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Notes on

“An Intertemporal Capital Asset Pricing Model”

I. Assumptions

These notes are based on the article Robert C. Merton (1973) “An Intertemporal Capital

Asset Pricing Model,” Econometrica 41, p.867-887. It extends the analysis in Merton’s earlier

Consumption and Portfolio Rules paper to consider the equilibrium relations between asset rates

of return. This model is not a fully general equilibrium model, since it takes asset supplies and

the form of the asset prices processes as given. However, the asset price processes considered

by Merton turn out to be of the same form as those derived by J. Cox, J. Ingersoll, and S.

Ross (1985) “An Intertemporal General Equilibrium Model of Asset Prices,” Econometrica 53,

p.363-84, in their general equilibrium production economy model. So, it turns out that the

model’s implications hold in more general contexts.

Consider the model

max
{C,w}

E0

·Z T

0
u (C (t) , t) dt+B (W (T ) , T )

¸
(1)

subject to

dW =
nX
i=1

wi (αi − r)Wdt+ (rW −C) dt+
nX
i=1

wiWσidzi (2)

where W and C are the individual’s level of wealth and consumption, and each individual

consumer in the economy can choose between one instantaneously risk-free asset and n risky

assets whose means and standard deviations can depend, in general, on a state variable, x. w

= (w1 w2 ... wn) is the nx1 vector of portfolio weights held in the risky assets. To keep things

simple, we assume x is one-dimensional, but in general it could be a vector of state variables.

dPi (t) /Pi (t) = αi (x) dt+ σi (x)dzi, i = 1, ..., n (3)
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dx = αx (x) dt+ σx (x)dzx (4)

We allow correlation between the processes, so that σij (x) dt = σi (x)dziσj (x)dzj and σix (x)dt =

σi (x)dziσx (x) dzx . Define the value of the instantaneous risk-free investment, that is, the value

of a “money market fund” as P0(t). Then this investment’s value satisfies:

dP0 (t) /P0 (t) = r (x)dt (5)

where r (t) can depend on the state variable, x. Equations (3), (4), and (5) determine a vector

Itô process. Thus, we have a stochastic investment opportunity set determined by the level of

the state variable x (t).

II. Solution to the Individual’s Problem

Consider, as before, the optimality condition for each individual in the economy. Defining

J (W,x, t) =max
{C,w}

Et

·Z T

t
u (C (s) , s) ds+B (W (T ) , T )

¸
(6)

The optimality condition is

0 =max
{C,w}

[u (C (t) , t) + L [J ]] (7)

or

0 =max
{C,w}

[u (C (t) , t) + Jt + JW

(
nX
i=1

wi (αi − r)W + (rW −C)
)
+ Jxαx (8)

+
1

2
JWWW

2
nX
i=1

nX
j=1

σijwiwj +
1

2
Jxxσ

2
x + JWxW

nX
i=1

wiσix]

The first order conditions with respect to C and wi are

0 = uC − JW (9)
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0 = JWW (αi − r) + JWWW
2
nX
j=1

wjσij + JWxWσix, i = 1, ..., n. (10)

Letting υij be the i, j
th element of the inverse covariance matrix of asset returns, Ω−1, then the

system of linear equations in (10) can be solved to obtain:

w∗i = −
JW

WJWW

nX
j=1

υij (αj − r)− JWx

WJWW

nX
j=1

υijσjx (11)

or

w∗iW = A
nX
j=1

υij (αj − r) +H
nX
j=1

υijσjx (12)

where A = − JW
JWW

and H = − JWx
JWW

. Note that A and H will, in general, differ from one

individual to another, depending on the form of the particular individual’s utility function and

level of wealth. Thus, unlike in the constant investment opportunity set case (where JWx = 0),

w∗i /w∗j is not the same for all investors, that is, a Two-Mutual Fund Theorem does not hold.

However, with one state variable, x, a Three-Fund Theorem holds. Investors will be satisfied

choosing between a fund holding only the risk-free asset, a fund of risky assets that provides

optimal instantaneous diversification (this is the same one we solved for earlier in the constant

investment opportunity set case), and a third fund composed of a portfolio of the risky assets

that has the maximum absolute correlation with the state variable, x. A/W and H/W , which

depend on the individual’s preferences, then determine the relative amounts that the individual

invests in these two risky portfolios.

