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Intertemporal Consumption and Portfolio Choice in

Continuous-Time

I. Specifying the Consumption and Portfolio Choice Model in Continuous-

Time

Having already studied an individual’s intertemporal consumption and portfolio choice prob-

lem in a discrete-time setting, we now consider a similar problem but where asset prices follow

continuous-time stochastic processes and the individual makes consumption and portfolio deci-

sions continuously. Consider an individual’s choice regarding the level of his consumption and

savings, where his savings can be invested in n different assets. As before, we define

C(t) = individual’s level of consumption at date t,

P(t) = (P1(t), P2(t), . . . ..., Pn(t)) the prices of the n assets at date t.

However, now assume the i
th asset price follows the process:

dPi(t) /Pi(t) = αi (x, t) dt + σi (x, t) dzi (1)

where i = 1, ..., n, and (σi dzi)(σj dzj) = σij dt. It is assumed that αi and σi need not be

constants but could be functions of time and/or functions of a kx1 vector of state variables,

which we denote by x(t). When the αi and σi are time-varying, the investor is said to face

changing investment opportunities. The state variables affecting the moments of the asset

prices, x (t), can, themselves, follow diffusion processes. Let the i
th state variable follow the

process

dxi = ai (x, t)dt+ bi (x, t)dqi (2)

where i = 1, ..., k, and (bi dqi)(bj dqj) = bij dt and (bi dqi)(σj dzj) = φ
ij
dt.
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To derive the proper continuous-time budget constraint for the individual, it is worthwhile

to first consider the analogous budget constraint for a discrete-time model where each period

is of length h. We will then take the limit as h→ 0.

Let Ni(t) be the number of shares held in asset i from date t to t+h. The individual begins

period t with wealth, W (t), which equals last period’s holdings at date t prices:

W (t) =

n∑

i=1

Ni(t− h)Pi(t). (3)

Given these date t prices, the individual decides on his level of consumption over the period,

C(t)h, which must equal the net sales of assets.1 Note that C(t), the individual’s “level” of

consumption at time t, now represents the average rate of consumption over the interval from

t to t+ h.

−C(t)h =

n∑

i=1

[Ni(t)−Ni(t− h)]Pi(t). (4)

At the start of the next period, t+ h, we have:

−C(t+ h)h =

n∑

i=1

[Ni(t+ h)−Ni(t)]Pi(t+ h)

=

n∑

i=1

[Ni(t+ h)−Ni(t)] [Pi(t+ h)−Pi(t)] +
n∑

i=1

[Ni(t+ h)−Ni(t)]Pi(t)

(5)

and

W (t+ h) =

n∑

i=1

Ni(t)Pi(t+ h). (6)

Taking the limits of (5) and (6) as h → 0, and keeping in mind that the Pi(t) and Ni(t) now

represent stochastic processes, we obtain the stochastic differential equation

−C(t)dt =

n∑

i=1

dNi(t)dPi(t) +

n∑

i=1

dNi(t)Pi(t) (7)

and

W (t) =

n∑

i=1

Ni(t)Pi(t). (8)

1
It is assumed that there are no other sources of wealth, such as wage income
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Applying Itô’s Lemma to (8), we can derive the dynamics of the individual’s wealth:

dW =

n∑

i=1

Ni(t) dPi(t) +

n∑

i=1

dNi(t)Pi(t) +

n∑

i=1

dNi(t)dPi(t). (9)

Substituting (7) into (9), we obtain:

dW =

n∑

i=1

Ni(t)dPi(t) − C(t) dt. (10)

Equation (10) says that the individual’s wealth changes due to capital gains income less the

amount consumed.

Now, as in the discrete-time case, instead of solving for the individual’s optimal C(t) and

Ni(t), i = 1, . . . , n, it will be more convenient to solve for C(t) and the proportion of wealth

held in each particular asset, defined as ωi(t) = Ni(t)Pi(t)/W (t). Substituting this in for Ni

and substituting (1) for dPi, equation (10) becomes:

dW =

n∑

i=1

ωiWαi dt − C(t)dt +

n∑

i=1

ωiWσi dzi. (11)

It is convenient to assume that one of the assets, let it be the nth
asset, is risk-free. This

implies σn = 0. Define r = αn and m = n− 1.2 Then (11) can be rewritten

dW =

m∑

i=1

ωi(αi − r)W dt + (rW − C(t))dt +

m∑

i=1

ωiWσi dzi. (12)

