock Market

Panel A: Unrestricted Model

Interest rSP gC gI gM �p R2

rSMALL 0.00342
(0.00222)

1.05880
(0.05081)

1.11352
(0.30487)

�0.16953
(0.17948)

�0.704334
(0.31882)

�0.12976
(0.46281)

0.68988

rLARGE 0.00045
(0.00088)

0.98534
(0.00746)

�0.02430
(0.04867)

�0.00470
(0.01644)

�0.10313
(0.15291)

�0.19138
(0.09300)

0.98550

Panel B: Tests for Residual Heteroscedasticity and Correlation

Correlation Across equations Pearson 0.42 (0.03)
Across time rSMALL Q 70.17 (0.00)

rLARGE Q 109.45 (0.00)
Heteroskedasticity rSMALL White 6.59 (0.00)

rLARGE White 12.11(0.00)

Panel C: Reduced Rank Tests

Test Rank 1

Hansen 15.77 (0.01)
RAD 18.24 (0.00)

The estimated model for panel A is yit¼bixtþ eit, i¼ 1, 2, sample 1959:02–2000:11, where y1t¼ rSMALL, y2t¼ rLARGE, bi

is a (6 3 1) vector of coefficients, xt¼ (intercept, rSP, gI, gC, gM, �p)9 and eit is the regression error. rSMALL and rLARGE denote the

excess returns on the small-cap and large-cap portfolios rSP is the excess return on the market portfolio, gI , gC, and gM are growth

rates of real per capita consumption, industrial production, and money supply, respectively. �p is the first difference in the

inflation rate. We report OLS coefficient estimates, and p-values in parentheses are calculated using the VARHAC standard

errors.

Residuals for panel B are calculated using OLS estimates, equation by equation; Pearson¼ chi-square test for correlation;

White test ¼ F-test with no cross terms; Q¼ Q statistic for testing 12 lags of autocorrelation; p-values in parentheses.

Calculation conducted for panel C using the VARHAC covariance matrix estimator. p-values in parentheses.

6 Our results are consistent with studies on firm-size effects—see Fama and French (1993, market beta), Chan, Chen, and Hsieh

(1985, market and industrial production betas), and Li and Hu (1998, industrial production and money-supply betas).
7 Among others, Horowitz, Loughran, and Savin (2000) report that no consistent relationship can be found between size and

realized returns since the 1980s.
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variables other than the market excess return. Therefore, at least two factors are needed to explain both

the mean excess returns on small and large firms. Similarly, Costa, Gardini and Paruolo (1997)

consider monthly returns on common stocks listed on the Milan stock of Exchange and use

maximum-likelihood inference in reduced-rank regression models to conclude that the number of

(latent) factors appears to be greater than four.

Bond and Stock Markets Jointly

In this subsection, we consider simultaneously the bond and stock markets. Panel A of Table 4

reports residual correlation across equations—the correlations across markets are small and

insignificant (the rest of the correlation matrix can be found in Tables 2 and 3). Campbell and

Ammer (1993), for example, argue that the low correlation can be explained by the real interest rate

and by news about future excess stock returns and inflation. Because the residual heteroskedasticity

and autocorrelation tests are conducted equation by equation, they are identical to ones reported in

panel B of Tables 2 and 3.

When applying the HAC-robust Hansen test (but not the RAD test), for ease of computation,

we again apply a restricted version H*
0 of the latent factor structure H0. The restricted model uses the

first q assets as reference assets, as follows:

yit ¼ kixt þ eit; i ¼ 1; 2; . . . ; q;

yjt ¼ d1y1t þ � � � þ dqyqt þ ejt; j ¼ qþ 1; . . . ; n; ð13Þ

where the rank q¼1, . . . , 3, and y1t¼ rT90, y2t¼ rT5, y3t¼ rSMALL, y4t¼ rLARGE. k’s and xt are defined

above.

For both the Hansen test and RAD test, panel B of Table 4 indicates a strong rejection of ranks 1,

2, and, 3, that is, at least four latent factors are necessary to characterize jointly the cross-sectional and

time-series behavior of expected excess returns. The rejection of the factor models with a small

number of factors is representative of problems connected with accounting for the high risk-free rate

and the term, bond equity, and equity premia (see Campbell [1999] for a survey).

The question arises whether this result could be anticipated given the fact that at least two factors

Table 4. Bond and Stock Markets Jointly

Panel A: Tests for Residual Correlation Across Equations

rSMALL rLARGE

rT90 0.07 (0.17) 0.07 (0.18)
rT5 �0.08 (0.16) 0.06 (0.20)

Panel B: Reduced Rank Test

Test Rank 1 Rank 2 Rank 3

Hansen 87.68 (0.00) 31.85 (0.00) 15.92 (0.00)
RAD 166.60 (0.00) 27.59 (0.00) 16.84 (0.00)

Residuals for panel A are calculated using OLS estimates from hte unrestricted model (equation by equation): yit¼ bixtþ
eit, i ¼ 1, . . . , 4, sample 1959:02–2000:11, where y1t ¼ rT90, y2t ¼ rT5, y3t ¼ rSMALL, y4t ¼ rLARGE, bi is a (6 3 1) vector of

coefficients, xt¼ (intercept, rSP, gI, gC, gM, �p)9 and eit is the regression error. rT90 and rT5 are excess returns on 90-day T-bills

and 5-year T-bonds, rSMALL and rLARGE denote the excess returns on the small-cap and large-cap portfolios, rSP is the excess

return on the market portfolio, gI , gC, and gM are growth rates of real per capita consumption, industrial production, and money

supply, respectively. �p is the first difference in the inflation rate. p-values in parentheses are calculated using the Pearson chi-

square test for correlation.

