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Chapter 3

Linear Factor Models

3.1 CAPM Tests: Overview

Reference: Cochrane (2001) 12.1; Campbell, Lo, and MacKinlay (1997) 5
Let Re

i t = Ri t − R f t be the excess return on asset i in excess over the riskfree asset,
and let ft = Rmt − R f t be the excess return on the market portfolio. CAPM with a
riskfree return says that αi = 0 in

Re
i t = α + β ft + εi t , where E εi t = 0 and Cov( ft , εi t) = 0. (3.1)

The economic importance of a non-zero intercept (α) is that the tangency portfolio
changes if the test asset is added to the investment opportunity set. See Figure 3.1 for an
illustration.

The basic test of CAPM is to estimate (3.1) on a single asset and then test if the
intercept is zero. This can easily be extended to several assets, where we test if all the
intercepts are zero.

Notice that the test of CAPM can be given two interpretations. If we assume that Rmt

is the correct benchmark, then it is a test of whether asset Ri t is “correctly” priced (this is
the approach in mutual fund evaluations). Alternatively, if we assume that Ri t is correctly
priced, then it is a test of the mean-variance efficiency of Rmt (compare the Roll critique).
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Figure 3.1: MV frontiers with 2 and 3 assets

3.2 Testing CAPM: Traditional LS Approach

3.2.1 CAPM with One Asset: Traditional LS Approach

If the residuals in the CAPM regression are iid, then the traditional LS approach is just
fine: estimate (3.1) and form a t-test of the null hypothesis that the intercept is zero. If the
disturbance is iid normally distributed, then this approach is the ML approach.

To understand the properties of the LS approch, we use the results in the following
remark.

Remark 1 (Covariance matrix of LS estimator) Consider the regression equation yt =

x ′
tb0+ut . With iid errors that are independent of all regressors (also across observations),

3



the LS estimator, b̂Ls , is asymptotically distributed as

√
T (b̂Ls − b0)

d
→ N (0, σ 26−1

xx ), where σ 2
= E u2

t and 6xx = E 6T
t=1xt x ′

t/T .

When the regressors are just a constant (equal to one) and one variable regressor, ft , so

xt = [1, ft ]
′, then we have

6xx = E
∑T

t=1xt x ′

t/T = E
1
T
∑T

t=1

[
1 ft

ft f 2
t

]
=

[
1 E ft

E ft E f 2
t

]
, so

σ 26−1
xx =

σ 2

E f 2
t − (E ft)2

[
E f 2

t − E ft

− E ft 1

]
=

σ 2

Var( ft)

[
Var( ft) + (E ft)

2
− E ft

− E ft 1

]
.

(In the last line we use Var( ft) = E f 2
t − (E ft)

2.)

This remark fits well with the CAPM regression (3.1). The variance of the intercept
estimator is therefore

Var(α̂ − α0) =

{
1 +

(E ft)
2

Var ( ft)

}
Var(εi t)/T (3.2)

= (1 + S R2
f ) Var(εi t)/T, (3.3)

where S R2
f is the squared Sharpe ratio of the market portfolio (recall: ft is the excess

return on market portfolio). We see that the uncertainty about the intercept is high when
the disturbance is volatile and when the sample is short, but also when the Sharpe ratio of
the market is high. Note that a large market Sharpe ratio means that the market asks for
a high compensation for taking on risk. A bit uncertainty about how risky asset i is then
gives a large uncertainty about what the risk-adjusted return should be.

The t-test of the hypothesis that α0 = 0 is then

α̂

Std(α̂)
=

α̂√
(1 + S R2

f ) Var(εi t)/T

d
→ N (0, 1) under H0: α0 = 0. (3.4)

Note that this is the distribution under the null hypothesis that the true value of the inter-
cept is zero, that is, that CAPM is correct (in this respect, at least).

Remark 2 (Quadratic forms of normally distributed random variables) If the n×1 vector

X ∼ N (0, 6), then Y = X ′6−1 X ∼ χ2
n . Therefore, if the n scalar random variables

4

X i , i = 1, ..., n, are uncorrelated and have the distributions N (0, σ 2
i ), i = 1, ..., n, then

Y = 6n
i=1 X2

i /σ
2
i ∼ χ2

n .

Instead of a t-test, we can use the equivalent chi-square test

α̂2

Var(α̂)
=

α̂2

(1 + S R2
f ) Var(εi t)/T

d
→ χ2

1 under H0: α0 = 0. (3.5)

The chi-square test is equivalent to the t-test when we are testing only one restriction, but
it has the advantage that it also allows us to test several restrictions at the same time. Both
the t-test and the chi–square tests are Wald tests (estimate unrestricted model and then test
the restrictions).

It is quite straightforward to use the properties of minimum-variance frontiers (see
Gibbons, Ross, and Shanken (1989), and MacKinlay (1995)) to show that the test statistic
in (3.5) can be written

α̂2
i

Var(α̂i )
=

(Ŝ Rc)
2
− (Ŝ R f )

2

[1 + (Ŝ R f )2]/T
, (3.6)

where S R f is the Sharpe ratio of the market portfolio and S Rc is the Sharpe ratio of
the tangency portfolio when investment in both the market return and asset i is possible.
(Recall that the tangency portfolio is the portfolio with the highest possible Sharpe ratio.)
If the market portfolio has the same (squared) Sharpe ratio as the tangency portfolio of the
mean-variance frontier of Ri t and Rmt (so the market portfolio is mean-variance efficient
also when we take Ri t into account) then the test statistic, α̂2

i / Var(α̂i ), is zero—and
CAPM is not rejected.

