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Abstract

A chi-square statistic is constructed that compares vari-
ance ratios and mean simple returns from data with those
implied by an asset pricing model. The statistic is applied
to the Consumption based Capital Asset Pricing Model
with time non-separable preferences. It favors habit per-
sistence for annual data, time-separability for quarterly
data, and durability for monthly data, respectively. In-
troduction of time non-separability yields only a marginal
improvement. The power of the test is high when alter-
native hypotheses are formed by varying the relative risk
aversion coefficient. It is lower for alternative hypotheses
generated by varying the time non-separability parameter,
especially for durability. (JEL G12)

Introduction

The statistical test often used to investigate whether asset returns follow a random walk is based on
variance ratios of returns (see Campbell, Lo and MacKinlay 1997, Chapter 2 for a survey). Variance
ratios capture the autocorrelation structure of asset returns and though their statistical power to
detect mean reversion is rather low, it is still higher than for alternatives such as the likelihood-ratio
test or simple regressions of current returns on lagged returns (see Poterba and Summers 1988). The
test developed in this paper is based on variance ratios and mean simple returns. The presence of
mean simple returns ensures that the level of returns is captured together with their autocorrelation
structure. I avoid the necessity of choosing the variance ratio with the highest power (see Faust
1992) by constructing a chi-square statistic, which is a weighted sum of squared deviations from
estimated and hypothesized variance ratios and mean simple returns for several time periods. The
chi-square test statistic can be used to test any model of asset prices including the Consumption
based Capital Asset Pricing Model (CCAPM).

In the standard CCAPM, the representative agent maximizes expected utility where preferences
are defined by time-separable iso-elastic functions of the flow of non-durable goods and services.
Cecchetti, Lam, and Mark (1990) compare variance ratios of asset returns implied by the CCAPM
with historical variance ratios. They find that the model can match the pattern observed in the
U.S. data. Bonomo and Garcia (1994) on the other hand show that the CCAPM can produce serial
correlation in equilibrium returns only if its endowment process is misspecified. Zemč́ık (2000) uses
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a proper specification of the endowment process together with time non-separable preferences to
demonstrate that the CCAPM can in fact generate autocorrelation in asset returns. Time non-
separability in Zemč́ık (2000) is introduced by adopting the internal habit formation where the
current utility depends on an individual’s past consumption. Preferences are thus defined by three
parameters: the discount factor, the time non-separability parameter, and the relative risk aversion
(RRA) coefficient. An identical preference specification is utilized in this paper.

Following Bonomo and Garcia (1994), the consumption in the model is assumed to follow a two-
state, one-mean, and two-variance Markov switching process. The parameters of the consumption
process are estimated by the method of maximum likelihood using the U.S. consumption of non-
durables and services at annual, quarterly and monthly frequencies. The CCAPM is calibrated to
various combinations of the parameters and solved for. The equilibrium returns are then compared
to the U.S. equity returns using the proposed chi-square statistic. The highest p-values are recorded
with negative time non-separability parameter (habit persistence) for annual data, a zero time non-
separability parameter (time separability) for quarterly data, and a positive time non-separability
parameter (durability) for monthly data. However, the modified variance-ratio test cannot reject
time-separability at any data frequency, though p-values are lower compared to time non-separable
preferences. This result is in accord with recent evidence based on Bayesian comparison of vari-
ous preference specifications in Gordon and Samson (1999). They conclude that extensions of the
standard power utility function do not yield a demonstrable improvement.

A standard approach to test asset pricing models is to estimate parameters of a model by mini-
mizing the distance between various moments of the model returns with their sample analogs. The
empirical adequacy of the model then can be tested using the fact that the objective function eval-
uated in its minimum is chi-square distributed. See Hansen and Singleton (1982) and Ferson and
Constantinides (1991) for examples of this methodology. More recently, Lee and Ingram (1991),
Duffie and Singleton (1993) and Heaton (1995) discuss and/or apply an estimation procedure which
accounts for cases when the moments of model returns or the stochastic discount factor are simu-
lated. Since Ferson and Constantinides (1991) and Heaton (1995) both estimate the CCAPM with
time non-separable preferences, their results are directly comparable to those of the calibration ex-
ercise presented here. Ferson and Constantinides (1991) estimate the CCAPM at yearly, quarterly
and monthly frequencies and Heaton (1995) uses monthly data. While findings based on annual and
monthly data frequencies are roughly consistent with results presented here, there are differences
at the quarterly frequency. Estimates of the time non-separability parameter in Ferson and Con-
stantinides (1991) are strongly negative whereas the modified variance-ratio test used in this paper
favors time-separability.

