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Non-Time-Separable Utility: Habit Formation

I. Introduction

Thus far, we have considered time-separable lifetime utility specifications such as

Et

·Z T

t
U [C(s), s] ds

¸
(1)

where U [C(s), s] is often taken to be of the form

U [C(s), s] = e−ρ(s−t)u[c(s)] (2)

so that utility at date s depends only on consumption at date s and not consumption at previous

or future dates. As discussed previously, there is evidence that this type of utility specification

has difficulties matching the empirical characteristics of U.S. consumption and the returns on

the stock market relative to a risk-free asset (the equity risk premium). The lack of empirical

support has led researchers to explore different, non-time-separable specifications for lifetime

utility.

In these notes we consider utility functions in which past consumption plays a role in de-

termining current utility. Such non-time-separate utility functions are said to display “habit

persistence.” We summarize two models of this type that are based the articles of George Con-

stantinides (1990) “Habit Formation: A Resolution of the Equity Premium Puzzle,” Journal of

Political Economy 98, p.519-543 and of John Campbell and John Cochrane (1999) “By Force

of Habit: A Consumption-Based Explanation of Aggregate Stock Market Behavior,” Journal

of Political Economy 107, p.205-251. These models provide an interesting contrast in terms

of their assumptions regarding the economy’s aggregate supplies of assets and the techniques

we use to solve them. The model in the Constantinides paper is a simple example of a Cox,
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Ingersoll, and Ross Econometrica (1985) production economy where asset supplies are perfectly

elastic. It is solved using a Bellman equation approach. In contrast, the Campbell - Cochrane

paper assumes a Lucas Journal of Economic Theory (1978) endowment economy where asset

supplies are perfectly inelastic. Its solution is based on the economy’s stochastic discount factor.

II. Assumptions of the Constantinides Model

A.1. Technology:

A single capital-consumption good can be invested in up to two different technologies. The first

is a risk-free technology whose output, η1(t), follows the process

dη1/η1 = r dt. (3)

The second is a risky technology whose output, η2(t), follows the process

dη2/η2 = µdt + σ dw. (4)

Note that the specification of technologies fixes the expected rates of return and variances of

the safe and risky investments. In this setting, individuals’ asset demands determine equilibrium

quantities of the assets supplied rather than asset prices. Since r, µ, and σ are assumed to be

constants, there is a constant investment opportunity set.

A.2 Preferences:

Representative agents maximize expected utility of consumption, c(t), of the form

E0

·Z ∞

0
e−ρtγ−1 [c(t)− x(t)]γ dt

¸
(5)

where

x(t) ≡ e−atx0 + b

Z t

0
e−a(t−s)c(s) ds. (6)
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Note that if x0 = b = 0, utility is time-separable with constant relative risk aversion parameter

1 − γ. For b 6= 0, the variable x(t), which is an exponentially weighted average of past con-

sumption, can be thought of as a “subsistence level” of consumption. Because current utility

depends not only on current consumption but on past consumption, through x(t), it is not

time-separable, but exhibits habit persistence. An increase in consumption at date t decreases

current marginal utility but increases the marginal utility of consumption at future dates. Of

course, there are more general ways of modeling habit persistence, for example, u[c(t), z(t)]

where z(t) is any function of past consumption levels. However, (5) and (6) is an analytically

convenient specification.

A.3 Additional Parametric Assumptions:

1− γ > 0 (7)

W0 >
x0

r + a− b > 0 (8)

r + a > b > 0 (9)

ρ− γr − γ(µ− r)2
2(1− γ)σ2

> 0 (10)

0 ≤ m ≡ µ− r
(1− γ)σ2

≤ 1 (11)

where W0 is the initial wealth of the representative individual. The reasons for making these

parametric assumptions are the following. Condition (7) is required for utility to be concave.