Proof. (of (3.6)) From the CAPM regression (3.1) we have

Cov

[
Re

i t

Re
mt

]
=

[
β2

i σ 2
m + Var(εi t) βiσ

2
m

βiσ
2
m σ 2

m

]
, and

[
µe

i

µe
m

]
=

[
αi + βiµ

e
m

µe
m

]
.

Suppose we use this information to construct a mean-variance frontier for both Ri t and
Rmt , and we find the tangency portfolio, with excess return Re

ct . It is straightforward to
show that the square of the Sharpe ratio of the tangency portfolio is µe′6−1µe, where
µe is the vector of expected excess returns and 6 is the covariance matrix. By using the
covariance matrix and mean vector above, we get that the squared Sharpe ratio for the
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tangency portfolio, µe′6−1µe, (using both Ri t and Rmt ) is(
µe

c

σc

)2

=
α2

i

Var(εi t)
+

(
µe

m

σm

)2

,

which we can write as

(S Rc)
2

=
α2

i

Var(εi t)
+ (S Rm)2 .

Use the notation ft = Rmt − R f t and combine this with (3.3) and to get (3.6).
It is also possible to construct small sample test (that do not rely on any asymp-

totic results), which may be a better approximation of the correct distribution in real-life
samples—provided the strong assumptions are (almost) satisfied. The most straightfor-
ward modification is to transform (3.5) into an F1,T −1-test. This is the same as using
a t-test in (3.4) since it is only one restriction that is tested (recall that if Z ∼ tn , then
Z2

∼ F(1, n)).
An alternative testing approach is to use an LR or LM approach: restrict the intercept

in the CAPM regression to be zero and estimate the model with ML (assuming that the
errors are normally distributed). For instanc, for an LR test, the likelihood value (when
α = 0) is then compared to the likelihood value without restrictions.

A common finding is that these tests tend to reject a true null hypothesis too often
when the critical values from the asymptotic distribution are used: the actual small sam-
ple size of the test is thus larger than the asymptotic (or “nominal”) size (see Campbell,
Lo, and MacKinlay (1997) Table 5.1). To study the power of the test (the frequency of
rejections of a false null hypothesis) we have to specify an alternative data generating
process (for instance, how much extra return in excess of that motivated by CAPM) and
the size of the test (the critical value to use). Once that is done, it is typically found that
these tests require a substantial deviation from CAPM and/or a long sample to get good
power.

6

3.2.2 CAPM with Several Assets: Traditional LS Approach

Suppose we have n test assets. Stack (3.1) expressions (3.1) for i = 1, . . . , n as Let
ft = Rmt − R f t and stack the expressions (3.1) for i = 1, . . . , n as

Re
1t
...

Re
nt

 =


α1
...

αn

+


β1
...

βn

 ft +


ε1t
...

εnt

 , E εi t = 0 and Cov( ft , εi t) = 0. (3.7)

This is a system of seemingly unrelated regressions (SUR)—with the same regressor (see,
for instance, Greene (2003) 14). In this case, the efficient estimator (GLS) is LS on each
equation separately. Moreover, the covariance matrix of the coefficients is particularly
simple.

To see what the covariances of the coefficients are, write each of the the regression
equations in (3.7) on a traditional form

Re
i t = x ′

tθi + ε1t , where xt =

[
1
ft

]
. (3.8)

If we define

6xx = plim
∑T

t=1
xt x ′

t/T , and σi j = plim
∑T

t=1
εi tε j t/T, (3.9)

then the asymptotic covariance matrix of the vectors θ̂i and θ̂ j (assets i and j) is σi j6
−1
xx /T ,

that is,

ACov(
√

T θ̂ ) =


σ11 . . . σ1n
...

...

σn1 . . . σ̂nn

⊗ 6−1
xx . (3.10)

In a large sample, the estimator is normally distributed. Therefore, under the null hypoth-
esis (that ther intecepts are zero)) we have the following result. From Remark 1 we know
that the upper left element of 6−1

xx equals 1 + S R2, so

√
T α̂ →

d N
[
0n×1, 6(1 + S R2)

]
, where 6 =


σ11 . . . σ1n
...

...

σn1 . . . σ̂nn

 . (3.11)
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In practice we use the sample moments for the covariance matrix.
To test the null hypothesis that all intercepts are zero, we use the test statistic

T α̂′(1 + S R2)6−1α̂ ∼ χ2
n . (3.12)

As for the case of a single asset, it is straightforward to do an LR or LM test instead.
Assuming the errors are normally distributed, a restricted model (α = 0) is estimated by
ML (LS actually), and the properties of the likelihood function are used for testing.

3.3 Testing CAPM: GMM

3.3.1 CAPM with Several Assets: GMM and a Wald Test

To test n assets at the same time when the errors are non-iid we make use of the GMM
framework. A special case is when the residuals are iid. The results in this section will
then coincide with those in Section 3.2.

Let ft = Rmt − R f t and stack the expressions (3.1) for i = 1, . . . , n as
Re

1t
...

Re
nt

 =


α1
...

αn

+


β1
...

βn

 ft +


ε1t
...

