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These notes consider the asset pricing implications of investor behavior that incorporates

“Prospect Theory.” It summarizes an article by N. Barberis, M. Huang, and T. Santos (2000)

“Prospect Theory and Asset Prices,” Quarterly Journal of Economics (forthcoming). Prospect

Theory deviates from von Neumann-Morgenstern expected utility maximization because in-

vestor utility is a function of recent changes in, rather than simply the current level of, financial

wealth. In particular, investor utility characterized by Prospect Theory may be more sensitive

to recent losses than recent gains in financial wealth. This effect is referred to as loss aversion.

Moreover, losses following previous losses create more disutility than losses following previous

gains. After a run-up in asset prices, the investor is less risk-averse because subsequent losses

would be “cushioned” by the previous gains. This is the so-called house money effect.

An implication of this intertemporal variation in risk-aversion is that after a substantial rise

in asset prices, lower investor risk aversion can drive prices even higher. Hence, asset prices

display volatility that is greater than that predicted by observed changes in fundamentals, such

as changes in dividends. This also generates predictability in asset returns. A substantial

recent fall (rise) in asset prices increases (decreases) risk aversion and expected asset returns.

It can also imply a high equity risk premium because the “excess” volatility in stock prices

leads loss-averse investors to demand a relatively high average rate of return on stocks.

Prospect theory assumes that investors are overly concerned with changes in financial

wealth, that is, they care about wealth changes more than would be justified by how these

changes affect consumption. The idea was advanced by D. Kahneman and A. Tversky (1979)

“Prospect Theory: An Analysis of Decision Under Risk,” Econometrica 47, p. 263-291. This

psychological notion is based on experimental evidence. For example, R. Thaler and E. Johnson

(1990) “Gambling with the House Money and Trying to Break Even,” Management Science 36,

p.643-660 find that individuals faced with a sequence of gambles are more willing to take risk

if they have made gains from previous gambles.

The Barberis, Huang, and Santos model assumptions are as follows.
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Assumptions:

A.1 Technology:

A discrete-time endowment economy is assumed. The risky asset (or portfolio of all risky

assets) pays a dividend of perishable output of Dt at date t. The paper presents an “Economy

I” model, where aggregate consumption equals dividends. This is the standard Lucas (1978)

economy assumption. However, the paper focuses on its “Economy II” model which allows the

risky asset’s dividends to be distinct from aggregate consumption because there is assumed to

be additional (non-traded) non-financial assets, such as labor income. In equilibrium, aggre-

gate consumption, Ct, then equals dividends, Dt, plus nonfinancial income, Yt, because both

dividends and nonfinancial income are assumed to be perishable. Aggregate consumption and

dividends are assumed to follow the joint lognormal process

ln
³
Ct+1/Ct

´
= gC + σCηt+1 (1)

ln (Dt+1/Dt) = gD + σDεt+1

where the error terms are serially uncorrelated and distributed
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The return on the risky asset from date t to date t+ 1 is denoted Rt+1. A one-period risk-free

investment is assumed to be in zero-net supply, and its return from date t to date t + 1 is

denoted Rf,t.
1

A.2 Preferences:

Representative, infinitely-lived individuals maximize lifetime utility of the form

E0

" ∞X
t=0

Ã
ρt
C1−γt

1− γ
+ btρ

t+1v (Xt+1, St, zt)

!#
(2)

where Ct is the individual’s consumption at date t, γ > 0, and ρ is a time discount factor. Xt+1

1Since the risk-free asset is in zero net supply, the representative individual’s equilibrium holding of this asset
is zero. Rf,t is interpreted as the shadow riskless return.
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is the gain in (change in value of) the individual’s risky asset position between date t and date

t+ 1. St is the date t value of the individual’s risky asset holdings, and zt is a measure of the

individual’s prior gains as a fraction of St. zt < (>) 1 denotes a situation in which the investor

has earned prior gains (losses) on the risky asset.

Risky asset gains are assumed to be measured relative to the alternative of holding wealth

in the risk-free asset:

Xt+1 = St (Rt+1 −Rf,t) (3)

The prior gain factor, zt, is assumed to follow the process

zt = 1+ η

Ã
zt−1

R

Rt
− 1

!
(4)

where 0 ≤ η ≤ 1. If η = 0, zt = 1 for all t. However, if η = 1, zt is smaller (larger) than zt−1when
risky asset returns were relatively high last period, Rt > R. In this case, the benchmark rate,

zt adjusts slowly to prior asset returns. In general, the greater is η, the longer is the investor’s

memory in measuring prior gains from the risky asset.

v (·) is a function characterizing the prospect theory effect of risky asset gains on utility.2

For the case of zt = 1 (no prior gains or losses), this function displays pure loss aversion:

v (Xt+1, St, 1) =

 Xt+1 if Xt+1 ≥ 0
λXt+1 if Xt+1 < 0

where λ > 1. Hence, ceteris paribus, losses have a disproportionately bigger impact on utility.