Note that c(t) needs to be greater than x(t) for the individual to avoid infinite marginal utility.1

Conditions (8) and (9) ensure that an admissible (feasible) consumption and portfolio choice

1Note that limc(t)→x(t) [c (t)− x (t)]−(1−γ) =∞.
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strategy exists that enables c(t) > x(t). To see this, note that the dynamics for the individual’s

wealth is given by

dW = {[(µ− r)α(t) + r]W − c(t)} dt + σα(t)W dw (12)

where α(t), 0 ≤ α(t) ≤ 1 is the proportion of wealth that the individual invests in the risky
technology. Now if α(t) = 0 for all t, that is, one invests only in the riskless technology, and

consumption equals a fixed proportion of wealth, c(t) = (r + a− b)W (t), then

dW = {rW − (r + a− b)W} dt = (b− a)Wdt (13)

which is a first order differential equation inW having initial conditionW (0) =W0. Its solution

is

W (t) = W0e
(b−a)t > 0 (14)

so that wealth always stays positive. This implies c(t) = (r + a− b)W0 e
(b−a)t > 0 and

c(t)− x(t) = (r + a− b)W0e
(b−a)t −

·
e−atx0 + b

Z t

0
e−a(t−s)(r + a− b)W0 e

(b−a)s ds
¸

= (r + a− b)W0 e
(b−a)t −

·
e−atx0 + b(r + a− b)W0e

−at
Z t

0
ebs ds

¸

= (r + a− b)W0 e
(b−a)t −

h
e−atx0 + (r + a− b)W0e

−at(ebt − 1)
i

= e−at [ (r + a− b)W0 − x0 ]
(15)

which is greater than zero by assumption (8).

Condition (10) is a transversality condition. It ensures that if the individual follows an

optimal policy (which will be derived below), the expected utility of consumption over an

infinite horizon is finite. As will be seen, condition (11) ensures that the individual wishes to
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put positive levels of wealth in both the safe and risky technologies, that is, the individual’s

optimal portfolio choice has an interior solution. m turns out to be the optimal choice of the

risky asset portfolio weight for the time-separable constant relative risk aversion case.2

III. Consumption and Portfolio Choice in the Constantinides Model

The solution technique presented here is different from that found in Constantinides’s Appendix

A, which, he mentions, is based on a martingale approach presented in the working paper M.

Davis and A. Norman (1987) “Portfolio Selection with Transactions Costs,” Imperial College,

London. The current notes use a dynamic programming approach, similar to S. Sundaresan

(1989) “Intertemporally Dependent Preferences and the Volatility of Consumption andWealth,”

Review of Financial Studies 2, p.73-89, which is based on R. Merton (1971) “Optimum Con-

sumption and Portfolio Rules in a Continuous-Time Model,” Journal of Economic Theory 3,

p.373-413.

The individual’s maximization problem is

max
{c,α}

Et

·Z ∞

t
e−ρ sγ−1[c(s)− x(s)]γ ds

¸
≡ e−ρ tJ(W (t), x(t)) (16)

subject to the intertemporal budget constraint given by equation (12). Given the assumption

of an infinite horizon, we can simplify the analysis by separating out the factor of the indirect

utility function that depends on calendar time, t. The “discounted” indirect utility function

depends on two state variables, wealth,W (t), and the state variable x(t), the current subsistence

level of consumption. Since there are no changes in investment opportunities (µ, σ, and r are all

constant), there are no other relevant state variables. Similar to wealth, x(t) is not completely

exogenous but depends on past consumption. We can work out its dynamics using equation

(6):

dx/dt = −ae−atx0 + bc(t) − ab

Z t

0
e−a(t−s)c(s)ds, or (17)

2Also, see R. Merton (1971) “Optimum Consumption and Portfolio Rules in a Continuous-Time Model,”
Journal of Economic Theory 3, p.373-413 or J. Ingersoll (1987) Theory of Financial Decision Making Rowman
and Littlefield, Totowa, NJ, p.275.
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dx = [bc(t)− ax(t)] dt. (18)

Thus, changes in x(t) are instantaneously deterministic. The Bellman equation is then

0 = max
{c,α}

©
u(c(t), x(t), t) + L[e−ρtJ ]

ª

= max
{c,α}

©
e−ρtγ−1(c− x)γ + e−ρtJW [((µ− r)α+ r)W − c]

+
1

2
e−ρtJWWσ2α2W 2 + e−ρtJx(bc− ax)− ρe−ρtJ }.

(19)

The first order conditions with respect to c and α are:

(c− x)γ−1 = JW − bJx, or

c = x+ [JW − bJx]
1

γ−1 ,

(20)

and

(µ− r)WJW + ασ2W 2JWW = 0, or

α =
(µ− r)
σ2

JW
(−WJWW )

.

(21)

Note that the additional term −bJx in (20) reflects the fact that an increase in current con-
sumption has the negative effect of raising the level of subsistence consumption, which decreases

future utility. The form of (21), which determines the portfolio weight of the risky asset, is

more traditional.