εnt

 , E εi t = 0 and Cov( ft , εi t) = 0, (3.13)

or more compactly

Re
t = α + β ft + εt , E εt = 0n×1 and Cov( ft , εt) = 01×n, (3.14)

where α and β are n × 1 vectors. Clearly, setting n = 1 gives the case of a single test
asset.

The 2n GMM moment conditions are that, at the true values of α and β,

E gt(α, β) = 02n×1, where (3.15)

gt(α, β) =

[
εt

ftεt

]
=

[
Re

t − α − β ft

ft
(
Re

t − α − β ft
) ] . (3.16)

There are as many parameters as moment conditions, so the GMM estimator picks values

8

of α and β such that the sample analogues of (3.15) are satisfied exactly

ḡ(α̂, β̂) =
1
T

T∑
t=1

gt(α̂, β̂) =
1
T

T∑
t=1

[
Re

t − α̂ − β̂ ft

ft(Re
t − α̂ − β̂ ft)

]
= 02n×1, (3.17)

which gives the LS estimator. For the inference, we allow for the possibility of non-iid
errors. (With iid errors we get the same results as in Section 3.2, at least asymptotically.)

With point estimates and their sampling distribution it is straightforward to set up a
Wald test for the hypothesis that all elements in α are zero

α̂′ Var(α̂)−1α̂
d

→ χ2
n . (3.18)

Remark 3 (Easy coding of the GMM Problem (3.17)) Estimate by LS, equation by equa-

tion. Then, plug in the fitted residuals in (3.16) to generate time series of the moments

(will be important for the tests).

Remark 4 (Distribution of GMM) Let the parameter vector in the moment condition have

the true value b0. Define

S0 = ACov
[√

T ḡ (b0)
]

and D0 = plim
∂ ḡ(b0)

∂b′
.

When the estimator solves min ḡ (b)′ S−1
0 ḡ (b) or when the model is exactly identified, the

distribution of the GMM estimator is

√
T (b̂ − b0)

d
→ N (0k×1, V ) , where V =

(
D′

0S−1
0 D0

)−1
= D−1

0 S0(D−1
0 )′.

Details on the Wald Test

To be concrete, consider the case with two assets (1 and 2) so the parameter vector is
b = [α1, α2, β1, β2]

′. Write out (3.15) as
ḡ1(α, β)

ḡ2(α, β)

ḡ3(α, β)

ḡ4(α, β)

 =
1
T

∑T

t=1


Re

1t − α1 − β1 ft

Re
2t − α2 − β2 ft

ft(Re
1t − α1 − β1 ft)

ft(Re
2t − α2 − β2 ft)

 = 04×1, (3.19)

where ḡ1(α, β) denotes the sample average of the first moment condition.
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The Jacobian is

∂ ḡ(α, β)

∂[α1, α2, β1, β2]′
=


∂ ḡ1/∂α1 ∂ ḡ1/∂α2 ∂ ḡ1/∂β1 ∂ ḡ1/∂β2

∂ ḡ2/∂α1 ∂ ḡ2/∂α2 ∂ ḡ2/∂β1 ∂ ḡ2/∂β2

∂ ḡ3/∂α1 ∂ ḡ3/∂α2 ∂ ḡ3/∂β1 ∂ ḡ3/∂β2

∂ ḡ4/∂α1 ∂ ḡ4/∂α2 ∂ ḡ4/∂β1 ∂ ḡ4/∂β2



= −
1
T

∑T

t=1


1 0 ft 0
0 1 0 ft

ft 0 f 2
t 0

0 ft 0 f 2
t

 . (3.20)

Note that, in this case with a linear model, the Jacobian does not involve the parameters
that we want to estimate. This means that we do not have to worry about evaluating
the Jacobian at the true parameter values. The probability limit of (3.20) is simply the
expected value, which can written as

D0 = − E

[
1 ft

ft f 2
t

]
⊗ I2 = − E

([
1
ft

][
1
ft

]′)
⊗ I2, (3.21)

where ⊗ is the Kronecker product. For n assets, change I2 to In . (The last expression
applies also to the case of several factors.)

Remark 5 (Kronecker product) If A and B are matrices, then

A ⊗ B =


a11 B · · · a1n B

...
...

am1 B · · · amn B

 .

From Remark 4, we can write the covariance matrix of the 2n×1 vector of parameters
(n parameters in α and another n in β) as

ACov

(
√

T

[
α̂

β̂

])
= D−1

0 S0(D−1
0 )′ (3.22)

The asymptotic covariance matrix of
√

T times the sample moment conditions, eval-

10

uated at the true parameter values, that is at the true disturbances, is defined as

S0 = ACov

(√
T

T

T∑
t=1

gt(α, β)

)
=

∞∑
s=−∞

R(s), where (3.23)

R(s) = E gt(α, β)gt−s(α, β)′. (3.24)

With n assets, we can write (3.24) in terms of the n × 1 vector εt as

R(s) = E gt(α, β)gt−s(α, β)′

= E

[
εt

ftεt

][
εt−s

ft−sεt−s

]′

= E

[([
1
ft

]
⊗ εt

)([
1

ft−s

]
⊗ εt−s

)′]
.

(3.25)

(The last expression applies also to the case of several factors.)
The Newey-West estimator is often a good estimator of S0, but the performance of the

test improved, by imposing (correct, of course) restrictions on the R(s) matrices.