The chi-square test statistic constructed here is similar in spirit to other tests based on distance
from sample moments of asset returns. Hung (1994) offers a statistic which takes into account
uncertainty from point estimates of means of the risk-free rate and the equity premium as well as
their mutual correlation. Burnside (1994) and Cecchetti, Lam and Mark (1994) devise tests based
on volatility bounds. Specifically, even though the restriction imposed by Hansen and Jagannathan
(1991) may be violated, the distance between the minimum variance bound and the variance of
a pricing kernel does not have to be statistically significant1. Volatility bound tests tend to favor
habit persistence for all data frequencies which is due to the increased severity of the equity premium
puzzle when durability is present. Hung (1994), Burnside (1994), and Cecchetti et al. (1994) all
focus on the cross-sectional characteristics of asset returns; on the other hand, the test presented in
this paper concentrates on the autocorrelation pattern of a single asset. In this context, durability
is needed for the CCAPM to match positive serial correlation in historical monthly returns.

To evaluate information in accepting or rejecting the CCAPM, the power of the modified variance-
ratio test is examined given the null hypothesis of the CCAPM being the true underlying model. The
endowment process parameters are set equal to their maximum-likelihood estimates for each data
frequency. The preference parameters of the CCAPM are set equal to parameter combinations with
highest p-values. The asymptotic distribution of the above mentioned test statistic is chi-square.
To avoid potential issues with a small-sample bias I also compute the empirical distribution of the
statistic. Critical values from both the empirical and asymptotic distributions are then used for
computing the power against alternative hypotheses. Various versions of the alternative hypothesis
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are formed by varying the time non-separability parameter and relative risk aversion coefficient,
respectively. Power is calculated using a sequence of time series of model asset returns that is
generated under a given alternative hypothesis. The power is close to one for most alternative
parameter combinations which are far enough from the combinations with highest p-values. The
only exception is a region with a positive non-separability parameter. This may be attributed to
the fact that according to the statistic used, these parameter combinations cannot be rejected using
the data on the U.S. stock returns and consumption growth.

The paper is organized as follows. Section “The Modified Variance-Ratio Test” derives the chi-
square statistic based on variance ratios and mean simple returns. Section “The CCAPM with
Time Non-Separable Preferences” discusses the CCAPM with time dependent preferences: Section
“Shocks and Solution Method” solves for the equilibrium returns implied by the model; the implied
process for returns is used to evaluate the chi-square statistic for various parameter combinations
in Section “Testing the CCAPM” . The power of the test is investigated in Section “Power of the
Modified Variance-Ratio Test”. Section “Summary” concludes. The used dataset is described in the
Data Appendix.

The Modified Variance-Ratio Test

This section derives a test of asset pricing models based on estimates of variance ratios and mean
simple returns. The random walk hypothesis for asset returns is frequently tested using the standard
variance-ratio test (see Campbell et al. 1997, Chapter 2 for a survey). A typical approach is to derive
an asymptotic distribution of variance ratios under the null hypothesis and then test the hypothesis.
Variance ratios used may be chosen according to their power as suggested in Faust (1992). Rather
than choosing variance ratios based on their power, a joint estimation of variance ratios for several
time horizons is conducted here. In addition, variance ratios are estimated together with mean
simple returns. The estimation is carried out by the Generalized Method of Moments (GMM) and
the asymptotic distribution of estimates is normal regardless of the distribution of returns and a
form of potential heteroskedasticity. Finally, a Wald statistic is constructed that compares mean
simple returns and variance ratios implied by an asset pricing model with their estimates.

The variance-ratio statistic can be written as

V R(k) =
Var(Rk

t )
kVar(Rt)

= 1 +
2
k

k−1∑
s=1

(k − s)ρs, k = 2, 3, ..., (1)

where Rk
t is the simple k-period gross return, Rt is the simple one-period gross return, and ρs is the

s-th serial correlation coefficient of returns2. V R(k) = 1 if the k-period return follows a random walk.
For k = 2, the variance ratio is simply unity plus the first-order autocorrelation. Thus, V R(2) < 1
for negatively serially correlated two-period return, and V R(2) > 1 for positively serially correlated
two-period return. For k > 2, V R(k) is a linear combination of autocorrelation coefficients of returns
with declining weights.