Substituting (20) and (21) back into (19), we obtain the equilibrium partial differential

equation:

1− γ

γ
[JW − bJx]

γ
1−γ − J2W

JWW

(µ− r)2
2σ2

+ (rW − x)JW + (b− a)xJx − ρJ = 0. (22)

For the time-separable, constant relative risk aversion case (a = b = x = 0), we showed in
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earlier notes that a solution for J is of the form J(W ) = kW γ , and since u = e−ρ tcγ/γ, and

uc = e−ρ tJW , optimal consumption is proportional to wealth:

c∗ = (γk)
1

(γ−1)W = W

·
ρ− rγ − 1

2
(

γ

1− γ
)
(µ− r)2

σ2

¸
/ (1− γ) (23)

and

α∗ = m (24)

where m is defined above in condition (11).

These results for the time-separable case might suggest a functional form for the non-time-

separable case that looks like

J(W, x) = k0[W + k1x]
γ . (25)

Making this guess, substituting it into (22), and setting the coefficients on x and W equal to

zero, we find

k0 =
(r + a− b)hγ−1

(r + a)γ
(26)

where

h ≡ r + a− b
(r + a)(1− γ)

·
ρ− γr − γ(µ− r)2

2(1− γ)σ2

¸
> 0 (27)

and

k1 = − 1

r + a− b. (28)

Using equations (20) and (21), this implies

c∗ = x(t) + h

·
W (t)− x(t)

r + a− b
¸

(29)
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and

α∗ = m

·
1− x(t)/W (t)

r + a− b
¸
. (30)

Interestingly, since r + a > b, by assumption, the individual always demands less of the risky

asset compared to the case of no habit persistence. Thus we would expect lower volatility of

wealth over time.

In order to find the dynamics of c∗ , consider the change in the term
h
W (t)− x(t)

r+a−b
i
. Recall

that the dynamics of W (t) and x (t) are given in equations (12) and (18), respectively. Using

these, one finds

d

·
W (t)− x(t)

r + a− b
¸
=

½
[ (µ− r)α∗ + r]W − c∗ − bc∗ − ax

r + a− b
¾
dt+ σα∗W dw. (31)

Substituting in for α∗ and c∗ from (29) and (30), one obtains

d

·
W (t)− x(t)

r + a− b
¸
=

·
W (t)− x(t)

r + a− b
¸
[ndt+mσ dw] (32)

where

n ≡ r − ρ

1− γ
+
(µ− r)2(2− γ)

2(1− γ)2σ2
. (33)

Using this and (29), one can show (see Appendix A in Constantinides)

dc

c
=

·
n+ b− (n+ a)x

c

¸
dt+

³
1− x

c

´
mσ dw. (34)

Constantinides’ Theorem 2 specifies parametric conditions for which the ratio x
c−x has a sta-

tionary distribution. However, one sees from the stochastic term in (34),
¡
1− x

c

¢
mσ dw, that

consumption growth is smoother than in the case of no habit persistence. This is the intuition

for why habit persistence can imply very smooth consumption paths, even though risk aversion,

γ, may not be of a very high magnitude. The lower demand for the risky asset, relative to the

time-separable case, can result in a higher equilibrium excess return on the risky asset and,

hence, help explain the “puzzle” of a large equity premium.
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IV. Assumptions of the Campbell - Cochrane Model

A.1 Technology:

Campbell and Cochrane consider a discrete-time endowment economy. Date t aggregate con-

sumption, which also equals aggregate output, is denoted Ct, and it is assumed to follow an

independent and identically distributed lognormal process

ln (Ct+1)− ln (Ct) = g + νt+1 (35)

where vt+1˜N
¡
0,σ2

¢
.

A.2 Preferences:

It is assumed that there is a representative agent who maximizes expected utility of the form

E0

" ∞X
t=0

δt
(Ct −Xt)1−γ − 1

1− γ

#
(36)

where γ > 0 andXt denotes the “habit level.” Xt is related to past consumption in the following

manner. Define the “surplus consumption” ratio, St, as

St ≡ Ct −Xt
Ct

(37)

Then the log of surplus consumption is assumed to follow the auto-regressive process3

ln (St+1) = (1− φ) ln
¡
S
¢
+ φ ln (St) + λ (St) νt+1 (38)

3This process is locally equivalent to ln (Xt) = φ ln (Xt−1) + λ ln (Ct) or ln (Xt) = λ
P∞

i=0 φ
i ln (Ct−i). The

reason for the more complicated form in (38) is that it ensures that consumption is always above habit since
S > 0. This precludes infinite marginal utility.
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where