Example 6 (Special case 1: ft is independent of εt−s , errors are iid, and n = 1) With

these assumptions R(s) = 02×2 if s 6= 0, and S0 =

[
1 E ft

E ft E f 2
t

]
Var(εi t). Combining

with (3.21) gives

ACov

(
√

T

[
α̂

β̂

])
=

[
1 E ft

E ft E f 2
t

]−1

Var(εi t),

which is the same expression as σ 26−1
xx in Remark 1, which assumed iid errors.

Example 7 (Special case 2: as in Special case 1, but n ≥ 1) With these assumptions

R(s) = 02n×2n if s 6= 0, and S0 =

[
1 E ft

E ft E f 2
t

]
⊗ E εtε

′
t . Combining with (3.21) gives

ACov

(
√

T

[
α̂

β̂

])
=

[
1 E ft

E ft E f 2
t

]−1

⊗
(
E εtε

′

t
)
.

This follows from the facts that (A⊗B)−1
= A−1

⊗B−1 and (A⊗B)(C⊗D) = AC⊗B D

(if conformable).
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3.3.2 CAPM and Several Assets: GMM and an LM Test

We could also construct an “LM test” instead by imposing α = 0 in the moment condi-
tions (3.15) and (3.17). The moment conditions are then

E g(β) = E

[
Re

t − β ft

ft(Re
t − β ft)

]
= 02n×1. (3.26)

Since there are q = 2n moment conditions, but only n parameters (the β vector), this
model is overidentified.

We could either use a weighting matrix in the GMM loss function or combine the
moment conditions so the model becomes exactly identified.

With a weighting matrix, the estimator solves

minb ḡ(b)′W ḡ(b), (3.27)

where ḡ(b) is the sample average of the moments (evaluated at some parameter vector b),
and W is a positive definite (and symmetric) weighting matrix. Once we have estimated
the model, we can test the n overidentifying restrictions that all q = 2n moment condi-
tions are satisfied at the estimated n parameters β̂. If not, the restriction (null hypothesis)
that α = 0n×1 is rejected.

To combine the moment conditions so the model becomes exactly identified, premul-
tiply by a matrix A to get

An×2n E g(β) = 0n×1. (3.28)

The model is then tested by testing if all 2n moment conditions in (3.26) are satisfied at
this vector of estimates of the betas. This is the GMM analogue to a classical LM test.

For instance, to effectively use only the last n moment conditions in the estimation,
we specify

A E g(β) =

[
0n×n In

]
E

[
Re

t − β ft

ft(Re
t − β ft)

]
= 0n×1. (3.29)

This clearly gives the classical LS estimator without an intercept

β̂ =

∑T
t=1 ft Re

t /T∑T
t=1 f 2

t /T
. (3.30)

Example 8 (Combining moment conditions, CAPM on two assets) With two assets we

12

can combine the four moment conditions into only two by

A E gt(β1, β2) =

[
0 0 1 0
0 0 0 1

]
E


Re

1t − β1 ft

Re
2t − β2 ft

ft(Re
1t − β1 ft)

ft(Re
2t − β2 ft)

 = 02×1.

Remark 9 (Test of overidentifying assumption in GMM) When the GMM estimator solves

the quadratic loss function ḡ(β)′S−1
0 ḡ(β) (or is exactly identified), then the J test statistic

is

T ḡ(β̂)′S−1
0 ḡ(β̂)

d
→ χ2

q−k,

where q is the number of moment conditions and k is the number of parameters.

Remark 10 (Distribution of GMM, more general results) When GMM solves minb ḡ(b)′W ḡ(b)

or Aḡ(β̂) = 0k×1, the distribution of the GMM estimator and the test of overidentifying

assumptions are different than in Remarks 4 and 9.

3.3.3 Size and Power of the CAPM Tests

The size (using asymptotic critical values) and power in small samples is often found
to be disappointing. Typically, these tests tend to reject a true null hypothesis too often
(see Campbell, Lo, and MacKinlay (1997) Table 5.1) and the power to reject a false null
hypothesis is often fairly low. These features are especially pronounced when the sample
is small and the number of assets, n, is low. One useful rule of thumb is that a saturation

ratio (the number of observations per parameter) below 10 (or so) is likely to give poor
performance of the test. In the test here we have nT observations, 2n parameters in α and
β, and n(n + 1)/2 unique parameters in S0, so the saturation ratio is T/(2 + (n + 1)/2).
For instance, with T = 60 and n = 10 or at T = 100 and n = 20, we have a saturation
ratio of 8, which is very low (compare Table 5.1 in CLM).

One possible way of dealing with the wrong size of the test is to use critical values
from simulations of the small sample distributions (Monte Carlo simulations or bootstrap
simulations).
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3.3.4 Choice of Portfolios

This type of test is typically done on portfolios of assets, rather than on the individual
assets themselves. There are several econometric and economic reasons for this. The
econometric techniques we apply need the returns to be (reasonably) stationary in the
sense that they have approximately the same means and covariance (with other returns)
throughout the sample (individual assets, especially stocks, can change character as the
company moves into another business). It might be more plausible that size or industry
portfolios are stationary in this sense. Individual portfolios are typically very volatile,
which makes it hard to obtain precise estimate and to be able to reject anything.

It sometimes makes economic sense to sort the assets according to a characteristic
(size or perhaps book/market)—and then test if the model is true for these portfolios.
Rejection of the CAPM for such portfolios may have an interest in itself.

3.3.5 Empirical Evidence

See Campbell, Lo, and MacKinlay (1997) 6.5 (Table 6.1 in particular) and Cochrane
(2001) 20.2.