With these preliminaries out of the way, we can now state the individual’s intertemporal con-

sumption and portfolio choice problem:

max

{C(t), ω(t)}
E0

[ ∫
T

0

u(C(t), t)dt + B(W (T), T )

]
(13)

subject to the constraints

W (t) > 0, for all t ε [0, T ] (14a)

2In general, r may be a function of x (t). For example, r (t) could follow a diffusion process such as that of
the Vasicek (1977) or Cox, Ingersoll, and Ross (1985) term structure models.
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�� =
m∑

i=1

ωi(αi − r)W dt + (rW − C(t)) dt +

m∑

i=1

ωiWσi dzi (14b)

where ω denotes the vector of risky-asset portfolio weights �ω1, . . . , ωm�, the utility function,

u, is assumed to be strictly concave in C and the bequest function B is assumed to be strictly

concave inW . This problem, in which the individual has time-separable utility of consumption,

is analogous to the discrete-time problem studied earlier.

Note that some possible constraints are have not been imposed. For example, one might

wish to impose the constraint C(t) ≥ 0 (nonnegative consumption) and/or ωi ≥ 0 (no short

sales). However, for some utility functions, negative consumption is never be optimal, so that

C(t) ≥ 0 might be imposed automatically.3

Before we solve this problem, let’s make a digression on stochastic dynamic programing in

a continuous-time setting.

II. A Digression on Stochastic Dynamic Programming in Continuous Time

Consider a simple (single choice variable), generic version of the problem specified in (13).

	
�

�c}
Et

[∫
T

t

u(c(µ), x(µ))dµ

]
(D.1)

subject to

dx = a(x, c) dt + b(x, c)dz (D.2)

where c(t) is a control variable (such as a consumption and/or vector of portfolio proportions)

and x(t) is a state variable (such as wealth and/or a variable that changes investment opportu-

nities, that is, a variable that affects the αi’s and/or σi’s). Define the indirect utility function,

J(x(t), t, T ):

J(x(t), t, T ) = max
{c}

Et

[ ∫
T

t

u(c(µ), x(µ))dµ

]
(D.3)

3
For example, if ���

C�t�→0

∂u(C(t),t)
∂C

= �, as would be the case if the individual’s utility displayed constant

relative risk aversion (power utility), then the individual would always avoid non-positive consumption. However,

other utility functions, such as constant absoute risk aversion (negative exponential) utility, do not display this

property.
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which can be written as

J(x(t), t, T ) = max
�c}

Et

[∫
t��t

t

u(c(µ), x(µ))dµ +
∫

T

t��t

u(c(µ), x(µ))dµ

]
. (D.4)

Now let us apply Bellman’s Principle of Optimality. This says that an optimal policy must be

such that for a given future realization of the state variable, x(t +∆t), (whose value may be

affected by the optimal control policy at date t and earlier), any remaining decisions at date

t+∆t and later must be optimal with respect to x(t+∆t). In other words, an optimal policy

must be time consistent. This allows us to write

J(x(t), t, T ) = max
�c}

Et

[ ∫
t��t

t

u(c(µ), x(µ)) dµ + max
{c}

Et��t

[∫
T

t+∆t

u(c(µ), x(µ))dµ

] ]

= max
{c}

Et

[∫
t��t

t

u(c(µ), x(µ))dµ + J(x(t+∆t), t+∆t, T )

]
. (D.5)

Now approximate the first integral and also expand J(x(t+∆t), t+∆t, T) around x(t) and t

in a Taylor series to get

J(x(t), t, T ) = max
�c}

Et [u(c(t), x(t))∆t + J(x(t), t, T ) + Jx∆x + Jt∆t

+
1

2
Jxx(∆x)2 + Jxt(∆x)(∆t) +

1

2
Jtt(∆t)2 + o(∆t)

]
(D.6)

where

∆x � a(x, c)∆t + b(x, c)∆z + o(∆t). (D.7)

Substituting (D.7) into (D.6), and subtracting J(x(t), t, T ) from both sides, one obtains:

0 = max
{c}

Et [u(c(t), x(t))∆t + ∆J + o(∆t)] "<�6$

��	�	

∆J =

[
Jt + Jxa +

1

2
Jxxb

�

]
∆t + Jxb∆z. (D.9)
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Note that (D.9) is just the discrete-time version of Itô’s Lemma. Hence, if we note that in (D.8)

the term Et [Jxb∆z] = 0, then divide both sides of (D.8) by ∆t, and, finally, take the limit as

∆t� 0, we have

0 = max
{c}

[
������� ����� � !t � !x� �

�



!xx�

2

]
(D.10)

which is the stochastic, continuous-time Bellman equation. It is sometimes written as

0 = max
�c}

[u(c(t), x(t)) + L[J] ] "<�##$

��	�	 L[·] is the Dynkin operator, being the “drift” term (expected change) in dJ(x, t) that one

obtains by applying Itô’s Lemma to J(x, t). (D.11) then gives us a condition that the optimal

stochastic control policy, c, must satisfy. Let us now return to the consumption and portfolio

choice problem and apply this tool.