Let µk denote the mean of the k-period simple gross return. Let us also assume that both µk

and V R(k) can be obtained by solving a given model of asset pricing. Define zt = (R1
t , R

2
t , ..., R

L
t )′,

and θ = (µ1, µ2, ..., µL, V R(2), V R(3), ..., V R(L))′, where L is a positive integer. The moment
restrictions used for the GMM estimation follow from the definition of the variance ratio statistic
(1):

E[h(zt, θ)] = 0,
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where

h(zt,θ) =




R1
t − µ1

R2
t − µ2

...
RL

t − µL

(R2
t − µ2)2 − 2V R(2)(R1

t − µ1)2

(R3
t − µ3)2 − 3V R(3)(R1

t − µ1)2
...

(RL
t − µL)2 − LV R(L)(R1

t − µ1)2




.

Let gT (θ) = 1
T

∑T
t=1 h(zt,θ) and WT is some positive definite symmetric matrix. The GMM

estimator of θ maximizes the quadratic form JT (θ) = gT (θ)′WT gT (θ). In our case, JT (θ̂) = 0
because the estimator is exactly identified. It can be proved that

√
T (θ̂−θ0) d−→ N(0, V (θ̂)). V (θ̂)

is the asymptotic covariance matrix and is given by (D0S0
−1D0)−1, where D0 = E[∂h(zt,θ)

∂θ
], and

S0 =
∑∞

i=−∞E[h(zt,θ0)]E[h(zt,θ0)]′. V (θ̂) is estimated by V̂ (θ̂) = (DTST
−1

DT )−1, where

DT =
1
T

T∑
t=1

∂h(zt, θ̂)
∂θ

,

and ST is estimated using the Newey and West (1987) method i.e.

ST =
1
T

T∑
t=1

h(zt, θ̂)h(zt, θ̂)′ +
n∑

i=1

[
1− i

n + 1

]

×
[

1
T

T∑

t=1+i

h(zt, θ̂)h(zt−i, θ̂)′ +
1
T

T−i∑
t=1

h(zt, θ̂)h(zt+i, θ̂)′
]

,

where the number of lags n is equal to 15 3. The estimates of θ̂ are reported in Table 1 for the S&P
Index at yearly, quarterly, and monthly frequencies for L = 104. The data sources are described
in the Data Appendix. When annual data are used, the variance ratio for a two-year investment
horizon equals one. However, V R(2) can be greater than one if different data span is used. For
investment horizons greater than 2 years, variance ratios are lower than one which corresponds
to findings of Cecchetti et al. (1990) and Poterba and Summers (1988). For quarterly returns,
positive autocorrelation coefficients overweight the negative ones up to the investment horizon of
seven quarters (1.75 years). Finally, variance ratios for monthly returns are greater than one for
all periods. Estimates of θ are consistent with the following stylized facts: equity returns display
positive serial correlation at horizons shorter than one year and negative serial correlation for longer
horizons.

Using the fact that θ̂ is asymptotically normally distributed with covariance matrix V (θ̂), one
can write

Q = T (θ̂ − θ0)′V (θ̂)
−1

(θ̂ − θ0) ∼ χ2
2L−1. (2)

The above relationship also holds when V (θ̂) is replaced by its consistent estimate, V̂ (θ̂). The vector
θ can be thought of as a function of a vector of underlying parameters of an asset pricing model.
In this case, one might falsely conclude that the number of degrees of freedom in the Q-statistic is
the difference between the number of elements in θ (which equals the number of restrictions) and
the number of model parameters. However, since no estimation with respect to model parameters is
conducted, the number of degrees of freedom is simply the number of elements in θ. The Q statistic
will be employed to test the CCAPM with time non-separable preferences.
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The CCAPM with Time Non-Separable Preferences

The framework adopted here is that of Lucas (1978). The model is solved for the case with time-
dependent preferences. The lifetime utility function of the representative consumer takes the form

E0

∞∑
t=0

βt (ct + αct−1)1−γ

(1− γ)
, (3)

where ct is the consumption of services at time t and β and α denote the discount factor and the
time non-separability parameter, respectively. α is the coefficient of interest since it affects the
autocorrelation structure of the model returns (see Zemč́ık 2000) as well as the size of the equity
premium implied by the model (see Constantinides 1990). γ is approximately equal to the expected
value of the RRA coefficient (see Ferson and Constantinides 1991) for α 6= 0 and equals the RRA
for α = 0.

