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I. Introduction

These notes consider an expected utility maximizing individual’s consumption and portfolio

choices over many periods. Previously, a similar analysis was presented in a single period or

static context. Here, the intertemporal nature of the problem is explicitly modeled. The

approach follows the theory developed in the late 1960s and early 1970s by Paul A. Samuelson

and Robert C. Merton, among others. The solution technique involves dynamic programming.

While this dynamic programming technique is not the only approach to solving problems of

this type, it can sometimes be the most convenient and intuitive way of deriving solutions.
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When we distinguish between an investor’s decision or trading period (the time between

portfolio rebalancing or consumption choices) versus the investor’s planning horizon (for ex-

ample, a remaining lifespan), we explicitly model the individual’s multiple consumption and

portfolio decisions over a single planning period. This cannot be done in a single-period frame-

work: with only one period an investor’s decision period and planning horizon are the same.

However, results from a single-period analysis are often be useful because sometimes multi-

period problems can be transformed into single-period ones, as will be illustrated below.

Consider an environment in which an individual chooses his level of consumption and the

proportions of his wealth invested n different assets, where he takes the stochastic processes

followed by the n different assets as given. This implies that security markets are perfectly

competitive in the sense that the (small) individual is a price-taker in security markets. An

individual’s trades do not impact the price of the security. For most investors trading in liquid

security markets, this is a reasonably realistic assumption. In addition, we assume that there

are no transactions costs or taxes when buying or selling assets, so that security markets are

“friction-less.”

1
J. Cox and C.F. Huang (1989) “Optimum Consumption and Portfolio Policies When Asset Prices Follow

a Diffusion Process,” Journal of Economic Theory 49, p.33-83, provide an alternative martingale approach to

solving consumption and portfolio choice problems.
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Solving the individual consumer’s consumption and portfolio choice problem is of interest

in that it provides a theory of optimal investment strategies. However, the solution to this

problem is also an important part of any general equilibrium theory of capital asset pricing.

Combining this model of consumer preferences over consumption and securities with a model

of firm production technologies can then lead to a general equilibrium model of the economy

that determines equilibrium asset price processes, as is done in J. Cox, J. Ingersoll, and S.

Ross (1985) “An Intertemporal General Equilibrium Model of Asset Prices,” Econometrica 53,

p.363-384.

In these notes, we first solve the individual’s consumption-portfolio choice problem assuming

that the individual’s decision interval is a discrete-time period. Later, we assume that this

interval is instantaneous, that is, the individual can make consumption and portfolio choices

continuously.2 This latter assumption often simplifies problems and can lead to sharper results.

When we move from discrete-time to continuous-time, continuous-time stochastic processes will

be used to model security prices.

II. Assumptions and Notation of the Discrete-Time Model

The following analysis is based on the unpublished class notes on Portfolio Theory and

Capital Markets by Robert C. Merton.

A.1 Preferences:

The individual maximizes his expected utility of consumption over a T period planning

horizon. Utility depends on each period’s consumption level, C (0) , C (1) , ..., C (T − 1) as well

as a terminal bequest, W (T ). We assume that utility is given by the additively-separable

function

Û [C (0) , C (1) , ..., C (T − 1) ,W (T )] ≡
T−1∑

t=0

U (C (t) , t) +B (W (T ) , T )

The individual’s objective of expected utility maximization is then

maxE0

[
T−1∑

t=0

U (C (t) , t) +B (W (T ) , T )

]
(1)

2The discrete-time presentation is covered in Chapter 11 while the continuous-time material is covered in
Chapter 13 of J. Ingersoll (1987) Theory of Financial Decision Making Rowman and Littlefield, Totowa, NJ.
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where E0 [·] is the expectation operator at date 0. U and B are assumed to be increasing,

concave functions.

A.2 Budget and Accumulation Equation:

At date t, the individual has tangible wealth equal to W (t) and knows the prices of n

different securities, Pi (t) , i = 1, ..., n. He also receives y (t) in wage income for the period and

can use this as well as the proceeds from any security sales made at current prices to consume

at level C (t). Hence, the amount he has left over to invest among the n securities is

I (t) ≡W (t) + y (t)−C (t) =

n∑

i=1

Ni (t)Pi (t) (2)

where Ni (t) is the number of shares owned of security i having price Pi (t) per share.