III. Solving the Continuous-Time Consumption and Portfolio Choice Problem

Define the indirect utility of wealth function, J(W, x, t), as

J(W,x, t) = max
�C(t), ω(t)}

Et

[ ∫
T

t

u(C(s), s)ds + B(W (T ), T )

]
(15)

and define L as the Dynkin operator with respect to the state variables W and x�, i = 1, . . . , k.

In other words

L =
∂

∂t
+

[
�∑
�=1

ωi(αi − r)W + (rW −C)

]
∂

∂W
+


∑
�=1

a�
∂

∂x�
+

1

2

�∑
�=1

�∑
�=1

σ��ω�ω�W
2
∂2

∂W 2
+

1

2


∑
�=1


∑
�=1

b��
∂2

∂x� ∂x�
+


∑
�=1

�∑
�=1

Wω�φ��
∂2

∂x� ∂W
.

(16)

Thus, using (D.11), we have

0 = max
{����� 	���}

[u(C(t), t) +L[J]] . (17)
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Given the concavity of u and B, equation (17) implies that the optimal choices of C(t) and

ω(t) satisfy the conditions we obtain from differentiating u(C(t), t)+L[J] and setting the result

equal to zero. Hence, the first order conditions are:

0 =
∂u

∂C
(C�) �

∂J

∂W
(18)

0 =
∂J

∂W
(αi − r)W +

∂�J

∂W �

m∑

j=1

�ij�
�

j�
2
+

∂2J

∂x� ∂W


∑

�=1

Wφ�� , i = 1, . . . ,m. (19)

Note that equations (18) and (19) are n equations in the n unknowns C∗(t), ω∗

�
(t), . . . ω∗

n−1
���.

For certain functional forms for u and the αi’s, σij ’s, and φij ’s we can solve for C∗ and the ω∗

i
’s

as functions of the state variables W , x, and derivatives of J , that is, JW , JWxi
, Jxixj . Then,

plugging these values for C∗ and ω∗

i
back into equation (17), we will have a partial differential

equation (PDE) for J . If this equilibrium PDE can be solved for J , then explicit solutions for

C
∗ and the ω∗

i
in terms of the model’s parameters and state variables can be obtained.

III.A. Lognormally-Distributed Asset Prices

Let’s do this for the special case in which asset prices are lognormally distributed, that is,

all of the α�’s (including r) and σ�’s are constants. This means that each asset’s expected

rate of return and variance of its rate of return do not change; there is a ��	���	� 
	������	�

������ 	
�� ���. Hence, investment and portfolio choice decisions are independent of the state

variables, x, since they do not affect u, B, the α�’s, or the σ�’s. The only state variable affecting

consumption and portfolio choice decisions is wealth, W . This simplifies the above analysis,

since now J is only a function of W , not x.

Since the utility function is strictly concave, we can define the inverse function G ≡

[
∂u

∂C

]
−�

.

From equation (18), this implies

C
∗

� G�J� , t�. (20)

Also define � ≡ [σij ] 
� �	 
�	 m ×m ���������	 ��
��2� ��
 [νij ] ≡ Ω−1 to be the inverse of

�. For this constant investment opportunity set case, the first order conditions (19) becomes:

� � JW (αi − r)W + JWW

m�

j=1

σijωjW
2
, i � �, . . . ,m. "*#$
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��
 "*#$ ���	� m ���	�� 	+��
���� �� m ��������� (�	 ����
���� ��	

ω
∗

i = −

!W

!WW�

m∑

j=1

'ij�
j − r), i = 1, . . . ,m. (22)

Plugging (20) and (22) back into the optimality equation (17), and using the fact that [νij ] ≡

Ω−1, we have

� � ��&� �� � !t + JW (rW −G) −
J�
W

2JWW

m∑

i=1

m∑

j=1

νij�αi − r)(α� − r). (23)

