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Rational Speculative Asset Price Bubbles

Consider the following multi-period discrete-time model, which can be considered to be a

special case of the Lucas (1978) model. It is assumed that investors are risk neutral and that

there is a constant, positive one-period risk-free interest rate equal to r. There is also a risky

asset with price pt at date t. The risky asset is assumed to pay a dividend of dt, which is

declared at date t and paid at the end of the period.

Given these assumptions, the expected rate of return on the risky asset, which equals the

dividend price ratio plus the expected capital gain, will equal the risk free rate.

Et [pt+1]− pt

pt
+

dt

pt
= r (1)

where Et [·] = E [· | It] is the expectation operator given information at date t, It. Re-arranging

the equilibrium condition (1), we have:

pt = aEt [pt+1] + adt (2)

where a ≡ 1

1+r
< 1. Thus, a is simply the one-period discount factor. The difference equation

(2) can be solved by repeated substitution. Update (2) by one period and insert it in for pt+1

in the original equation (2).

pt = aEt [aEt+1 [pt+2] + adt+1] + adt (3)

= a
2
Et [pt+2 + dt+1] + adt

since E [E [x | It+1] | It] = E [x | It]. Repeating this procedure results in

pt =

T∑

i=0

a
i+1

Et [dt+i] + a
T+1

Et [pt+T+1] (4)

For the first term to converge (that is, be finite), the expected path of dividends must grow at

a rate less than r. Now if
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lim
T→∞

aT+1Et [pt+T+1] = 0 (5)

Then we will obtain the solution:

pt =

∞∑

i=0

a
i+1

Et [dt+i] (6)

This is known as the “fundamental” solution. If we then specify a process for dividends, we

can then solve explicitly for pt. For example, suppose dividends followed the auto-regressive

process

dt −
¯d = ρ

(
dt−1 −

¯d
)
+ et (7)

where et is known at date t but Et [et+1] = 0. In this case

Et [dt+i] = d̄+ ρi
(
dt − d̄

)
(8)

Substituting (8) into (6) and assuming ρ < 1 + r, one obtains

pt =
a

1− a
d̄+

a

1− aρ

(
dt − d̄

)
(9)

Note that for the special case of ρ = 0 and et = 0, so that dt = d̄, we have

pt =
a

1− a
d̄ (10)

While the “fundamental” solution, equation (6), is one solution to the stochastic difference

equation (4), it is not the only solution. We can have a “rational speculative bubble” solution

as well. To see this, define the fundamental solution in equation (6) as p∗
t
, that is, p

∗

t
≡

∑
∞

i=0
a
i+1

Et [dt+i]. Next, consider another candidate solution of the form

pt = p
∗

t + bt (11)

What restrictions must we impose on bt for equation (11) to be a solution to equation (4)?

Note that Et [pt+1] = Et

[
p
∗

t+1

]
+Et [bt+1]. Thus, using equation (2) we have
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pt = p
∗

t
+ bt = aEt

[
p
∗

t+1

]
+ aEt [bt+1] + adt (12)

By the definition of p∗t in (6), this implies

bt = aEt [bt+1] (13)

or

Et [bt+1] = a
−1
bt (14)

Hence, for any stochastic process bt that satisfies (14), pt will be another solution to equation

(4). Since a < 1, bt explodes in expected value:

lim
i→∞

Et [bt+i] = lim
i→∞

a
−i
bt =






+∞ if bt > 0

−∞ if bt < 0

(15)

The exploding nature of bt provides a rationale for viewing the solution (11) as a “bubble”

solution. Only when bt = 0, do we get the fundamental solution.

Suppose that bt follows a time trend, that is,

bt = b0a
−t

(16)

and suppose dt = d̄, so that the fundamental solution is a constant: p∗
t
=

a

1−a
d̄. In this case,

pt =
a

1− a
d̄+ b0a

−t (17)

implies that the risky asset price grows exponentially forever. In other words, we have an

ever-expanding speculative bubble.

Next, consider a possibly more realistic modeling of bt:

bt+1 =






(aq)−1 bt + et+1 with probability q

et+1 with probability 1− q
(18)
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with Et [et+1] = 0. Note that this process satisfies the condition in (14), so that pt = p∗
t
+ bt

is again a valid bubble solution. In this case, the bubble continues with probability q each

period but “bursts” with probability 1−q. If it bursts, it returns in expected value to zero. To

compensate for the probability of a “crash”, the expected return, conditional on not crashing,

is higher that in the previous example of a never ending bubble. The disturbance et allows

bubbles to have additional noise and allows new bubbles to begin after the previous bubble has

crashed. This bursting bubble model can be generalized to allow q to be stochastic.
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