One of the more interesting studies is Fama and French (1993) (see also Fama and
French (1996)). They construct 25 stock portfolios according to two characteristics of the
firm: the size and the book value to market value ratio (BE/ME). In June each year, they
sort the stocks according to size and BE/ME. They then form a 5 × 5 matrix of portfolios,
where portfolio i j belongs to the i th size quantile and the j th BE/ME quantile.

They run a traditional CAPM regression on each of the 25 portfolios (monthly data
1963–1991)—and then study if the expected excess returns are related to the betas as
they should according to CAPM (recall that CAPM implies E Re

i t = βi E Re
mt ). However,

there is little relation between E Re
i t and βi (see Cochrane (2001) 20.2, Figure 20.9).

This lack of relation (a cloud in the βi × E Re
i t space) is due to the combination of two

features of the data. First, within a BE/ME quantile, there is a positive relation (across
size quantiles) between E Re

i t and βi —as predicted by CAPM (see Cochrane (2001) 20.2,
Figure 20.10). Second, within a size quantile there is a negative relation (across BE/ME
quantiles) between E Re

i t and βi —in stark contrast to CAPM (see Cochrane (2001) 20.2,
Figure 20.11).

14

0 0.5 1 1.5
0

5

10

15
US industry portfolios, 1947:1−2005:5

β

M
e
a

n
 e

x
ce

ss
 r

e
tu

rn

A BC

D E

F
G

H

I
J

0 5 10 15
0

5

10

15
US industry portfolios, 1947:1−2005:5

Predicted mean excess return (with α=0)

M
e
a

n
 e

x
ce

ss
 r

e
tu

rn

A BC

D E

F
G

H

I
J

Excess market return: 7.4%

         

all      

A (NoDur)

B (Durbl)

C (Manuf)

D (Enrgy)

E (HiTec)

F (Telcm)

G (Shops)

H (Hlth )

I (Utils)

J (Other)

    alpha

      NaN

     1.99

     0.36

    −0.25

     3.58

     0.21

     0.45

     0.32

     2.33

     2.33

     0.10

     pval

     0.02

     0.11

     0.82

     0.77

     0.04

     0.90

     0.73

     0.80

     0.11

     0.10

     0.90

   StdErr

      NaN

     8.11

    11.82

     6.08

    12.88

    12.03

     9.78

     8.59

    10.95

    10.35

     6.04

CAPM
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Figure 3.2: CAPM, US industry portfolios

3.4 Testing Multi-Factor Models (Factors are Excess Returns)

Reference: Cochrane (2001) 12.1; Campbell, Lo, and MacKinlay (1997) 6.2.1

3.4.1 A Multi-Factor Model

When the K factors, ft , are excess returns, the null hypothesis typically says that αi = 0
in

Re
i t = αi + β ′

i ft + εi t , where E εi t = 0 and Cov( ft , εi t) = 0K×1. (3.31)

and βi is now an K × 1 vector. The CAPM regression is a special case when the market
excess return is the only factor. In other models like ICAPM (see Cochrane (2001) 9.2),
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Figure 3.3: Three-factor model, US industry portfolios

we typically have several factors. We stack the returns for n assets to get
Re

1t
...

Re
nt

 =


α1
...

αn

+


β11 . . . β1K
...

. . .
...

βn1 . . . βnK




f1t
...

fK t

+


ε1t
...

εnt

 , or

Re
t = α + β ft + εt , where E εt = 0n×1 and Cov( ft , εt) = 0K×n, (3.32)

where α is n × 1 and β is n × K . Notice that βi j shows how the i th asset depends on the
j th factor.

This is, of course, very similar to the CAPM (one-factor) model—and both the LS and
GMM approaches are straightforward to extend. I will elaborate on the GMM approach.

3.4.2 Multi-Factor Model: GMM

The moment conditions are

E gt(α, β) = E

([
1
ft

]
⊗ εt

)
= E

([
1
ft

]
⊗ (Re

t − α − β ft)

)
= 0n(1+K )×1.

(3.33)
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Note that this expression looks similar to (3.15)—the only difference is that ft may now
be a vector (and we therefore need to use the Kronecker product). It is then intuitively
clear that the expressions for the asymptotic covariance matrix of α̂ and β̂ will look very
similar too.

When the system is exactly identified, the GMM estimator solves

ḡ(α, β) = 0n(1+K )×1, (3.34)

which is the same as LS equation by equation. Instead, when we restrict α = 0n×1

(overidentified system), then we either specify a weighting matrix W and solve

minβ ḡ(β)′W ḡ(β), (3.35)

or we specify a matrix A to combine the moment conditions and solve

AnK×n(1+K )ḡ(β) = 0nK×1. (3.36)

For instance, to get the classical LS estimator without intercepts we specify

A =

[
0nK×n InK

]
E

([
1
ft

]
⊗ (Re

t − β ft)

)
. (3.37)

Example 11 (Moment condition with two assets and two factors) The moment conditions

for n = 2 and K = 2 are

E gt(α, β) = E



Re
1t − α1 − β11 f1t − β12 f2t

Re
2t − α2 − β21 f1t − β22 f2t

f1t(Re
1t − α1 − β11 f1t − β12 f2t)

f1t(Re
2t − α2 − β21 f1t − β22 f2t)

f2t(Re
1t − α1 − β11 f1t − β12 f2t)

f2t(Re
2t − α2 − β21 f1t − β22 f2t)


= 06×1.