The present version of the CCAPM has been estimated and tested extensively. Ferson and
Constantinides (1991) estimate the CCAPM by GMM at annual, quarterly, and monthly frequencies
to find negative time non-separability parameter for annual and quarterly data and a positive one
for monthly data. Estimation of alternative versions of the CCAPM by Eichenbaum and Hansen
(1990) and Heaton (1995) also supports durability in monthly data. Cecchetti et. al (1994) test
the CCAPM using tests based on volatility bounds. Their results favor habit persistence for annual
and monthly data frequencies. A certain degree of habit persistence is necessary to generate a more
volatile pricing kernel which in turn increases the equity premium implied by the model.

Let st, pt, and dt be the amount of assets (trees) held, the market price of the asset, and the
dividend, respectively. The representative agent then maximizes (3) with respect to the following
budget constraint:

ct + ptst+1 ≤ (pt + dt)st.

The first order necessary conditions for the optimization problem imply

pt = Etmt+1(pt+1 + dt+1), (4)

where mt+1 is the Intertemporal Marginal Rate of Substitution (IMRS) and is given by

mt+1 =
β[(1 + αx−1

t+1)
−γ + βαEt+1(xt+2 + α)−γ ]

(1 + αx−1
t )−γ + βαEt(xt+1 + α)−γ

x−γ
t+1,

where xt+1 = ct+1
ct

. Using the expression for the IMRS, the Euler equation (4) can be written as

vt = Etmt+1ht+1(1 + vt+1), (5)

where vt denotes the price-dividend ratio and ht the gross growth rate of the dividend, respectively.

Shocks and Solution Method

This section derives variance ratios implied by the CCAPM. At first, the state dependent continuous
distribution of the consumption growth rate is discretized by the Gaussian N -point quadrature rule
for N = 65. Then, the IMRS is discretized as well and so is the Euler equation which can be
written in the terms of price-dividend ratios. Next, the Markov process forcing equilibrium returns
is derived using the price-dividend ratios and the transition matrix of the consumption process.
Finally, variance ratios are calculated from the moments of model returns6.

Bonomo and Garcia (1994) argue that the two-state Markov switching model with one mean and
two variances (2SMS1M2V) is the most parsimonious, statistically acceptable model for consumption
growth rate. I follow Bonomo and Garcia (1994) and estimate parameters of this process using the
method of maximum likelihood.7

The 2SMS1M2V model is defined as:

ln(xt+1) = δ0 + (ω0 + ω1ut)εt+1,
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where ut = 1 or 0, depending on the state of the economy. εt ∼ N(0,1). The transpose of the
transition matrix between the states 0 and 1 is:

G =
(

g00 (1− g00)
(1− g11) g11

)
,

where g00 is the probability of remaining at state 0, while g11 is the probability of remaining at state
1. To conduct the estimation, consumption data on non-durables and services in the U.S. are used
- see the Data Appendix for description of the data and Table 2 for the summary statistics. The
maximum likelihood estimates of δ0, g11, g00, ω0 and ω1 are reported in Table 3.

Let ln(x0) be an (N × 1) vector with elements

ln(x0
i ) = δ0 + ω0ai, i = 1, 2, . . . , N,

where ai is the abscissa for an N -point quadrature rule for the standard normal density. Also, let
ln(x1) denote an (N × 1) vector with elements

ln(x1
i ) = δ0 + (ω0 + ω1)ai, i = 1, 2, . . . , N.

Then, the consumption growth rate ln(xt+1) is approximated by a Markov chain, where the vector
of possible values of the consumption process is defined as

ln(x) =
(

ln(x0)
ln(x1)

)
,

with the transpose of the transition matrix

T =
(

g00Π (1− g00)Π
(1− g11)Π g11Π

)
, (6)

where Πij = wj , i, j = 1, 2, . . . , N , and wj ’s are the weights of an N -point quadrature rule for the
standard normal density.

The IMRS is written in the terms of xt+1 and discretized. Let M denotes the (2N×2N) matrix
of values of the IMRS. Thus, the Euler equation (5) can be expressed as:

v = Kι + Kv, (7)

where v is a (2N×1) vector of price-dividend ratios and ι is a (2N×1) vector of ones. The (2N×2N)
matrix K is defined as

{Kij} = MijxjTij , i, j = 1, 2, . . . , 2N.

