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Intertemporal Consumption and Portfolio Choice in
Continuous-Time

I. Specifying the Consumption and Portfolio Choice Model in Continuous-

Time

Having already studied an individual’s intertemporal consumption and portfolio choice prob-
lem in a discrete-time setting, we now consider a similar problem but where asset prices follow
continuous-time stochastic processes and the individual makes consumption and portfolio deci-
sions continuously. Consider an individual’s choice regarding the level of his consumption and

savings, where his savings can be invested in n different assets. As before, we define

C(t) = individual’s level of consumption at date ¢,

P(t) = (Pi(t), Py(t), ... ..., Po(t)) the prices of the n assets at date ¢.

However, now assume the i asset price follows the process:
dP;(t) ) Pi(t) = «; (x,t) dt + o;(x,t) dz; (1)

where i = 1,...,n, and (0;dz)(0;dz;) = o;;dt. It is assumed that o; and o; need not be
constants but could be functions of time and/or functions of a kxl vector of state variables,
which we denote by z(t). When the a; and o; are time-varying, the investor is said to face
changing investment opportunities. The state variables affecting the moments of the asset
prices, x (t), can, themselves, follow diffusion processes. Let the it" state variable follow the

process

Qi = a; (o, 1) dt + b (2, 1) dgy @)
where i = 1,..., k, and (b; dg;)(b; dg;) = bs;dt and (b; dg;) (o dz;) = ¢;; di.
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To derive the proper continuous-time budget constraint for the individual, it is worthwhile
to first consider the analogous budget constraint for a discrete-time model where each period
is of length h. We will then take the limit as h — 0.

Let N;(t) be the number of shares held in asset ¢ from date ¢ to ¢ 4+ h. The individual begins

period ¢ with wealth, W (¢), which equals last period’s holdings at date ¢ prices:

n

W(t) = > Ni(t —h)Pi(t). (3)

=1

Given these date ¢ prices, the individual decides on his level of consumption over the period,
C(t) h, which must equal the net sales of assets.! Note that C'(¢), the individual’s “level” of
consumption at time ¢, now represents the average rate of consumption over the interval from
ttot+nh.

—CR = SIN(E) — Ni(t — )] P(2). (1)

At the start of the next period, t + h, we have:

—Ct+h)h = i[Ni<t+h)—Ni<t)]H<t+h)

n

= Zn:[Ni(t + 1) = N [Bi(t + 7) = ()] + D _[Ni(t + 1) = Ni(0)] Bi(0)
=1 =1 (5)

and
n

W(t+h) = > Ni(t) Bt +h). (6)
i—1
Taking the limits of (5) and (6) as h — 0, and keeping in mind that the P;(¢) and N;(¢) now

represent stochastic processes, we obtain the stochastic differential equation
n n
—C(tydt = Y dNi(t)dB(t) + > dN;(t) Pi(t) (7)
i=1 i=1

and

'Tt is assumed that there are no other sources of wealth, such as wage income



Applying It6’s Lemma to (8), we can derive the dynamics of the individual’s wealth:

n n n

AW = Y Ni(t)dPi(t) + > dN;(t) B(t) + > dN;(t) dFi(2). (9)

Substituting (7) into (9), we obtain:
AW = > Ni(t)dP(t) — C(t)dt. (10)
i—1

Equation (10) says that the individual’s wealth changes due to capital gains income less the
amount consumed.