Having made these investments, the individual’s tangible wealth at the start of the next

period is then

W (t+ 1) =

n∑

i=1

Ni (t)Pi (t+ 1) (3)

Hence, using (2) and (3), the change in wealth, W (t+ 1)−W (t), can be written as

W (t+ 1)−W (t) =

n∑

i=1

Ni (t)Pi (t+ 1) + y (t)−C (t)−

n∑

i=1

Ni (t)Pi (t) (4)

=

n∑

i=1

Ni (t) [Pi (t+ 1)−Pi (t)] + y (t)− C (t)

which says that the change in tangible wealth comes from capital gains plus net savings out of

wage income.

It is often more convenient to make portfolio proportions, ωi, rather than numbers of shares,

to be the individual’s decision variables:

ωi ≡

Ni (t)Pi (t)

I (t)
, i = 1, 2, ..., n (5)

where
∑

n

i=1
ωi (t) = 1. Using (5) to substitute for Ni (t) in equation (4), we have
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W (t+ 1)−W (t) =

n∑

i=1

ωi (t) I (t)

Pi (t)
[Pi (t+ 1)−Pi (t)] + y (t)− C (t) (6)

= I (t)

n∑

i=1

ωi (t)
Pi (t+ 1)

Pi (t)
− I (t) + y (t)− C (t)

and since from (2) W (t) = I (t)− y (t) + C (t), re-arranging equation (6) gives us

W (t+ 1) = I (t)

n∑

i=1

ωi (t)
Pi (t+ 1)

Pi (t)
= [W (t) + y (t)− C (t)]

n∑

i=1

ωi (t)
Pi (t+ 1)

Pi (t)
(7)

It will also be useful to define zi (t) ≡ Pi (t+ 1) /Pi (t) as the return on the ith security

over the t
th

period and Z (t) ≡ W (t+ 1) /I (t) =
∑

n

i=1
ωi (t) zi (t) as the return on the whole

portfolio. Now if we assume that the n
th asset is a one-period risk-less security and has a

single-period riskless return of R (t), then

Z (t) =

m∑

i=1

ωi (t) [zi (t)−R (t)] +R (t) (8)

where m ≡ n− 1. Using these definitions, equation (7) can be re-written as

W (t+ 1) = Z (t) [W (t) + y (t)− C (t)] (9)

III. The Derived Utility of Wealth Function

The derived utility of wealth function, J (W (t) , t) is defined as:

J [W (t) , t] = maxEt

{
T−1∑

s=t

U [C (s) , s] +B [W (T ) , T ]

}
(10)

where “max” means to choose the decision variables C (s) and {ωi (s)} for s = t, t+1, ..., T − 1

and i = 1, ...,m so as to maximize the expected value of the term in brackets. Note that J

is a function of current wealth and all information up until and including date t, but not of

the current or future decision variables since they are assumed to be set to those values that
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maximize lifetime expected utility. Hence, J can be described as a “derived” utility of wealth

function.

IV. The Solution Technique: Stochastic Dynamic Programming

Note from the definition of J that

J [W (T ) , T ] = B [W (T ) , T ] (11)

Now working backwards, consider the individual’s optimization problem when he has a single

period left in his life at date T − 1.

J [W (T − 1) , T − 1] = max
C(T−1),{ωi(T−1)}

{U [C (T − 1) , T − 1] +ET−1B [W (T ) , T ]} (12)

To clarify how W (T ) depends explicitly on C (T − 1) and {ωi (T − 1)}, use equations (8) and

(9) to substitute for W (T ) in equation (12)

J [W (T − 1) , T − 1] = max
C(T−1),{ωi(T−1)}

(13)

{
U [C (T − 1) , T − 1] +ET−1B

[(
m∑
i=1

ωi [zi −R] +R

)
(W (T − 1) + y (T − 1)− C (T − 1)) , T

]}

Except for the dependence on consumption, C (T − 1), equation (13) represents a standard

single-period portfolio selection problem. To solve (13), we differentiate with respect to each

decision variable and set the resulting expressions to zero:

∂

∂C
: 0 = UC [C∗

, T − 1]−ET−1

{
BW (W (T ) , T )

(
m∑
i=1

ωi [zi −R] +R

)}
(14a)

∂

∂ωi

: 0 = ET−1 {BW (W (T ) , T) [zi −R]} , for i = 1, ...,m (14b)

where the subscripts on U and B denote partial differentiation. Using (14b), we see that (14a)
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can be re-written as

0 = UC [C∗, T − 1]−ET−1 {BW (W (T) , T )R} (15)

Thus, we can re-write the first-order optimality conditions as

UC [C∗

, T − 1] = RET−1 {BW (W (T ) , T )} (16a)

and

ET−1 {ziBW (W (T ) , T)} = ET−1 {zjBW (W (T) , T )} (16b)