The individual’s portfolio holdings can be reinterpreted as mechanisms for reducing fluc-

tuations in consumption over time. Given that JW = UC , then JWW = UCC∂C/∂W , and

so

A = − UC
UCC (∂C/∂W )

> 0 (13)

by the concavity of U . Also, since JWx = UCC∂C/∂x, we have
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H = − ∂C/∂x

∂C/∂W
R 0 (14)

Now the first term on the right-hand side of (12) is the usual demand function for a risky

asset by a single-period mean-variance utility maximizer. Note that A is proportional to the

reciprocal of the individual’s absolute risk aversion, so that the more risk averse the individual,

the smaller is A and the smaller is the individual’s demand for any risky asset.

The second term on the right-hand side of (12) captures the individual’s desire to hedge

against “unfavorable” shifts in investment opportunities. An unfavorable shift is defined as a

change in x such that consumption falls for a given level of current wealth, that is, an increase

in x if ∂C/∂x < 0 and a decrease in x if ∂C/∂x > 0. For example, suppose that Ω is a diagonal

matrix, so that υij = 0 for i 6= j, but assume υii = 1/σii > 0 and σix 6= 0.1 Then in this special
case the hedging demand term in (12) simplifies to

Hυiiσix = − ∂C/∂x

∂C/∂W
υiiσix > 0 iff

∂C

∂x
σix < 0 (15)

Condition (15) says that if an increase in x leads to a decrease in optimal consumption (∂C/∂x <

0) and if x and asset i are positively correlated (σix > 0), then there is a positive hedging demand

for asset i, that is, Hυiiσix > 0 and asset i is held in greater amounts than what would be

predicted based on a simple single-period mean-variance analysis. The intuition for this result

is that by holding more of asset i, one hedges against a decline in future consumption due to an

unfavorable shift in x. If x increases, which would tend to decrease consumption (∂C/∂x < 0),

then asset i would tend to have a high return (σix > 0), which by augmenting wealth, W , helps

neutralize the fall in consumption (∂C/∂W > 0).

III. Equilibrium Asset Returns

Given the asset demands derived in the previous section, we can derive the equilibrium

return relations between assets that must occur in order for the market portfolio to be efficient

(that is, held by investors), in equilibrium. Consider the following cases:

III.A Constant Investment Opportunity Set

Investors’ asset demands for this case (αi,σi, r all constant) were analyzed earlier in our

1Alternatively, assume Ω is non-diagonal, but that σjx = 0 for j 6= i.
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coverage of Merton’s Consumption and Portfolio Rules paper. Defining δk as the demand for

risky asset k as a proportion of all other risky assets, it was shown that:

δk =
nX
j=1

νkj (αj − r) /
nX
i=1

nX
j=1

νij (αj − r) , k = 1, ...n. (16)

R.C. Merton (1972) “An Analytical Derivation of the Efficient Portfolio Frontier,” Journal

of Financial and Quantitative Analysis 7, p.1851-72, shows that when the market portfolio is

efficient (that is, willingly held by investors), equilibrium asset returns must satisfy

αj − r = βi (αM − r) , i = 1, ...n. (17)

where βi ≡ σiM/σ
2
M , σiM where is the covariance between the ith asset’s rate of return and the

market’s rate of return, and αM and σ2M are the mean and the variance of the rate of return

on the market portfolio. Thus, with a constant investment opportunity set, the standard,

single-period CAPM holds.