(7) is a system of 2N equations in 2N unknowns and can be easily solved for v. The equity returns
then are:

Rij =
pj + dj

pi
=

vj + 1
vi

xj , i, j = 1, ..., 2N. (8)

Using T and (8), the equilibrium path for returns is characterized by another Markov chain with
(4N2 × 1) vector of possible values of returns, R, the (4N2 × 4N2) transition matrix , PR, and
the (4N2 × 1) vector of unconditional probabilities, ΠR (see Hamilton 1994, Section 22.4. for an
example of a similar approach). The implied moments of returns are

E[Rt] = ΠR
′R = µ, (9)

Var[Rt] = ΠR
′(R.R)− µ2,

and
E[Rt+sRt] = (R.ΠR)′PRsR.
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Thus, the s-th autocorrelation coefficient of the equilibrium returns can be calculated using

ρs =
E[Rt+sRt]− µ2

Var[Rt]
. (10)

The variance ratios implied by the CCAPM are calculated using (10) and (1). θ0 is defined as
(µ, 2µ, ..., Lµ, V R(2), V R(3), ..., V R(L)), where L = 10. The Q-statistic then can be computed for a
given set of parameter values by substituting for θ0 in (2).

Testing the CCAPM

In this section, contour maps of p-values associated with the Q-statistic are constructed. Annual,
quarterly and monthly data are used. At each data frequency, the CCAPM is fully characterized by
the endowment process parameters δ, g11, g00, ω0, ω1 and by the utility function parameters α, β, γ.
The consumption process parameters are set equal to their maximum-likelihood estimates given in
Table 3. Preference parameters are chosen to be within a range of ‘reasonable’ values. Values for
β being examined for annual data are 1.03, 1.00, 0.97, and 0.90, respectively. Kocherlakota (1990)
provides a theoretical justification for β > 1. β’s for the other two data frequencies are adjusted to
account for a different time-period. α varies from -1 to 1 and γ from 0 to 25. Based on the outcome,
a narrower parameter space is then examined in finer intervals. Finally, parameter combinations
with the highest p-values are presented for each data frequency. The described calibration exercise
can be thought of as an informal estimation procedure. A rigorous estimation of the identical version
of the CCAPM is conducted in Ferson and Constantinides (1991) and is beyond the scope of this
paper.

Results for annual data are summarized in Figure 1. Contour diagrams A, B, and C in Figure 1
differ only by the value of β. Admissible values for the model are the ones for which the null
hypothesis of the equilibrium model being valid cannot be rejected. For instance when the p-value
taken from one of contour diagrams is higher than 10% it is not possible to reject the model at 10%
level of significance. Since there are no p-values higher than 1% for β = 0.90, no contour diagram is
drawn. Interestingly, in all the other cases, both durability and habit persistence are plausible. In
addition, time separability is not rejected either, though corresponding p-values are somewhat lower.
The highest p-value across all evaluated preference parameters is 0.99999 for β = 1.00, α = −0.04,
and γ = 4.30.

The outcome of testing the CCAPM using quarterly data is depicted in Figure 2. β’s for quarterly
data are 1.0074 in the part A of the picture, 1.0000 in B, 0.9924 in C, and 0.9740 in D, respectively.
Contours are similar to their counterparts in Figure 1 in admitting durability, habit persistence and
time-separability for all β’s considered, even for β = 0.9740, which is equivalent to β = 0.90 at a
yearly frequency. The parameter combination with the highest p-value of 0.99995757 is β = 1.00742,
α = 0, and γ = 6.4.

Results for monthly data are illustrated in Figure 3. Contrary to Figures 1 and 2, Figure 3 favors
durability, though time-separable preferences and habit persistence mostly cannot be rejected. When
β = 0.99126, no p-value is greater than 1% and no picture is drawn. The highest p-value of 1 is
obtained for β = 1.00000, α = 0.10, and γ = 2.80.

Power of the Modified Variance-Ratio Test

The null hypothesis is defined by the maximum-likelihood estimates of the consumption process
parameters (see Table 3) in combination with preference parameters with the highest p-value ac-
cording to the Q-statistic (see Section “Testing the CCAPM”). The null hypothesis is used to
parameterize the Data Generating Process, DGP0. The DGP0 is employed to produce a sequence
of 20,000 repetitions of the Monte-Carlo experiment where a series of returns is generated under the
null hypothesis of the CCAPM model being true. The number observations for each data frequency
is taken from Table 2. Simple means of returns and variance ratios are estimated for each series of
returns generated by the DGP0. The estimates are used to calculate the Q-statistic. An empirical
distribution of Q is derived. The empirical distribution provides the size corrected critical value of
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the test. Then an alternative hypothesis is formulated by varying utility function parameters. The
DGP1, where the preference parameters are supplied by the alternative hypothesis, is formed. The
DGP1 is used to generate 1,000 time series of returns. Mean simple returns and variance ratios are
estimated so that the Q-statistic can be calculated. The Q-statistic is compared to its critical value.
Both the size corrected and asymptotic critical values are considered. The size corrected critical
value is obtained from the distribution of Q under the null hypothesis. The alternative hypothesis
is either accepted or rejected using the Q-statistic. Finally, the ratio of the number of rejections to
the number of repetitions determines the power of the modified variance-ratio test.