= RET−1 {BW (W (T ) , T )} , for i, j = 1, ...,m

Equations (16a) and (16b) represent m + 1 equations that determine the optimal choices of

C
∗ and {ω

∗

i
}. In particular, equations (16b) should look familiar as they are identical to the

first-order “Euler” conditions for a single-period portfolio maximizer (but with “B” replacing

“U”). If we substitute these optimal decision variables back into equation (13) we have:

J [W (T − 1) , T − 1] = U [C∗ (T − 1) , T − 1] (17)

+ET−1B

([
m∑
i=1

ω
∗

i [zi −R] +R

]
[W (T − 1) + y (T − 1)− C∗

(T − 1)] , T

)

Now if we differentiate (17) totally with respect to W (T − 1), we have:

JW = UC
∂C

∗

∂W (T − 1)
+ET−1

{[
∂W (T )

∂W (T − 1)
+

m∑

i=1

∂W (T )

∂ω∗
i

∂ω
∗

i

∂W (T − 1)
+
∂W (T )

∂C∗

∂C
∗

∂W (T − 1)

]
BW

}

= UC
∂C

∗

∂W
+ (18)

+ET−1

{[
m∑
i=1

[zi −R] (W + y −C
∗)
∂ω

∗

i

∂W
+

(
m∑
i=1

ω
∗

i [zi −R] +R

)(
1−

∂C
∗

∂W

)]
BW

}
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Using the equalities in (16), we see that (18) simplifies to JW = RET−1 {BW }. Thus using

(16a) we finally obtain

JW [W (T − 1) , T − 1] = UC [C∗

(T − 1) , T − 1] (19)

which is referred to as the “envelope condition.” It says that the individual’s optimal policy

equates his marginal utility of current consumption, UC , to his marginal utility of wealth (future

consumption).

Having solved the individual’s problem with one period to go in his planning horizon, we

next consider his optimal consumption and portfolio choices with two periods to go, at date

T − 2. The individual’s objective at this date is

J [W (T − 2) , T − 2] = maxET−2 {U [C (T − 2) , T − 2] + U [C (T − 1) , T − 1] +B [W (T ) , T ]}

= max {U [C (T − 2) , T − 2] +ET−2 (U [C (T − 1) , T − 1] +B [W (T ) , T ])}

(20)

because at date T − 2, W (T − 2) is known and, therefore C (T − 2) can be chosen with cer-

tainty. The individual must maximize the above expression by choosing C (T − 2) as well as

{ωi (T − 2)}. However, note that he wishes to maximize an expression that is an expectation

over quantities U [C (T − 1) , T − 1] + B [W (T ) , T ] that depend on future decisions, that is,

C (T − 1) and {ωi (T − 1)}. What should one assume that these future values of C (T − 1) and

{ωi (T − 1)} will be? The answer comes from the Principle of Optimality. It states:

“An optimal set of decisions has the property that given an initial decision, the

remaining decisions must be optimal with respect to the outcome that results from

the initial decision.”

The “max” in (20) is over all remaining decisions, but the principle of optimallity says that

whatever decision is made in period T − 2, given the outcome, the remaining decisions (for

period T − 1) must be optimal (maximal). In other words
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max
{(T−2),(T−1)}

(Y ) = max
{T−2}

[
max

{T−1,| outcome from (T−2)}
(Y )

]

This implies that (20) can be re-written as

J [W (T − 2) , T − 2] = (21)

max
{C(T−2),ω(T−2)}

{
U [C (T − 2) , T − 2] +ET−2

(
max

{C(T−1),ω(T−1)}
U [C (T − 1) , T − 1] +B [W (T) , T ]

)}

Now note that if X is any stochastic process, from the definition of conditional expectation, we

have ET−2 [ET−1 (X)] = ET−2 [X]. Thus, (21) can be re-written as

J [W (T − 2) , T − 2] = max
{C(T−2),ω(T−2)}

(22)

{
U [C (T − 2) , T − 2] +ET−2

(
max

{C(T−1),ω(T−1)}
ET−1 (U [C (T − 1) , T − 1] +B [W (T ) , T ])

)}

and then using the definition of J , results in

J [W (T − 2) , T − 2] = max
{C(T−2),ω(T−2)}

{U [C (T − 2) , T − 2] +ET−2 (J [W (T − 1) , T − 1])}

(23)

Now what is interesting about the form of equation (23), the individual’s problem at time

T −2, is that if we compare it to equation (12), the individual’s problem at time T −1, the two

problems are quite similar. The only difference is that in (23) we replace the known function

of wealth next period, B, with another (known in principle) function of wealth next period, J.