III.B Stochastic Investment Opportunity Set

Consider, as before, the case in which there is a single state variable, x. Recall that equation

(10) is the system of n equations that a given individual’s portfolio weights satisfy. Let’s re-

write (10) in matrix form, using the superscript k to denote the kth individual’s value of wealth,

vector of optimal portfolio weights, and values of A and H:

Ak (α− r1) = ΩwkW k −Hkσx (18)

where α = (α1, ...,αn)0, 1 is an n-dimensional vector of one’s, wk = (wk1 , ..., w
k
n)
0 and σx =

(σ1x, ...,σnx)
0. We will use bold type to denote vector or matrix variables, while normal type is

used for scalar variables. Now if we sum across all individuals and divide both sides by
P
k A

k,

we obtain

α− r1 = aΩµ− hσx (19)

where a ≡ PkW
k/
P
k A

k, h ≡ PkH
k/
P
k A

k, and µ ≡ Pkw
kW k/

P
kW

k is the average

investment in each asset across investors. These must be the market weights, in equilibrium.
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Hence, the ith row (ith risky asset excess return) of equation (19) is:

αi − r = aσiM − hσix (20)

To find the excess return on the market portfolio, we can pre-multiply (19) by µ0 and obtain:

αM − r = aσ2M − hσMx (21)

Next, define η ≡ Ω−1σx
10Ω−1σx . By construction, η is the vector of portfolio weights for the risky

assets, where this portfolio has the maximum absolute correlation with the state variable, x.

In this sense, it provides the best possible hedge against changes in the state variable. To find

the excess return on this optimal hedge portfolio, we can premultiply (19) by η0 and obtain

αη − r = aσηM − hσηx (22)

where σηM is the covariance between the optimal hedge portfolio and the market portfolio and

σηx is the covariance between the optimal hedge portfolio and the state variable, x. Equations

(21) and (22) are two linear equations in the two unknowns, a and h. Solving for a and h and

substituting them back into equation (20), we obtain:

αi − r = σiMσηx − σixσMη

σ2Mσηx − σMxσMη
(αM − r) + σixσ

2
M − σiMσMx

σ2Mσηx − σMxσMη
(αη − r) (23)

While the derivation is not given here, (23) can be re-written as2

αi − r =
σiMσ2η − σiησMη

σ2Mσ2η − σ2Mη

(αM − r) + σiησ
2
M − σiMσMη

σ2ησ
2
M − σ2Mη

(αη − r) (24)

≡ βMi (αM − r) + βηi (αη − r)

Note that σiη = 0 iff σix = 0. For the case in which the state variable, x, is uncorrelated with

the market, equation (24) simplifies to:

2See J. Ingersoll (1987) Theory of Financial Decision Making, Rowman and Littlefield, Totowa, NJ, p.286.
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αi − r = σiM
σ2M

(αM − r) + σiη
σ2η
(αη − r) (25)

In this case, the first term on the right-hand side of (25) is that found in the standard

CAPM. The assumption that x is uncorrelated with the market is not as restrictive as one

might first believe, since one could re-define the state variable x as a factor that cannot be

explained by current market returns, that is, a factor that is uncorrelated with the market.

An equation such as (24) can be derived when more than one state variable exists. In this

case, there will be an additional “beta” for each state variable. Relations such as (24) and (25)

bear more than a coincidental relationship to Ross’s Linear Factor model (APT).

IV. Extending the Model to State-Dependent Utility

Suppose individual utility is directly dependent on the state of nature, x, that is, u (C (t) , x (t) , t).

It is straightforward to verify that the optimality condition (8) and the first order conditions

for C and the wi’s remain unchanged. Hence our results on the equilibrium returns on assets,

equation (24), continue to hold. The only change is in the interpretation of H, the individual’s

hedging demand coefficient. With state-dependent utility,

JWx = UCC
∂C

∂x
+UCx (26)

so that

H = − ∂C/∂x

∂C/∂W
− UCx

UCC
∂C
∂W

(27)

It can be shown that in this case individuals do not hold consumption variance minimizing

portfolios, but marginal utility variance-minimizing portfolios.

V. Breeden’s Consumption-Based CAPM

The article by Douglas T. Breeden (1979) “An Intertemporal Asset Pricing Model with

Stochastic Consumption and Investment Opportunities,” Journal of Financial Economics 7,

p.265-96 provides a way of simplifying the asset return relationship given in Merton’s ICAPM.