A more formal discussion follows closely Spanos (1993). Let

b = (β, α, γ, δ, g11, g00, ω0, ω1)′ ∈ B,

where B is the set of plausible values for parameters of the CCAPM. Suppose we have two competing
hypotheses, H0 : b ∈ B0 and H1 : b ∈ B1, where B0∪B1 = B and B0∩B1 = ∅. Let us also define the
acceptance region C0 = {b : Q(b) < χs,2L−1} and the rejection region C1 = {b : Q(b) > χs,2L−1},
where s is the level of significance of the test. Thus, if b ∈ C0 we accept H0 at the s level of
significance and if b ∈ C1 we reject H0 at the s level of significance. Q is defined by equation (2).
Then the power of the test is the probability of rejecting H0 when false i.e. Pr(b ∈ C1|b = b1) for
b1 ∈ B1.

To compute the empirical distribution of Q, an artificial dataset has to be constructed. We
know from Section “Shocks and Solution Method” that returns satisfying restrictions given by the
CCAPM are driven by a Markov chain with vector of possible values R and the transition matrix
PR. The Markov chain is fully characterized by the parameters of the CCAPM, combined in a
vector b. Let d = (δ, g11, g00, ω0, ω1)′ denote a vector of consumption process parameters. Table 3
defines d for annual data (da), quarterly data (dq), and monthly data (dm), respectively. Values
of preference parameters are taken from the calibration exercise in Section “Testing the CCAPM”.
Thus, we can formulate the null hypotheses as follows:

Annual Data H0 : ba0 = (1.00,−0.04, 4.30, da′)′,
Quarterly Data H0 : bq0 = (1.00742, 0, 6.4, dq′)′,
Monthly Data H0 : bm0 = (1.00, 0.1, 2.8,dm′)′.

To see the difference between the asymptotic and empirical distributions of Q I calculate the Q-
statistic for each series produced by the DGP0. The model implied means of simple returns and
variance ratios are defined using b0 or in other words we can express θ in (2) as a function of the
underlying parameters of the CCAPM represented by b. Under H0, θ(b) = θ(ba0) for annual data
and similarly for quarterly and monthly data. Graph 4 compares the two distributions for each data
frequency. The theoretical relative frequency for 10-unit intervals is computed as F (Q2) − F (Q1),
where Q2 − Q1 = 10 and F (.) is the cumulative distribution function of χ19. To account for the
difference I conduct two kinds of tests to assess the power of the modified variance-ratio test: the
asymptotic test and the size corrected test. The 10% critical value for χ19 is 27.2036. So, the
rejection region for the asymptotic test is C1 = {b : Q(b) > 27.2036}. Using size corrected critical
values, rejection regions are

Annual Data: C1 = {b : Q(b) > 89.108211},
Quarterly Data: C1 = {b : Q(b) > 50.610095},
Monthly Data: C1 = {b : Q(b) > 40.614630}.

Not surprisingly, as the number of observations increases, the empirical distribution of Q gets closer
to the asymptotic distribution. However, the empirical distribution remains fat-tailed for all fre-
quencies.

Finally, the power is calculated. The alternatives are intentionally constructed so that only one
element in the parameter vector b differs from the null hypothesis. The alternative hypothesis is
formulated by varying either the RRA coefficient γ, or the time non-separability parameter α. The
hypothesis is either rejected or accepted based on the Q-statistic and the corresponding rejection
region. The power of the test is estimated by

P̂ r(b ∈ C1|b = b1) =
number of rejections
number of repetitions

.
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The results of power calculations are depicted in Figure . For annual data, see figures A and B
where the alternative hypotheses are respectively:

Annual Data, γ varies Hγ
1 : ba1 = (1.00,−0.04, γ, da′)′, γ ∈ [0, 5],

Annual Data, α varies Hα
1 : ba1 = (1.00, α, 2.5, da′)′, α ∈ [−0.5, 0.5].

The pattern in both figures clearly corresponds to what can be seen in Figure 1. As the null
hypothesis is approached, the power decreases in both cases. However, aside from the close proximity
to ba0 , the power is unity or close to unity. The power of the size corrected test is somewhat lower
by construction (size corrected critical value is greater than the asymptotic critical value) but it
reaches unity as well for γ < 1.0 and γ > 3.8 in Figure 5A and for α = −0.6 in Figure 5B.