The equilibrium PDE given by equation (23) may not have an analytic solution for any general

utility function, u.4 However, we can still draw some implications of the individual’s investment

behavior by looking at equation (22). Note that (22) says something rather interesting but

which should be intuitive given a constant investment opportunity set. Since ν�� , α� , and r

are constants, the proportion of each risky asset that is optimally held will be proportional

to −J� /(JWWW )� ����� ���� 
	�	�
� �� 
�	 
�
�� �	��
� �
�
	 �������	� W � (���� 
�	

������
��� �� �	��
� �� ����� ���	
 i 
� ����� ���	
 k �� � ����
��
� 
��
 ���

ω
�

i

ω�

k

=

m∑

j=1

νij�αj − r)

m�

j=1

νkj�αj � r�

(24)

and the proportion of risky asset k to all risky assets is

δk �

m∑

j=1

νkj�αj � r�

m∑

i=1

m∑

j=1

νij(αj − r)

. (25)

This means that the individual splits his portfolio between the risk-free asset, paying return r,

and a portfolio of the risky assets that holds the m risky assets in constant proportions, given

by (25). In general, only the current level of wealth, W (t), and the investor’s time horizon

4
The solution could be obtained numercially, however.
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determine how much is put in the first fund and how much is allocated to the second.

This implies that with a constant investment opportunity set, one can think of the invest-

ment decision as being just a two-asset decision, where the choice is between the risk-free asset

paying rate of return r and a risky asset having expected rate of return α and variance σ
�
where

α �

m∑

i=1

(i
i

�
2
≡

m∑

i=1

m∑

j=1

(i(j�ij �

(26)

Let’s now look at a special case of the above, that is, when utility is of the hyperbolic

absolute risk aversion (HARA) class.

III.B. Lognormally-Distributed Asset Prices and HARA Utility

HARA utility functions are defined by

u�C, t� � e
�ρt

v(C)

��	�	 v(C) =
1−γ
γ

(
βC
1−γ

+ η

)
γ

.

(27)

Special cases of HARA include power (constant relative risk-aversion) utility, exponential

(constant absolute risk aversion), and quadratic utility. Robert C. Merton (1971) “Optimum

Consumption and Portfolio Rules in a Continuous-Time Model” !� �	�
 �� "��	��
� #�����

3, p.373-413 finds explicit solutions for this class of utility functions.

For this HARA case, and assuming a zero bequest function, B ≡ 0, we have from equation

(18) that optimal consumption is of the form

C�

=
1− γ

β

[
eρtJW

β

] �

�−1

−

(1− γ)η

β
(28)

and using (22) and (24), the proportion put in the risky asset is

ω
∗

� �

JW

JWWW

α − r

σ�
. (29)
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This solution is incomplete since C∗ and ω∗ are in terms of J� and J�� . But we can solve for J

in the following manner. Plug (28) and (29) into the optimality equation (17), or, alternatively,

directly simplify equation (23) to obtain

� �
��− γ)2

γ

e
−ρt

[
eρtJW

β

] γ

γ�1

+ Jt +

�
(1− γ)η

β
+ rW

�
JW −

J2
W

JWW

�α� r�2


σ2
. (30)

This is the equilibrium PDE for J that can be solved subject to the boundary condition

J(W, T ) = 0, which is implied by the zero bequest. Note that this is a nonlinear PDE. They

usually do not have an analytic solution but must be solved numerically. However, the above

equation is of the Bernoulli-type and can be simplified by a change in variable Y = J
�

�−� .

Merton (1971) finds a solution for this equation, J(W, t)�. It is given by equation (5.47)

on page 139 of the reprint of his 1971 article in his 1990 book $�	�
	 � �%#
�� &
	�	��, Basil

Blackwell, Oxford. Given this solution for J , we can then calculate JW to solve for C∗ (given

by Merton’s equation (5.48)) and then calculate JWW to solve for ω∗. It is interesting to note

that for this class of HARA utility, C∗ is of the form

C�t�
∗

� aW �t� � b (31)

and

ω
∗

� g �
h

W
(32)

where a, b, g, and h are, at most, functions of time. For the special case of constant relative

risk aversion where v�C� �
C
�

γ
, the explicit solution is

5

����∗ = aW (t) ",,$

��


ω
∗ =

α − r

(1− γ)σ2
(34)

where a �
γ

γ−1

[
�

�
� r −

1

2

(
�−r

σ

)2 1

1−γ

]
� �������
��� �� � ����
��
 ������
��� �� �	��
�� E�	

���� �		� 
��
 �� ���� ��	����� ����	��	� "γ becomes more negative), the individual holds less

5
See Ingersoll (1987) page 275.
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wealth in the risky asset portfolio.
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