Breeden’s model shows that the single-period consumption-portfolio choice result that an asset’s

expected rate of return depends upon its covariance with the marginal utility of consumption

can be generalized to a multi-period, continuous-time context.
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Breeden considers the same model as Merton, and hence in the case of multiple state vari-

ables, derives equation (12). Substituting in for A and H, equation (12) can be written in

matrix form, and for the case of s (multiple) state variables the optimal portfolio weights for

the kth investor are given by:

wkW k = − UkC
UkCCC

k
W

Ω−1 (α− r1)−Ω−1ΩaxCkx/CkW (28)

where CkW = ∂Ck/∂W k, Ckx =
³
∂Ck

∂x1
...∂C

k

∂xs

´0
and Ωax is an n× s matrix of covariances of asset

returns with changes in the state variables. Pre-multiplying (28) by CkWΩ and rearranging

terms, we have

− U
k
C

UkCC
(α− r1) = ΩaWkCkW +ΩaxC

k
x (29)

where ΩaWk is the n× 1vector of covariances between asset returns with the change in wealth
of individual k. Now individual k’s optimal consumption, Ck

¡
W k,x, t

¢
is a function of wealth,

W k, the vector of state variables, x, and time, t. Thus, from Itô’s lemma, we know that the

stochastic terms for dCk will be

CkW

³
wk1W

kσ1dz1 + ...+w
k
nW

kσndzn

´
+ (σx1dzx1 + ...+ σxsdzxs)C

k
x (30)

Hence, the instantaneous covariances of asset returns with changes in individual k’s consumption

are given by calculating the instantaneous covariance between each asset (having stochastic

term σidzi) with the terms given in (30). The result, in matrix form, is that the n× 1 vector
of covariances between asset returns and changes in the individual’s consumption is

ΩaCk= ΩaWkCkW+ΩaxC
k
x (31)

Note that the right-hand side of (31) equals the right-hand side of (29), and therefore

ΩaCk=−
UkC
UkCC

(α− r1) (32)

Equation (32) holds for each individual, k. Next, define C as the aggregate rate of consumption
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and define T as an aggregate rate of risk tolerance, where

T ≡
X
k

− U
k
C

UkCC
(33)

Then (32) can be aggregated over all individuals to obtain.

α− r1 = T−1ΩaC (34)

where ΩaC is the n × 1 vector of covariances between asset returns and changes in aggregate
consumption. If we multiply and divide the right hand side of (34) by current aggregate

consumption, one obtains

α− r1 = (T/C)−1Ωa, lnC (35)

where Ωa, lnC is the n × 1 vector of covariances between asset returns and changes in the
logarithm of consumption (percentage rates of change of consumption).

Consider a portfolio, M , with vector of weights wM. Pre-multiplying (35) by wM0, we have:

αM − r = (T/C)−1 σM,lnC (36)

where αM is the expected return on portfolio M and σM,lnC is the (scalar) covariance between

returns on portfolio M and changes in the log of consumption. Substituting for (T/C)−1 in

(35), we have

α− r1 = (Ωa, lnC/σM,lnC) (αM − r) (37)

= (βaC/βMC) (αM − r)

where βaC and βMC are the “consumption betas” of asset returns and of portfolio M ’s return.

The consumption beta for any asset is defined as

βiC = cov (dPi/Pi, d lnC) /var (d lnC) (38)
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Portfolio M may be any portfolio of assets, not necessarily the market portfolio. Equation

(37) says that the ratio of expected excess returns on any two assets or portfolios of assets is

equal to the ratio of their betas measured relative to aggregate consumption. Hence, the risk

of a security’s return can be summarized by a single consumption beta. Aggregate optimal

consumption, C (W,x, t), encompasses the effects of levels of wealth and the state variables,

and in this way is a sufficient statistic for the value of asset returns in different states of the

world.

Breeden’s consumption CAPM is a considerable simplification relative to Merton’s multi-

beta ICAPM. Furthermore, while the multiple state variables in Merton’s model may not be

directly identified or observed, and hence the multiple state variable “betas” may not be com-

puted, Breeden’s consumption beta can be computed given that we have data on aggregate

consumption. However, the results of empirical tests of the consumption beta model have been

“mixed” at best.
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