Restricting α1 = α2 = 0 gives the moment conditions for the overidentified case.

3.4.3 Empirical Evidence

Fama and French (1993) also try a multi-factor model. They find that a three-factor model
fits the 25 stock portfolios fairly well (two more factors are needed to also fit the seven
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bond portfolios that they use). The three factors are: the market return, the return on a
portfolio of small stocks minus the return on a portfolio of big stocks (SMB), and the
return on a portfolio with high BE/ME minus the return on portfolio with low BE/ME
(HML). This three-factor model is rejected at traditional significance levels (see Camp-
bell, Lo, and MacKinlay (1997) Table 6.1 or Fama and French (1993) Table 9c), but it can
still capture a fair amount of the variation of expected returns (see Cochrane (2001) 20.2,
Figures 20.12–13).

3.4.4 Coding of the GMM Problem

This section describes how the GMM problem can be programmed. We treat the case
with n assets and K Factors (which are all excess returns). The moments are of the form

gt =

([
1
ft

]
⊗ (Re

t − α − β ft)

)
(3.38)

gt =

([
1
ft

]
⊗ (Re

t − β ft)

)
(3.39)

for the exactly identified and overidentified case respectively
We want to write the moments on the form

gt = zt
(
yt − x ′

tb
)
, (3.40)

to make it easy to use matrix algrebra in the calcuation of the estimate. In that case we
could let

6zy =
1
T

T∑
t=1

zt yt and 6zx =
1
T

T∑
t=1

zt x ′

t , so
1
T

T∑
t=1

gt = 6zy − 6zxb. (3.41)

In the exactly identified case, we then have

ḡt = 6zy − 6zxb = 0, so b̂ = 6−1
zx 6zy. (3.42)

(It is straightforward to show that this can also be calculated equation by equation.) In the
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overidentified case with a weighting matrix, the loss function can be written

ḡ′W ḡ = (6zy − 6zxb)′W (6zy − 6zxb), so

6′

zx W6zy − 6′

zx W6zx b̂ = 0 and b̂ = (6′

zx W6zx)
−16′

zx W6zy. (3.43)

In the overidentified case when we premultiply the moment conditions by A, we get

Aḡ = A6zy − A6zxb = 0, so b = (A6zx)
−1 A6zy. (3.44)

In practice, we never perform an explicit inversion—it is typically much better (in terms of
both speed and precision) to let the software solve the system of linear equations instead.

It is straightforward to show that this works nice if we write the moment conditions as

gt =

([
1
ft

]
⊗ In

)
︸ ︷︷ ︸

zt

Re
t −

([
1
ft

]′

⊗ In

)
︸ ︷︷ ︸ b

x ′
t

 , with b = vec(α, β) (3.45)

gt =

([
1
ft

]
⊗ In

)
︸ ︷︷ ︸

zt

Re
t −

(
f ′

t ⊗ In
)︸ ︷︷ ︸

x ′
t

b

 , with b = vec(β) (3.46)

for the exactly identified and overidentified case respectively. Clearly, zt and xt are ma-
trices, not vectors. (zt is n(1 + K ) × n and either of the same dimension or has one row
less.)

Example 12 (Rewriting the moment conditions) For the moment conditions in Example

11 we have

gt(α, β) =



1 0
0 1
f1t 0
0 f1t

f2t 0
0 f2t




[

Re
1t

Re
2t

]
−



1 0
0 1
f1t 0
0 f1t

f2t 0
0 f2t



′

α1

α2

β11

β21

β12

β22




.

Proof. (of 3.45))From the properties of Kronecker products, we know that (i) vec(ABC) =

(C ′
⊗ A)vec(B); and (ii) if a is m × 1 and c is n × 1, then a ⊗ c = (a ⊗ In)c. The first
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rule allows to write

α + β ft = In

[
α β

] [ 1
ft

]
as

([
1
ft

]′

⊗ In

)
︸ ︷︷ ︸

x ′
t

vec(
[

α β

]
)︸ ︷︷ ︸

b

.

The second rule allows us two write[
1
ft

]
⊗ (Re

t − α − β ft) as

([
1
ft

]
⊗ In

)
︸ ︷︷ ︸

zt

(Re
t − α − β ft).

(For the exactly identified case, we could also use the fact (A ⊗ B)′ = A′
⊗ B ′ to notice

that zt = xt .)

Remark 13 (∗Quick matrix calculations of 6zx and 6zy) Although a loop wouldn’t take

too long time to calculate 6zx and 6zy , there is a quicker way. Put

[
1
ft

]′

in row t of the

matrix ZT ×(1+K ) and Re′
t in row t of the matrix RT ×n . For the exactly identified case, let

X = Z. For the overidentified case, put f ′
t in row t of the matrix XT ×K . Then, calculate

6zx = (Z ′X/T ) ⊗ In and vec(R′Z/T ) = 6zy.

3.5 Testing Multi-Factor Models (General Factors)

Reference: Cochrane (2001) 12.2; Campbell, Lo, and MacKinlay (1997) 6.2.3 and 6.3
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3.5.1 GMM Estimation with General Factors

Linear factor models imply that all expected excess returns are linear functions of the
same vector of factor risk premia

E Re
i t = β ′

iλ, where λ is K × 1, for i = 1, . . . n, or (3.47)

E


Re

1t
...