Now, as in the discrete-time case, instead of solving for the individual’s optimal C(¢) and
N;(t), i =1, ..., n, it will be more convenient to solve for C(¢) and the proportion of wealth
held in each particular asset, defined as w;(t) = N;(¢)P;(t)/W(t). Substituting this in for N;

and substituting (1) for dP;, equation (10) becomes:
n n
AW = > wiWazdt — C(t)dt + Y w;Wo;dz. (11)
=1 =1

It is convenient to assume that one of the assets, let it be the n'™ asset, is risk-free. This

implies 0, = 0. Define 7 = o, and m =n — 1.2 Then (11) can be rewritten
m m
AW = > wilas —r)Wdt + (W —=C(t))dt + Y w;Wo;dz. (12)
=1 =1

With these preliminaries out of the way, we can now state the individual’s intertemporal con-

sumption and portfolio choice problem:

o Eo l /0 w(C(t), ) dt + BW(T),T) (13)

subject to the constraints

W(t) > 0, for all te[0, 7] (14a)

2In general, 7 may be a function of x (t). For example, 7 (t) could follow a diffusion process such as that of
the Vasicek (1977) or Cox, Ingersoll, and Ross (1985) term structure models.



m m
AW = > wilay =)W dt + (W —C(t))dt + Y w;Wo;dz (14b)
i=1 =1
where w denotes the vector of risky-asset portfolio weights {w1, ..., wn}, the utility function,

u, i1s assumed to be strictly concave in C' and the bequest function B is assumed to be strictly
concave in W. This problem, in which the individual has time-separable utility of consumption,
is analogous to the discrete-time problem studied earlier.

Note that some possible constraints are have not been imposed. For example, one might
wish to impose the constraint C'(f) > 0 (nonnegative consumption) and/or w; > 0 (no short
sales). However, for some utility functions, negative consumption is never be optimal, so that
C(t) > 0 might be imposed automatically.®

Before we solve this problem, let’s make a digression on stochastic dynamic programing in

a continuous-time setting.

II. A Digression on Stochastic Dynamic Programming in Continuous Time

Consider a simple (single choice variable), generic version of the problem specified in (13).

{c}

max By [ / Tu<c<u>7x<u))du] D.1)

subject to

dr = a(z, c)dt + b(z, ¢)dz (D.2)

where ¢(t) is a control variable (such as a consumption and/or vector of portfolio proportions)
and z(t) is a state variable (such as wealth and/or a variable that changes investment opportu-

nities, that is, a variable that affects the a;’s and/or ¢;’s). Define the indirect utility function,

J(x(t), t,7T):

{c}

T(w(t), t,T) = max Fy l /t ), 2(0) d,,L] (D.3)

3For example, if l(l)m W = 00, as would be the case if the individual’s utility displayed constant
c(t)—0

relative risk aversion (power utility), then the individual would always avoid non-positive consumption. However,
other utility functions, such as constant absoute risk aversion (negative exponential) utility, do not display this
property.



which can be written as

T

t+AL
J(x(t), t, T) = ma By [/ u(c(p), x(p)) dp + u(c(p), x(p)) dp | - (D.4)
c t t+AtL

Now let us apply Bellman’s Principle of Optimality. This says that an optimal policy must be
such that for a given future realization of the state variable, z(t + At), (whose value may be
affected by the optimal control policy at date ¢ and earlier), any remaining decisions at date
t + At and later must be optimal with respect to z(t + At). In other words, an optimal policy

must be time consistent. This allows us to write

At T
T(t), 1, T) = mE[ [ e e+ e [/ u(C(u)va’(u))duH

{c} +At
t+AL
= max I l /t w(e(u),a()) du + J(a(t + AL, t+ A, T)]. (D.5)

Now approximate the first integral and also expand J(x(t + At), t + At, T') around z(t) and ¢

in a Taylor series to get

J(z(t), t, T) = r{{lngt[u(c(t),x(t))At + J(x(t), t, T) + J.Azx + JAt
+ %Jm@x)? b L(An)(AY) + %Jtt(At)Q b o(Af) (D.6)
where
Az =~ a(z, c)At + b(z, c)Az + o(At). (D.7)

Substituting (D.7) into (D.6), and subtracting J(z(t), ¢, T') from both sides, one obtains:

0 = r{{la}xEt [u(c(t), z(t))At + AJ + o(At)] (D.8)
where
AJ = |J; + Jea + %meQ At + JbAz. (D.9)