λ (St) =
1

S

q
1− 2 £ln (St)− ln ¡S¢¤− 1 (39)

and

S = σ

r
γ

1− φ
(40)

The lifetime utility function in (36) looks somewhat similar to (5) of the Constantinides

model. However, while Constantinides assumes that an individual’s habit level depends on

his or her own level of past consumption, Campbell and Cochrane assume the an individual’s

habit level depends on everyone else’s past consumption. Thus, in the Constantinides model,

the individual’s choice of consumption, ct, affects his future habit level, xs, for all s > t, and

he takes this into account in terms of how it affects his expected utility when he chooses ct.

This type of habit formation is referred to as internal habit. In contrast, in the Campbell and

Cochrane model, the individual’s choice of consumption, Ct, does not affect her future habit

level, Xs, for all s > t, so that she views Xt as exogenous when choosing Ct. This type of habit

formation is referred to as external habit or “keeping up with the Joneses.”4 The external

habit assumption simplifies the representative agent’s decision making because habit becomes

an exogenous state variable that depends on aggregate, not the individual’s, consumption.

V. Consumption, Portfolio Choice, and Asset Pricing in the Campbell -

Cochrane Model

Because habit is exogenous to the individual, the individual’s marginal utility of consumption

is

4A similar modeling was developed by A. Abel (1990) “Asset Prices under Habit Formation and Catching Up
with the Joneses,” American Economic Review 80, p.38-42.
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uc (Ct, Xt) = (Ct −Xt)−γ = S−γt C−γt (41)

and the representative agent’s stochastic discount factor is

mt,t+1 = δ
uc (Ct+1,Xt+1)

uc (Ct,Xt)
= δ

µ
St+1
St

¶−γ µCt+1
Ct

¶−γ
(42)

If we define rft as the continuously-compounded risk-free real interest rate between dates t and

t+ 1, then it equals

rft = − ln (Et [mt,t+1]) = − ln (δ) + γg − 1
2
γ (1− φ) (43)

which, by construction, turns out to be constant over time. One can also derive a relationship

for the date t price of the market portfolio of all assets, denoted Pt. Recall that since we have

an endowment economy, aggregate consumption equals the economy’s aggregate output, which

equals the aggregate dividends paid by the market portfolio. Therefore,

Pt = Et [mt,t+1 (Ct+1 + Pt+1)] (44)

or, equivalently, one can solve for the price - dividend ratio for the market portfolio.

Pt
Ct
= Et

·
mt,t+1

Ct+1
Ct

µ
1 +

Pt+1
Ct+1

¶¸
= δEt

"µ
St+1
St

¶−γ µCt+1
Ct

¶1−γ µ
1 +

Pt+1
Ct+1

¶#
(45)

As in the Lucas model, this stochastic difference equation can be solved forward to obtain

Pt
Ct
= δEt

"µ
St+1
St

¶−γ µCt+1
Ct

¶1−γ Ã
1 + δ

µ
St+2
St+1

¶−γ µCt+2
Ct+1

¶1−γ µ
1 +

Pt+2
Ct+2

¶!#
(46)
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= Et

"
δ

µ
St+1
St

¶−γ µCt+1
Ct

¶1−γ
+ δ2

µ
St+2
St

¶−γ µCt+2
Ct

¶1−γ
+ ...

#

= Et

" ∞X
i=1

δi
µ
St+i
St

¶−γ µCt+1
Ct

¶1−γ#

The solutions can then be computed numerically by simulating the lognormal processes for Ct

and St.

In this model, note that the coefficient of relative risk aversion is given by

ηt = −
Ctucc
uc

=
γ

St
(47)

which is time-varying and is relatively high when St is relatively low, that is, when consumption

is low (a recession). This allows the model to explain a high risk-premium on risky assets (the

market portfolio). To see this, recall the relationship between the “Sharpe ratio” and the

coefficient of relative risk aversion when consumption is lognormally distributed:

¯̄̄̄
E [ri]− rf

σri

¯̄̄̄
≤ ηtσc (48)

Campbell and Cochrane show that the model can match the equity risk-premium because the

average level of ηt can be set fairly high. Moreover, the model predicts that the equity risk-

premium increases during a recession (when ηt is high), a phenomenon that seems to be present

in the post-war U.S. stock market.
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