When zt 6= 1, the function v (·) reflects Propect Theory’s house money effect. In the case of
prior gains (zt ≤ 1), the function takes the form

v (Xt+1, St, zt) =

 Xt+1 if Rt+1 ≥ ztRf,t
Xt+1 + (λ− 1)St (Rt+1 − ztRf,t) if Rt+1 < ztRf,t

(5)

The interpretation of this function is that when a return exceeds the cushion built by prior

2Since v (·) depends only on the risky asset’s returns, it is assumed that the individual is not subject to loss
aversion on nonfinancial assets.
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gains, that is, Rt+1 ≥ ztRf,t, it affects utility one-for-one. However, when the gain is less than
the amount of prior gains, Rt+1 < ztRf,t, it has a greater than one-for-one impact on disutility.

In the case of prior losses (zt > 1), the function becomes

v (Xt+1, St, zt) =

 Xt+1 if Xt+1 ≥ 0
λ (zt)Xt+1 if Xt+1 < 0

(6)

where λ (zt) = λ + k (zt − 1), k > 0. Here we see that losses that follow previous losses are

penalized at the rate, λ (zt), which exceeds λ and grows larger as prior losses become larger (zt

exceeds unity).

Finally, the prospect theory term in the utility function is scaled to make the risky asset

price-dividend ratio and the risky asset risk premium be stationary variables as aggregate wealth

increases over time.3 The form of this scaling factor is chosen to be

bt = b0C
−γ
t (7)

where b0 > 0 and Ct is aggregate consumption at date t.4

Solution to the Model:

The state variables for the individual’s consumption - portfolio choice problem are wealth,

Wt, and zt. Intuitively, since the aggregate consumption - dividend growth process in (1) is

an independent, identical distribution, the dividend level is not a state variable. We start by

assuming that the ratio of the risky asset price to its dividend is a function of only the state

variable zt, that is ft ≡ Pt/Dt = ft (zt), and then show that an equilibrium exists in which this

is true.5 Given this assumption, the return on the risky asset can be written as

Rt+1 =
Pt+1 +Dt+1

Pt
=
1+ f (zt+1)

f (zt)

Dt+1
Dt

(8)

3Without the scaling factor, as wealth (output) grows at rate gD, the prospect theory term would dominate
the conventional constant relative risk aversion term.

4Because Ct is assumed to be aggregate consumption, the individual views bt as an exogeneous variable.
5This is plausible because the standard part of the utility function displays constant relative risk aversion.

With this type of utility, optimal portfolio proportions would not be a function of wealth.
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=
1+ f (zt+1)

f (zt)
egD+σDεt+1

It is also assumed that an equilibrium exists in which the risk-free return is constant, that is,

Rf,t = Rf . This will be verified by the solution to the agent’s first order conditions. Making

this assumption simplifies the form of the function v. From (5) and (6) it can be verified that

v is proportional to St. Hence, v (Xt+1, St, zt) can be written as v (Xt+1, St, zt) = Stbv (Rt+1, zt)
where for zt < 1

bv (Rt+1, zt) =
 Rt+1 −Rf if Rt+1 ≥ Rf
Rt+1 −Rf + (λ− 1) (Rt+1 − ztRf ) if Rt+1 < Rf

(9)

and for zt > 1

bv (Rt+1, zt) =
 Rt+1 −Rf if Rt+1 ≥ Rf

λ (zt) (Rt+1 −Rf ) if Rt+1 < Rf
(10)

The individual’s maximization problem is then

max
{Ct,St}

E0

" ∞X
t=0

Ã
ρt
C1−γt

1− γ
+ b0ρ

t+1C
−γ
t Stbv (Rt+1, zt)

!#
(11)

subject to the budget constraint

Wt+1 = (Wt + Yt −Ct)Rf + St (Rt+1 −Rf ) (12)

and the dynamics for zt given in (4). Define ρtJ (Wt, zt) as the derived utility of wealth function.