Re
nt

 =


β11 . . . β1K
...

. . .
...

βn1 . . . βnK




λ1
...

λK

 , or

E Re
t = βλ, (3.48)

where β is n × K .
The old way of testing this is to do a two-step estimation: first, estimate the βi vectors

in a time series model like (3.32) (equation by equation); second, use β̂i as regressors in
a regression equation of the type (3.47) with a residual added

6T
t=1 Re

i t/T = β̂ ′

iλ + ui . (3.49)

It is then tested if ui = 0 for all assets i = 1, . . . , n. This approach is often called a cross-

sectional regression while the previous tests are called time series regression. The main
problem of the cross-sectional approach is that we have to account for the fact that the
regressors in the second step, β̂i , are just estimates and therefore contain estimation errors.
This errors-in-variables problem is likely to have two effects (i) it gives a downwards bias
of the estimates of λ and an upward bias of the mean of the fitted residuals; and (ii)

invalidates the standard expression of the test of λ.
A way to handle these problems is to combine the moment conditions for the regres-

sion function (3.33) (to estimate β) with (3.48) (to estimate λ) to get a joint system

E gt(α, β, λ) = E


[

1
ft

]
⊗ (Re

t − α − β ft)

Re
t − βλ

 = 0n(1+K+1)×1. (3.50)

We can then test the overidentifying restrictions of the model. There are n(1 + K + 1)

moment condition (for each asset we have one moment condition for the constant, K

moment conditions for the K factors, and one moment condition corresponding to the
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restriction on the linear factor model). There are only n(1 + K ) + K parameters (n in α,
nK in β and K in λ). We therefore have n − K overidentifying restrictions which can
be tested with a chi-square test. Notice that this is a non-linear estimation problem, since
the parameters in β multiply the parameters in λ. From the GMM estimation using (3.50)
we get estimates of the factor risk premia and also the variance-covariance of them. This
allows us to characterize the risk factors and to test if they are priced (each of them or
perhaps all jointly) by using a Wald test.

Example 14 (Two assets and one factor) we have the moment conditions

E gt(α1, α2, β1, β2, λ) = E



Re
1t − α1 − β1 ft

Re
2t − α2 − β2 ft

ft(Re
1t − α1 − β1 ft)

ft(Re
2t − α2 − β2 ft)

Re
1t − β1λ

Re
2t − β2λ


= 06×1.

There are then 6 moment conditions and 5 parameters, so there is one overidentifying

restriction to test. Note that with one factor, then we need at least two assets for this

testing approach to work (n − K = 2 − 1). In general, we need at least one more asset

than factors.

3.5.2 Traditional Cross-Sectional Regressions as Special Cases

Instead of specifying a weighting matrix, we could combine the moment equations so
they become equal to the number of parameters, for instance by specifying a matrix A

and combine as A E gt = 0. This does not generate any overidentifying restrictions, but it
still allows us to test hypothesis about λ. One possibility is to let the upper left block of
A be an identity matrix and just combine the last n moment conditions, Re

t − βλ, to just
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K moment conditions

[
In(1+K ) 0n(1+K )×n

0K×n(1+K ) θK×n

]
E


[

1
ft

]
⊗ (Re

t − α − β ft)

Re
t − βλ

 = 0n(1+K )×1 (3.51)

E


[

1
ft

]
⊗ (Re

t − α − β ft)

θ(Re
t − βλ)

 = (3.52)

In this case, we can estiumate α and β with LS equation by equation—as a standard time-
series regression of a factor model. To estimate the K × 1 vector λ, notice that we can
solve the 2nd set of moment conditions as

θ E(Re
t − βλ) = 0K×1 or λ = (θβ)−1 θ E Re

t , (3.53)

which is just like a cross-sectional instrumental variables regression of E Re
t = βλ (with

β being the regressors, θ the instruments, and E Re
t the dependent variable).

With θ = β ′, we get the traditional cross-sectional approach (3.47). The only differ-
ence is we here take the uncertainty about the generated betas into account (in the testing).
With Alternatively, let 6 be the covariance matrix of the residuals from the time-series es-
timation of the factor model. Then, using θ = β ′6 gives a traditional GLS cross-sectional
approach.

Example 15 (LS cross-sectional regression) With the moment conditions in Example (14)

and the weighting vector θ = [β1, β2] we get

E gt(α1, α2, β1, β2, λ) = E


Re

1t − α1 − β1 ft

Re
2t − α2 − β2 ft

ft(Re
1t − α1 − β1 ft)

ft(Re
2t − α2 − β2 ft)

β1(Re
1t − β1λ) + β2(Re

2t − β2λ)

 = 05×1,

which has as many parameters as moment conditions.
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3.5.3 Alternative Formulation of Moment Conditions using α = β(λ − E ft)

The test of the general multi-factor models is sometimes written on a slightly different
form (see, for instance, Campbell, Lo, and MacKinlay (1997) 6.2.3, but adjust for the
fact that they look at returns rather than excess returns). To illustrate this, note that the
regression equations (3.32) imply that

E Re
t = α + β E ft . (3.54)

Equate the expected returns in the two formulations (3.54) and (3.47) to get

α = β(λ − E ft), (3.55)

which is another way of summarizing the restrictions that the linear factor model gives.
We can then rewrite the moment conditions (3.50) as (substitute for α and skip the last set
of moments)

E gt(β, λ) = E

[[
1
ft

]
⊗ (Re

t − β(λ − E ft) − β ft)

]
= 0n(1+K )×1. (3.56)

Note that there are n(1 + K ) moment conditions and nK + K parameters (nK in β and
K in λ), so there are n − K overidentifying restrictions (as before).