Note that (D.9) is just the discrete-time version of It&’s Lemma. Hence, if we note that in (D.8)
the term FE [J,bAz] = 0, then divide both sides of (D.8) by At, and, finally, take the limit as
At — 0, we have

0 = max |u(e(0), @(0) + + Jaa + %szﬁ (D.10)

which is the stochastic, continuous-time Bellman equation. It is sometimes written as

0 = r?gx [u(e(t), x(t)) + L[J] ] (D.11)

where L[] is the Dynkin operator, being the “drift” term (expected change) in dJ(x, t) that one
obtains by applying Ito’s Lemma to J(x, t). (D.11) then gives us a condition that the optimal
stochastic control policy, ¢, must satisfy. Let us now return to the consumption and portfolio

choice problem and apply this tool.

II1. Solving the Continuous-Time Consumption and Portfolio Choice Problem

Define the indirect utility of wealth function, J(W, z, t), as

HWor 1) = max F l /t w(C(s), s)ds + BOW(T), T) (15)

and define L as the Dynkin operator with respect to the state variables W and x;, ¢t =1, ..., k.

In other words

a m
L = Fris ngwi(ai—r)W—l—(rW—C]— + Zal ™
(16)
1m.m 52
EZ::Z:: i W W 2ZZ Y s 0, +2;W“J%a oW
Thus, using (D.11), we have
0 max c(t),t) + L|J]]. 17
= mex w(C(0,0) + 1] )



Given the concavity of w and B, equation (17) implies that the optimal choices of C(¢) and
w(t) satisty the conditions we obtain from differentiating w(C/(¢), t) + L[J] and setting the result
equal to zero. Hence, the first order conditions are:
o aJ

~(C

-2 (18)

0 =55~ 5%

a.J 92J e o 2J & ‘

0 = W(O&i_T)W + W;Uz‘jij + W;W¢Z]7 1=1,...,m. (19)
Note that equations (18) and (19) are n equations in the n unknowns C*(t),w}(t),...w’ 4 (¢).
For certain functional forms for v and the a;’s, 0;;’s, and ¢,;’s we can solve for C* and the w;’s
as functions of the state variables W, z, and derivatives of J, that is, Jw, Jwz,, Ju;a;- Then,
plugging these values for C* and w} back into equation (17), we will have a partial differential

equation (PDE) for J. If this equilibrium PDE can be solved for J, then explicit solutions for

C* and the w} in terms of the model’s parameters and state variables can be obtained.

ITI.A. Lognormally-Distributed Asset Prices

Let’s do this for the special case in which asset prices are lognormally distributed, that is,
all of the a;’s (including r) and o;’s are constants. This means that each asset’s expected
rate of return and variance of its rate of return do not change; there is a constant investment
opportunity set. Hence, investment and portfolio choice decisions are independent of the state
variables, x, since they do not affect u, B, the «;’s, or the o;’s. The only state variable affecting
consumption and portfolio choice decisions is wealth, W. This simplifies the above analysis,
since now J is only a function of W, not x.

Since the utility function is strictly concave, we can define the inverse function G = [%
From equation (18), this implies

C* = G(dw, 1) (20)

Also define Q = [044] to be the m x m covariance matrix, and [v;;] = Q! to be the inverse of

Q. For this constant investment opportunity set case, the first order conditions (19) becomes:

m
0 = Jw<ai—7“)W + JWWZUijoW27 1=1,...,m. (21)
=1



Note that (21) gives m linear equations in m unknowns. The solutions are

(22)

E

w;, = JWWWZV” —r), i=1,...