Then the Bellman equation for this problem is

J (Wt, zt) = max
{Ct,St}

C1−γt

1− γ
+Et

h
b0ρC

−γ
t Stbv (Rt+1, zt) + ρJ (Wt+1, zt+1)

i
(13)

Taking the first order conditions with respect to Ct and St one obtains

0 = C−γt − ρRfEt [JW (Wt+1, zt+1)] (14)
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0 = Et
h
b0C

−γ
t bv (Rt+1, zt) + JW (Wt+1, zt+1) (Rt+1 −Rf )

i
(15)

= b0C
−γ
t Et [bv (Rt+1, zt)] +Et [JW (Wt+1, zt+1)Rt+1]−RfEt [JW (Wt+1, zt+1)]

It is straightforward to show that (14) and (15) imply the standard envelope condition

C−γt = JW (Wt, zt) (16)

Substituting this into (14), one obtains the Euler equation

1 = ρRfEt

"µ
Ct+1
Ct

¶−γ#
(17)

Using (16) and (17) in (15) implies

0 = b0C
−γ
t Et [bv (Rt+1, zt)] +Et hC−γt+1Rt+1i−RfEt hC−γt+1i (18)

= b0C
−γ
t Et [bv (Rt+1, zt)] +Et hC−γt+1Rt+1i−C−γt /ρ

or

1 = b0ρEt [bv (Rt+1, zt)] + ρEt

"
Rt+1

µ
Ct+1
Ct

¶−γ#
(19)

In equilibrium, conditions (17) and (19) hold with the representative agent’s consumption,

Ct, replaced with aggregate consumption, Ct. Using the assumption in (1) that aggregate

consumption is lognormally distributed, we can compute the expectation in (17) to solve for

the risk-free interest rate:

Rf = e
γgC− 1

2
γ2σ2C/ρ (20)

Using (1) and (8), condition (19) can also be simplified:

1 = b0ρEt [bv (Rt+1, zt)] + ρEt

·
1+ f (zt+1)

f (zt)
egD+σDεt+1

¡
egC+σCηt+1

¢−γ¸
(21)

or
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1 = b0ρEt

·bvµ1+ f (zt+1)
f (zt)

egD+σDεt+1, zt

¶¸
(22)

+ρegD−γgC+
1
2
γ2σ2C(1−ω2)Et

·
1+ f (zt+1)

f (zt)
e(σD−γωσC)εt+1

¸

The price - dividend ratio, Pt/Dt = ft (zt), can be computed numerically from (22). How-

ever, because zt+1 = 1+ η
³
zt

R
Rt+1

− 1
´
and Rt+1 =

1+f(zt+1)
f(zt)

egD+σDεt+1 , zt+1 depends upon zt,

f (zt), f (zt+1), and εt+1, that is

zt+1 = 1+ η

Ã
zt
Rf (zt) e

−gD−σDεt+1

1+ f (zt+1)
− 1

!
(23)

Therefore, (22) and (23) need to be solved jointly. Barberis, Huang, and Santos describe an

iterative numerical technique for finding the function f (·). Given all other parameters, they
guess an initial function, f (0), and then use it to solve for zt+1 in (23) for given zt and εt+1.

Then, they find a new candidate solution, f (1), using the following recursion that is based on

(22):

f (i+1) (zt) = ρegD−γgC+
1
2
γ2σ2C(1−ω2)Et

hh
1+ f (i) (zt+1)

i
e(σD−γωσC)εt+1

i
(24)

+f (i) (zt) b0ρEt

"bvÃ1+ f (i) (zt+1)
f (i) (zt)

egD+σDεt+1 , zt

!#
, ∀zt

where the expectations are computed using a Monte Carlo simulation of the εt+1. Given the

new candidate function, f (1), zt+1 is again found from (23). The procedure is repeated until

the function f (i) converges.

For reasonable parameter values, Barberis, Huang, and Santos find that Pt/Dt = ft (zt) is

a decreasing function of zt. The intuition was described earlier: if there were prior gains from

holding the risky asset (zt is low), then investors become less risk averse and bid up the price

of the risky asset.

Using their estimate of f (·), the unconditional distribution of stock returns is simulated
from a randomly generated sequence of εt’s. Because dividends and consumption follow separate
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processes and stock prices have volatility exceeding that of dividend fundamentals, the volatility

of stock prices can be made substantially higher than that of consumption. Moreover, because of

loss aversion, the model can generate a significant equity risk premium for reasonable values of

the consumption risk aversion parameter γ. Because the investor cares about stock volatility,

per se, a large premium can exist even though stocks may not have a high correlation with

consumption.6

The model also generates predictability in stock returns: returns tend to be higher following

crashes and smaller following expansions. An implication of this is that stock returns are

negatively correlated at long horizons, a feature documented by recent empirical research.

6Recall that in standard consumption asset pricing models, an asset’s risk premium depends only on its
return’s covariance with consumption.
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