Alternatives for quarterly data are given as:
Quarterly Data, γ varies Hγ

1 : bq1 = (1.00742, 0, γ, dq′)′, γ ∈ [6, 7],
Quarterly Data, α varies Hα

1 : bq1 = (1.00742, α, 6.4,dq′)′, α ∈ [−0.5, 1.0].
Results are summarized in Figures 5C and 5D and correspond to Figure 2. There are two peaks
with high p-values in Figure 2 and a through for α = 0.1. The power is relatively low for the peaks
and high for the through. Alternative hypotheses for monthly data are as follows:

Monthly Data, γ varies Hγ
1 : bm1 = (1.00, 0.1, γ, dm′)′, γ ∈ [0, 7],

Monthly Data, α varies Hα
1 : bm1 = (1.00, α, 2.8,dm′)′, α ∈ [−0.5, 0.5].

The power for monthly data is shown in Graphs 5E and 5F. Again, results are compatible with
testing the CCAPM using the Q-statistic in Figure 3.

The power of the test is high when γ deviates from it’s null hypothesis’ value. However, the
power for α > −0.1 is rather low since the data cannot clearly distinguish between habit persistence
and durability.

Summary

Various forms of the variance-ratio test are utilized to document predictability and to test asset
pricing models. This paper introduces the modified variance-ratio test where a joint distribution of
variance ratios is derived together with mean simple returns to construct a test statistic, which may
be employed to test a variety of models generating asset returns. The intuition behind the metric
originates from the autocorrelation pattern in the U.S. equity data i.e. a positive autocorrelation
in shorter investment horizons and negative autocorrelation in longer investment horizons. The
statistic evaluates whether the difference between the model implied variance ratios and the model
implied mean simple returns and their historical counterparts is statistically significant.

The CCAPM with time non-separable preferences is tested using the modified variance-ratio test.
The results reflect what we observe in the U.S. stock market data. Variance ratios lower than one
translate into habit persistence for annual data though neither durability nor the time-separable
model can be rejected. For quarterly data frequency, the variance ratios are at first higher and then
lower than one and consequently, the highest p-value is found for the time separable model. However,
there are parameter combinations representing respectively habit persistence and durability, which
cannot be rejected either. Finally, variance ratios greater than one in monthly data imply test results
favoring durability.

Finally, the power of the modified variance-ratio test is examined to evaluate the extent of
information contained in test results. The null hypothesis is formed using parameter combinations
with highest p-values according to the modified variance-ratio test. Both the asymptotic and size
corrected critical values are calculated from empirical distribution of the test statistic under the null
hypothesis of the CCAPM being the true model. An alternative hypothesis is either accepted or
rejected using both the asymptotic and size corrected tests. The ratio of rejections to the number
of repetitions determines the power. Alternative hypotheses are formed by varying one parameter
of the model at a time. The parameters changing their values are the RRA coefficient and the time
non-separability parameter, respectively. When the RRA coefficient varies, the power of the test
is mostly one across all data frequencies and is lower only in the neighborhood of the parameter
combination defined by the null hypothesis. While the test rules out successfully values of the RRA
that are different from the null hypothesis, it does not distinguish among habit persistence, time-
separability, and durability very well. The low power in this case is caused by data supporting a
wide range of values of the time non-separability coefficient.
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Notes

1. For recent development regarding volatility bounds, see Hansen, Heaton and Luttmer (1995),
Hansen and Jagannathan (1997), and Balduzzi and Kallal (1997).

2. Poterba and Summers (1988) offer an alternative definition of the variance-ratio statistic for

monthly data: V R(k) = Var(Rk
t )

k /
Var(R12

t )
12 i.e. they compare variances of simple returns in relation

to the variation over a one-year period. For quarterly data, 12 would be replaced by 4. This approach
is not adopted here because of potential problems with variance ratios which arise when the time
horizon is large relative to the total time span of the data (see Campbell et al. 1997, Chapter 2).

3. The Gauss code for GMM written by Hansen, Heaton and Okagi is available upon request.

4. L = 10 is chosen since Cecchetti et al. (1990), Bonomo and Garcia (1994), and Zemč́ık (2000)
examine V R(k) for k = 2, 3, . . . , 10.

5. The resulting number of corresponding rates of returns is (# states×N)2 i.e. 144.

6. For the sake of brevity, some details of the solution method are omitted. The details are
available upon request from the author.