Calculation conducted for panel B using the VARHAC covariance matrix estimator. p-values in parentheses.
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were needed to explain expected returns for both the bond and stock markets. The answer is no

because there is a possibility that both bond and stock excess returns are driven by the same two latent

factors. Such a possibility is rejected by the reduced-rank analysis. The source of differences lies in

different patterns of sensitivities in the two markets. While the variability in the bond returns is mostly

due to differing market and industrial production betas, the variation in the stock excess returns can be

traced to betas for the growth rates of consumption and money supply and expected inflation.

In a quite different modeling context, Campbell (1987) tests for reduced rank in a VAR model

with bond excess returns of several maturities and the excess return on the market portfolio. As

instruments, he uses lagged yield spreads. The residuals in his VAR model are heteroskedastic but not

serially correlated and he uses the White/score method to find that there are at least three latent factors.

We have confirmed his results in a similar setup, using both the White and HAC robust score and

RAD methods, the RAD test being robust to the choice and ordering of the reference assets.8

Moreover, we repeated his analysis for the bond market separately, later adding the only stock market

variable. In the case of the bond market, two-factor null hypothesis could not be rejected and, in the

case of the joint model, three factors could not be rejected.9 This result is consistent with our tests in

the four-variable model, that is, several (more than three) factors are necessary to account for the

cross-sectional and time-series patterns of stocks and bonds.

Our empirical work has been directed at counting the number of latent (macro) factors in asset

returns, in the spirit of Chen, Roll, and Ross (1986). Of course, for a given number of latent factors, it

is important to understand the nature of these factors and the plausible ways that they might cause

events in financial markets. For this, we would need to extend considerably the empirical

investigation, by reporting fitted values of coefficients in the latent factor models. We leave this

important work to future research.

6. Summary

In this article, we propose tests for latent factors, or reduced rank, in multivariate linear models,

in the case where model errors exhibit error serial correlation and heteroskedasticity of unknown form.

We considered two types of tests, a version of Hansen’s (1982) GMM test and a different, more user-

friendly test called the RAD test. It would be interesting to extend the analysis to include other tests

robust to error dynamics, including a general test of matrix rank proposed by Gill and Lewbel (1992).

Their test, while perhaps less intuitive than the RAD test, may offer some computational advantages,

although in simulations, we have not yet been able to show that either test is faster to compute than

the other. We provide (Eviews) programs/macros for computing the RAD test, and a convenient

stand-alone Windows program will soon be available from the first author. We encourage economists

to apply the RAD test for latent factors, to many kinds of economic data (finance, macro, micro,

international, etc.).

While we have tried hard to achieve extra robustness in our tests, in terms of error dynamics, we

rely on asymptotic theory for our test significance levels and decision rules. In small samples,

asymptotic significance levels may be poor approximations, and in that case, bootstrap/simulation

methods may be a useful substitute. Gilbert and Zemčı́k (2004) report some such simulations and,

while we have not encountered serious test distortions in simulations fit to the sample sizes and

8 Of course, the autocorrelation robustness is not really needed in this case.
9 For the purpose of replicating Campbell’s (1987) analysis, we extend our dataset by adding several Treasury securities. Details

regarding this data and our results are available upon request.
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models in the present work, we can produce big distortions by drastically reducing the sample size or

by drastically increasing the number of (y) variables in the model.

Appendix

The proposed algorithm for computing RAD test relies on two mathematical formulas, Equations 10 and 11 in the text. To

derive these formulas, first note that, under the reduced-rank restriction H0 in the text, we have b̂9¼ k̂9ĉ9, and applying standard

rules of linear algebra (Ruud 2000, p. 925),

vecðk̂9ĉ9Þ ¼ ðIn � k̂9Þvecðĉ9Þ ¼ ðĉ � IKÞvecðk̂9Þ:

To derive Equation 10, note that the desired ĉ is such that, given the fixed initial estimate 9 of k, the first-order conditions for the

quadratic problem 5 reduce to

@ðvecðb̂9Þ � vecðk̂9ĉ9ÞÞ9
@ vecðc9Þ �̂�1

vecðb̂9Þðvecðb̂9Þ � vecðk̂9ĉ9ÞÞ ¼ 0:

Using the first of the standard algebra rules stated above, we obtain

@ðvecðb̂9Þ � vecðk̂9ĉ9ÞÞ9
@ vecðc9Þ ¼ �ðIn � k̂9Þ9;

and from these last two equations, we obtain the Formula 10 in the text.

To derive Equation 11, note that the desired k̂ is such that, given the fixed estimate ĉ, the first-order conditions for the

quadratic problem 5 reduce to

@ðvecðb̂9Þ � vecðk̂9ĉ9ÞÞ9
@ vecðk9Þ �̂�1

vecðb̂9Þðvecðb̂9Þ � vecðk̂9ĉ9ÞÞ ¼ 0:

Applying the second of the standard algebra rules stated above, we obtain

@ðvecðb̂9Þ � vecðk̂9ĉ9ÞÞ9
@ vecðk9Þ ¼ �ðĉ � IKÞ9;

and from these last two equations, we obtain the Formula 11 in the text.
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