Example 16 Two assets and one factor) Use the restrictions (3.55) in the moment condi-

tions for that case (compare with (3.19)) to get

E gt(β1, β2, λ) = E


Re

1t − β1(λ − E ft) − β1 ft

Re
2t − β2(λ − E ft) − β2 ft

ft [Re
1t − β1(λ − E ft) − β1 ft ]

ft [Re
2t − β2(λ − E ft) − β2 ft ]

 = 04×1.

This gives 4 moment conditions, but only three parameters, so there is one overidentifying

restriction to test—just as with (3.51).

3.5.4 What if the Factor is a Portfolio?

It would (perhaps) be natural if the tests discussed in this section coincided with those in
Section 3.4 when the factors are in fact excess returns. That is almost so. The difference is
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that we here estimate the K ×1 vector λ (factor risk premia) as a vector of free parameters,
while the tests in Section 3.4 impose λ = E ft . If we were to put this restriction on
(3.56), then we are back to the LM test of the multifactor model where (3.56) specifies
n(1 + K ) moment conditions, but includes only nK parameters (in β)—we gain one
degree of freedom for every element in λ that we avoid to estimate. If we do not impose
the restriction λ = E ft , then the tests are not identical and can be expected to be a bit
different (in small samples, in particular).

3.5.5 Empirical Evidence

Chen, Roll, and Ross (1986) use a number of macro variables as factors—along with
traditional market indices. They find that industrial production and inflation surprises are
priced factors, while the market index might not be. Breeden, Gibbons, and Litzenberger
(1989) and Lettau and Ludvigson (2001) estimate models where consumption growth is
the factor—with very mixed results.

3.6 Fama-MacBeth∗

Reference: Cochrane (2001) 12.3; Campbell, Lo, and MacKinlay (1997) 5.8; Fama and
MacBeth (1973)

The Fama and MacBeth (1973) approach is a bit different from the regression ap-
proaches discussed so far—although is seems most related to what we discussed in Sec-
tion 3.5. The method has three steps, described below.

• First, estimate the betas βi (i = 1, . . . , n) from (3.1) (this is a time-series regres-
sion). This is often done on the whole sample—assuming the betas are constant.
Sometimes, the betas are estimated separately for different sub samples (so we
could let β̂i carry a time subscript in the equations below).

• Second, run a cross sectional regression for every t . That is, for period t , estimate
λt from the cross section (across the assets i = 1, . . . , n) regression

Re
i t = λ′

t β̂i + εi t , (3.57)

where β̂i are the regressors. (Note the difference to the traditional cross-sectional
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approach discussed in (3.14), where the second stage regression regressed E Re
i t on

β̂i , while the Fama-French approach runs one regression for every time period.)

• Third, estimate the time averages

ε̂i =
1
T

T∑
t=1

ε̂i t for i = 1, . . . , n, (for every asset) (3.58)

λ̂ =
1
T

T∑
t=1

λ̂t . (3.59)

The second step, using β̂i as regressors, creates an errors-in-variables problem since
β̂i are estimated, that is, measured with an error. The effect of this is typically to bias
the estimator of λt towards zero (and any intercept, or mean of the residual, is biased
upward). One way to minimize this problem, used by Fama and MacBeth (1973), is to
let the assets be portfolios of assets, for which we can expect that some of the individual
noise in the first-step regressions to average out—and thereby make the measurement
error in β̂ smaller. If CAPM is true, then the return of an asset is a linear function of the
market return and an error which should be uncorrelated with the errors of other assets—
otherwise some factor is missing. If the portfolio consists of 20 assets with equal error
variance in a CAPM regression, then we should expect the portfolio to have an error
variance which is 1/20th as large.

We clearly want portfolios which have different betas, or else the second step regres-
sion (3.57) does not work. Fama and MacBeth (1973) choose to construct portfolios
according to some initial estimate of asset specific betas. Another way to deal with the
errors-in-variables problem is adjust the tests. Jagannathan and Wang (1996) and Jagan-
nathan and Wang (1998) discuss the asymptotic distribution of this estimator.

We can test the model by studying if εi = 0 (recall from (3.58) that εi is the time
average of the residual for asset i , εi t ), by forming a t-test ε̂i/ Std(ε̂i ). Fama and MacBeth
(1973) suggest that the standard deviation should be found by studying the time-variation
in ε̂i t . In particular, they suggest that the variance of ε̂i t (not ε̂i ) can be estimated by the
(average) squared variation around its mean

Var(ε̂i t) =
1
T

T∑
t=1

(
ε̂i t − ε̂i

)2
. (3.60)
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Since ε̂i is the sample average of ε̂i t , the variance of the former is the variance of the latter
divided by T (the sample size)—provided ε̂i t is iid. That is,

Var(ε̂i ) =
1
T

Var(ε̂i t) =
1

T 2

T∑
t=1

(
ε̂i t − ε̂i

)2
. (3.61)

A similar argument leads to the variance of λ̂

Var(λ̂) =
1

T 2

T∑
t=1

(λ̂t − λ̂)2. (3.62)

Fama and MacBeth (1973) found, among other things, that the squared beta is not
significant in the second step regression, nor is a measure of non-systematic risk.
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