But the solution to (23) will be of the same form as that for equation (12). Thus, the optimality

conditions for (23) are:
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UC [C∗

(T − 2) , T − 2] = RET−2 {JW [W (T − 1) , T − 1]} = JW [W (T − 2) , T − 2] (24a)

ET−2 {JW [W (T − 1) , T − 1] zi} = RET−2 {JW [W (T − 1) , T − 1]} , for i = 1, ...,m (24b)

Based on the above pattern, inductive reasoning implies that for any t = 0, 1, ..., T −1, we have

J [W (t) , t] = max
{C(t),ω(t)}

U [C (t) , t] +Et {J [W (t+ 1) , t+ 1]} (25)

and, therefore, the date t optimality conditions are

UC [C
∗

(t) , t] = R (t)Et {JW [W (t+ 1) , t+ 1]} = JW [W (t) , t] (26a)

Et {zi (t)JW [W (t+ 1) , t+ 1]} = R (t)Et {JW [W (t+ 1) , t+ 1]} (26b)

Now (26a) says that the optimal policy is to choose today’s consumption such that the marginal

utility of current consumption equals the derived marginal utility of wealth (future consump-

tion). In addition, (26b) says that portfolio weights are chosen in a similar manner to the

single-period utility of wealth maximization problem, except that the derived utility of wealth

function, J (W ), replaces the single-period problem’s end of period utility of wealth function

U (W ). For example, see the notes “State Preference Theory” for the solution to the single

period portfolio problem.

While (26a) and (26b) are fairly simple expressions, we must remember that their depen-

dence on J (W ), the derived utility of wealth (future consumption) function, implies that, in

general, they depend on future contingent investment opportunities (the distributions of future

asset returns (zi (t+ j) ,R (t+ j)), future income flows, y (t), and states of the world that may

affect future utilities (U (·, t+ j)).

Solving the above system involves starting from the end of the planning horizon and dynam-
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ically programing backwards toward the present. Thus, for the last period, T , we know that

J [W (T ) , T ] = B [W (T ) , T ]. As we did previously, we substitute B [W (T ) , T ] for J [W (T ) , T ]

in equations (25) and (26) for date T −1 and solve for J [W (T − 1) , T − 1]. This is then substi-

tuted into equations (25) and (26) for date T−2 and one then solves for J [W (T − 2) , T − 2]. If

we proceed using this “bootstrap” technique, we eventually obtain J [W (0) , 0] and the solution

is complete. The optimal policy will be of the form:

C
∗ (t) = g [W (t) , y (t) , t] (27a)

ω∗

i
(t) = h [W (t) , y (t) , t] (27b)

V. An Example Using Bernoulli Log Utility

Assume that U [C (t) , t] ≡ δt ln [C (t)], B [W (T ) , T ] ≡ δT ln [W (T)], and y (t) ≡ 0, where

δ =
1

1+ρ
and ρ � 0 is the individual’s subjective rate of time preference. Now at date T − 1,

using condition (14a), we have

UC = δ
T−1

1

C∗
= ET−1

{
BW

(
m∑
i=1

ω
∗

i [zi −R] +R

)}
(28)

= δ
T
ET−1

{ ∑
m

i=1
ω
∗

i
[zi −R] +R

(
∑

m

i=1
ω
∗

i
[zi −R] +R) (W (T − 1)− C∗)

}

= δ
T
ET−1

{
1

(W (T − 1)−C∗)

}
= δ

T
1

W −C∗

or

C
∗

(T − 1) =
1

1 + δ
W (T − 1) (29)

Using (14b), we also have

ET−1 {BW zi} = ET−1 {BWR (T − 1)} (30)
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δ
T
ET−1

{
zi

(
∑

m

i=1
ωi [zi −R] +R) (W −C∗)

}
= δ

T
ET−1

{
R (T − 1)

(
∑

m

i=1
ωi [zi −R] +R) (W −C∗)

}

ET−1

{
zi∑

m

i=1
ω
∗

i
[zi −R] +R

}
= R (T − 1)ET−1

{
1∑

m

i=1
ω∗

i
[zi −R] +R

}
, for i = 1, ...,m

It is interesting to note that the optimal consumption policy for a log utility investor,

given by equation (29), is to consume a fixed proportion of wealth. The consumption rule is

independent of any investment opportunities (for example, the current level of R (t), expected

returns on zi’s, et cetera) and, therefore, is independent of the portfolio decision.

From equation (30), we see that the portfolio decision rules that determine {ω∗
i
} do not

depend on W (T − 1), C (T − 1), or δ. All log utility investors choose the same portfolio, and

it is independent of their consumption decisions.