7. Cecchetti et al. (1994) use a random walk model for annual data and an AR(1) model for
monthly data. The random walk model is explicitly ruled out by Bonomo and Garcia (1994). For
the sake of comparison, I also solve the model using the AR(1) process at all data frequencies and
conducte the calibration exercise described in on testing the CCAPM below. The CCAPM then
generates autocorrelated returns even for time separable preferences, contrary to calibration of the
model by the 2SMS1M2V process. However, differences in results seem minor when the Q-statistic
is used and uncertainty regarding point estimates of historical variance ratios is accounted for.
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Data Appendix

Annual Data

The yearly data considered here were used in Cecchetti et al. (1993). Cecchetti et al. (1990) provides
a detailed account of the data sources. There are four series:

1. Consumption: The real per capita consumption of non-durables and services, 1889-1987.

2. CPI: Both the annual average and end of year observations from 1890 to 1987.

3. Dividends: The nominal dividends, 1890-1987, deflated by the annual average CPI.

4. Standard and Poor’s Composite Stock Price Index: January observations, 1890-1988, adjusted
to inflation by the end of period CPI.

Quarterly Data

The quarterly data I use contain observations form 1947 II to 1993 I and consist of two series:

1. Consumption: Real per capita consumption of non-durables and services - CITIBASE series
(GCNQ + GCSQ)/GPOP ).

2. Stock Return: Quarterly value weighted Standard and Poor’s 500 returns taken from the CRSP
tape, adjusted for inflation.

Monthly Data

The monthly data considered start from February 1959 and end in March 1993. They include the
following series:

1. Consumption: The real per capita consumption of non-durables and services in 1987 dollars -
CITIBASE series (GMCSQ + GMCNQ)/POP .

2. Price Index: Computed as (GMCS + GMCN)/(GMCSQ + GMCNQ), where GMCS,
GMCN , GMCSQ, GMCNQ are respectively nominal consumption expenditures on services,
nominal consumption expenditures on non-durables, real consumption expenditures in 1987
dollars on services, and real consumption expenditures in 1987 dollars on non-durables.

3. Standard and Poor’s Composite Common Stock Price Index: CITIBASE series FSPCOM ad-
justed for inflation by the above price index.

4. Dividends: Constructed using the dividend yield on Standard and Poor’s Composite Common
Stock (CITIBASE series FSDXP), Standard and Poor’s Composite Common Stock Price Index,
and the price index, both defined above.
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Table 2: Summary Statistics for Per Capita Consumption Growth Rate

Annual Data Quarterly Data Monthly Data
1890-1987 1947:II-1993:I 1959:02-1993:03

Observations 98 184 410
Mean 0.0172 0.00444 0.00160
St. Dev. 0.0342 0.00563 0.00395
Skewness -0.4045 -0.44717 0.003436
Kurtosis 3.9773 3.6211 3.5229
First Autocorrelation -0.1331 0.1986 -0.2424
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Table 3: Maximum Likelihood Estimates of the 2SMS1M2V Process

Annual Data Quarterly Data Monthly Data
δ 0.0187 0.0046 0.0017

(10.416) (11.813) (8.258)
g11 0.9885 0.9832 0.4510

(3.500) (2.396) (-0.231)
g00 0.9854 0.9942 0.9247

(3.086) (4.316) (2.878)
ω0 0.0113 0.0050 0.0042

(8.436) (17.091) (19.226)
ω1 0.0315 0.0037 -0.0028

(7.523) (2.557) (-4.482)
LF 2.20788 3.78981 4.12347

Notes

(1) Asymptotic t-ratios in parentheses. For gii, i = 0, 1, the reported t-ratios are those of the transformation

ln(gii/(1− gii)), i = 0, 1, respectively. The transformation was employed to restrict probability estimates to

the interval (0, 1). (2) LF refers to the mean log-likelihood function as calculated by the GAUSS Constrained

Maximum Like-lihood Estimation module.
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Figure 1: P-values; Annual Data
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Figure 2: P-values; Quarterly Data

17



Figure 3: P-values; Monthly Data
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Figure 4: Empirical Distribution of Q Compared to χ19

Notes
Dashed lines with solid circles illustrate χ19. Vertical dashed lines denote the critical value of χ19 at 10%
level of significance. Solid lines represent the empirical distribution of Q using the DGP0. Vertical solid
lines are size corrected critical values at 10% level of significance.
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Figure 5: Power of the Modified Variance-Ratio Test

Notes
Solid lines represent the power calculated using asymptotic critical values; Dashed lines represent the power
calculated using size corrected critical values.
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