Plugging (20) and (22) back into the optimality equation (17), and using the fact that [v;;] =

Q1, we have

2 m m
JW

Z Z vii(oy —r)(a; — 7). (23)

= u(G,t) + J + Jw(EW -G) —
2JWWZ 15=1

The equilibrium PDE given by equation (23) may not have an analytic solution for any general
utility function, u.* However, we can still draw some implications of the individual’s investment
behavior by looking at equation (22). Note that (22) says something rather interesting but
which should be intuitive given a constant investment opportunity set. Since v;;, a;, and r
are constants, the proportion of each risky asset that is optimally held will be proportional
to —Jw/(JwwW), which only depends on the total wealth state variable, W. Thus, the

proportion of wealth in risky asset ¢ to risky asset k is a constant, that is,

m
> vigla; =)
j—1

“_ 24)

W
> vrilag —7)
j=1

and the proportion of risky asset & to all risky assets is
m
Z Vii(ey — )
§p = —— (25)

This means that the individual splits his portfolio between the risk-free asset, paying return r,
and a portfolio of the risky assets that holds the m risky assets in constant proportions, given

by (25). In general, only the current level of wealth, W(¢), and the investor’s time horizon

*The solution could be obtained numercially, however.



determine how much is put in the first fund and how much is allocated to the second.
This implies that with a constant investment opportunity set, one can think of the invest-
ment decision as being just a two-asset decision, where the choice is between the risk-free asset

paying rate of return  and a risky asset having expected rate of return o and variance o2 where

a = Z(Siai
i=1
(26)

O'2 = iiéléjalj

i=1 j=1
Let’s now look at a special case of the above, that is, when utility is of the hyperbolic
absolute risk aversion (HARA) class.
IT1.B. Lognormally-Distributed Asset Prices and HARA Utility

HARA utility functions are defined by

u(C, 1) = e P(C)
27
where U(C) — Lﬂ_(%_‘_n)f ( )

Special cases of HARA include power (constant relative risk-aversion) utility, exponential
(constant absolute risk aversion), and quadratic utility. Robert C. Merton (1971) “Optimum
Consumption and Portfolio Rules in a Continuous-Time Model” Journal of Economic Theory
3, p.373-413 finds explicit solutions for this class of utility functions.

For this HARA case, and assuming a zero bequest function, B = 0, we have from equation

(18) that optimal consumption is of the form

1
o — 1—7[@’2@]71 _ (=

_— 28
€ € € (29
and using (22) and (24), the proportion put in the risky asset is
J _
W= oW 2T (29)

- _JWWW O'2



This solution is incomplete since C* and w* are in terms of Jy and Jyyw. But we can solve for J
in the following manner. Plug (28) and (29) into the optimality equation (17), or, alternatively,

directly simplify equation (23) to obtain

o
o @ ;7)26112& le”t;vv] T ((1 —ﬁv)n +7~W> Ty — Jifvw (a2;27“)2' (30)
This is the equilibrium PDE for J that can be solved subject to the boundary condition
J(W, T) = 0, which is implied by the zero bequest. Note that this is a nonlinear PDE. They
usually do not have an analytic solution but must be solved numerically. However, the above
equation is of the Bernoulli-type and can be simplified by a change in variable Y = J =y
Merton (1971) finds a solution for this equation, J(W, ¢)*. It is given by equation (5.47)
on page 139 of the reprint of his 1971 article in his 1990 book Continuous-Time Finance, Basil
Blackwell, Oxford. Given this solution for J, we can then calculate Jy to solve for C* (given
by Merton’s equation (5.48)) and then calculate Jyw to solve for w*. It is interesting to note

that for this class of HARA utility, C* is of the form
Ct)" = aW(t) + b (31)

and

S =gt (32)

h
w
where a, b, g, and h are, at most, functions of time. For the special case of constant relative

risk aversion where v(C) = %, the explicit solution is®

C@)r = aW(t) (33)
and
wr = W (34)

where a = 73—1 {f—y —r— % (O‘;T)Q ﬁ} Consumption is a constant proportion of wealth. One

also sees that as risk aversion increases (7 becomes more negative), the individual holds less

®See Ingersoll (1987) page 275.

10



wealth in the risky asset portfolio.
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