Also, note the following. From equation (16a) we see

UC = δ
T−1

1

C∗

= δ
T
R (T − 1)ET−1

{
1

(
∑

m

i=1
ω
∗

i
[zi −R] +R) (W −C∗)

}
(16a)

=
δTR (T − 1)

(W − C∗)
ET−1

{
1∑

m

i=1
ω
∗

i
[zi −R] +R

}

plugging in for C∗, we see that

1 = RET−1

{
1∑

m

i=1
ω
∗

i
[zi −R] +R

}
(31)

Thus, the optimal portfolio policy, which does not depend on W , is such that

ET−1

{
zi∑

m

i=1
ω
∗

i
[zi −R] +R

}
= ET−1

{
R∑

m

i=1
ω∗
i
[zi −R] +R

}
= 1 (32)

The next step is to solve for J [W (T − 1) , T ] by plugging in the optimal consumption and

portfolio rules. From equation (12) we have
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J [W (T − 1) , T − 1] = δ
T−1 ln [C∗] + δ

T
ET−1

{
ln

[(
m∑
i=1

ω
∗

i [zi −R] +R

)
(W (T − 1)− C

∗

)

]}

= δ
T−1 (− ln [1 + δ] + ln [W (T − 1)]) +

δ
T

[
ET−1

{
ln

[
m∑
i=1

ω
∗

i
[zi −R] +R

]}
+ ln

[
δ

1 + δ

]
+ ln [W (T − 1)]

]

= δ
T−1 [(1 + δ) ln [W (T − 1)] +H (T − 1)] (33)

where H (T − 1) ≡ − ln [1 + δ] + δ ln
[

δ

1+δ

]
+ δET−1 {ln [

∑
m

i=1
ω
∗

i
[zi −R] +R]}. Notably, from

equation (30) we saw that ω∗
i
did not depend on W (T − 1), and, therefore, H (T − 1) does not

depend on W (T − 1).

Next, let’s move back one more period and consider the individual’s optimal consumption

and portfolio decisions at time T − 2. From equation (23) we have

J [W (T − 2) , T − 2] = max
{C(T−2),ω(T−2)}

{U [C (T − 2) , T − 2] +ET−2 (J [W (T − 1) , T − 1])}

= max
{C(T−2),ω(T−2)}

[
δ
T−2 ln [C (T − 2)]

]

+δT−1ET−2 {(1 + δ) ln [W (T − 1)] +H (T − 1)} (34)

SubstitutingW (T − 1) = [
∑

m

i=1
ω
∗

i
(T − 2) [zi (T − 2)−R (T − 2)] +R (T − 2)] [W (T − 2)−C (T − 2)]

and using equation (24a), the optimality conditions for C is

UC =
δT−2

C∗
= RET−2 {JW [W (T − 1) , T − 1]} (35)

= δ
T−1

ET−2

{
(1 + δ)

R

(
∑

m

i=1
ω∗

i
[zi −R] +R) (W (T − 2)− C∗)

}

Using (24b), we then see that the optimality conditions for the {ω∗

i
} turn out to be of the same

form as at T − 1:
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ET−2

{
zi (T − 2)

∑
m

i=1
ω
∗

i
[zi −R] +R

}
= ET−2

{
R (T − 2)∑

m

i=1
ω
∗

i
[zi −R] +R

}
= 1, for i = 1, ...,m (36)

Using this result, equation (35) becomes

UC =
δ
T−2

C∗
= δ

T−1 (1 + δ)
1

(W (T − 2)−C∗)
(37)

Re-arranging, we then have

C
∗ (T − 2) =

1

1 + δ + δ2
W (T − 2) (38)

Recognizing the above pattern, we see that the optimal consumption and portfolio rules for any

prior date, t, are

C
∗ =

1

1 + δ + ...+ δT−t
W (t) =

1− δ

1− δT−t+1
W (t) (39)

Et

{
zi (t)∑

m

i=1
ω
∗

i
[zi −R] +R

}
= Et

{
R (t)∑

m

i=1
ω
∗

i
[zi −R] +R

}
= 1, for i = 1, ..., m (40)

Thus, we discover that consumption and portfolio rules are mutually independent. Impor-

tantly, (36) shows that the portfolio proportions depend only on the distribution of one-period

returns and are independent of future (investment) return possibilities. This is described as

myopic behavior because decisions made by the multi-period log investor are identical to a one-

period log investor, no matter what are the serial dependencies (intertemporal correlations) of

asset returns. It should be emphasized that these independence results are highly specific to

the log utility assumption and cannot be extended, in general, to other utility functions.
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