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Modeling Credit Risk

We have considered a number of different bond pricing models, but each of these models

assumes that the bonds had no risk of default. Therefore, these models are most applicable

to valuing (nominal) bonds issued by a federal government, such as Treasury bills, notes, and

bonds. However, many bonds, such as those issued by corporations, have default or “credit” risk

and require a different modeling approach. We now consider two somewhat different methods

for modeling default risk. The first, outlined by R. Merton (1974) “On the Pricing of Corporate

Debt: The Risk Structure of Interest Rates,” Journal of Finance 29, p.449-70, values a firm’s

debt as an explicit function of the value of the firm’s assets and its capital structure.
1 In contrast

to this “structural” approach, a number of recent papers have simply assumed a process for

a firm’s default probability and, possibly, debtholders’ recovery rate in the event that default

occurs.2 This latter approach viewed the exogenously specified default process as the “reduced-

form” of a more complicated and complex model of a firm’s assets and capital structure. In

these notes, we will consider an example of each of the two credit risk modeling techniques.

I. The Structural Approach

Let A(t) denote the date t value of a firm’s assets. The firm is assumed to have a very

simple capital structure. In addition to shareholders’ equity, it has issued a single zero-coupon

bond that promises to pay an amount B at date T > t. Also let τ ≡ T − t be the time until

this debt matures. The firm is assumed to pay dividends to its shareholders at the continuous

rate δA(t)dt, where δ is the firm’s constant proportion of assets paid in dividends per unit time.

1
F. Longstaff and E. Schwartz (1995) “A Simple Approach to Valuing Risky Fixed and Floating Rate Debt,”

Journal of Finance 50, p.789-820 is similar in spirit. It models firm assets but does not specify the explicit

characteristics of a firm’s debts. Bankruptcy is assumed to occur when firm assets fall to a critical level. A given

formula is then used to specify the defaulted debt’s value. A similar modeling of default for sovereign debt is

given in S. Claessens and G. Pennacchi (1996) “Estimating the Likelihood of Mexican Default from the Market

Prices of Brady Bonds, Journal of Financial and Quantitative Analysis 31(1), 109-126.
2
D. Duffie and K. Singleton (1999) “Modeling Term Structures of Defaultable Bonds,” Review of Financial

Studies 12 (4), 687-720 is an example of this approach.
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The value of the firm’s assets are assumed to follow the process

dA/A = (α− δ) dt+ σdz (1)

where α denotes the instantaneous expected rate of return on bank assets and σ is the constant

standard deviation of return on bank assets. Now let D(t) be the date t market value of the

firm’s debt which promises to pay the amount B at date T . It is assumed that when the debt

matures, the firm pays the promised amount to the debtholders if there is sufficient asset value

to do so. If not, the firm defaults (bankruptcy occurs) and the debtholders take ownership of

all of the firm’s assets. Hence, the payoff to debtholders at date T can be written as

D (T ) = min [B,A (T )] (2)

= B −max [0, B −A (T )]

From the second line in equation (2), we see that the payoff to the debtholders equals the

promised payment, B, less the payoff on a European put option written on the firm’s assets and

having exercise price equal to B. Hence, if we make the usual “frictionless” market assumptions

(no transactions costs to trading firm assets or debt), then the current market value of the debt

can be derived to equal the present value of the promised payment less the value of a put

option on the dividend-paying assets. Assuming that the default-free interest rate is constant

and equal to r, we obtain
3

D (t) = e
−rτ

B − e
−rτ

BN (−d2) + e
−δτ

AN (−d1) (3)

= e
−rτ

BN (d2) + e
−δτ

AN (−d1)

where d1 =

[
ln (A/B) +

(
r − δ +

1

2
σ2

)
τ

]
/ (σ

√
τ) and d2 = d1− σ

√
τ .

Based on this result, one can also solve for the market value of the firm’s shareholder’s

3It is straightforward to extend the model to allow default-free interest rates to be stochastic. R. Merton

(1973) “Theory of Rational Option Pricing,” Bell Journal of Economics and Management Science 4, p.141-83,

gives the value of call and put options on assets when interest rates follow a stochastic process consistent with

the Vasicek (1977) model of the term structure which we previously discussed.
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equity, which we denote as E (t). In the absence of taxes and other transactions costs, the

value of investors’ claims on the firm’s assets, D (t) + E (t) must equal the total value of the

firm’s assets, A (t). This allows us to write

E (t) = A (t)−D (t) (4)

= A− e
−rτ

BN (d2)− e
−δτ

AN (−d1)

= A

[
1− e

−δτ
N (−d1)

]
− e

−rτ

BN (d2)

See R. Merton (1974), revised and updated as Chapter 12 in R. Merton (1990) Continuous-

Time Finance, Basil Blackwell, for an in-depth analysis of the comparative statics properties

of the debt and equity formulas in equations (3) and (4).

II. The Reduced-Form Approach

This section presents a simple example of the reduced form approach. Assuming frictionless

markets, we showed that the absence of arbitrage opportunities led to the martingale pricing

equation

f (t) = ˜Et

[
e
−

∫
T

t
r(s)ds

f (T )

]
(5)

where f(t) is the date t price of a security and r (t) is the date t instantaneous default-free

interest rate. If P (t, T ) denotes the date t value of a risk-less-in-terms-of-default zero-coupon

bond that pays $1 at date T , then equation (5) implies that

P (t, T ) = ˜Et

[
e
−

∫
T

t
r(s)ds

]
(6)

Given an assumed process followed by r (t) and a specification of the market price of interest

rate risk, the risk-neutral expectation in (6) can be evaluated. One popular model, similar to

the previously presented Vasicek (1977) model, is that of J. Cox, J. Ingersoll, and S. Ross (1985)

“A Theory of the Term Structure of Interest Rates,” Econometrica 53, p.385-407. It assumes

the following process for r (t):4

4
This “square-root” process is attractive since it precludes negative interest rates, that is, r (t) ≥ 0. If
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dr = κ (γ − r) dt+ σ
√
rdz (7)

where the market price of interest rate risk is θ (t) =
up−r

σp
= q
√
r and q is a constant. Equation

(7) is the “true” process followed by the short-term interest rate (the probability measure P).

However, under the risk-neutral measure, ˜P, generated by the process dz̃ = dz + θdt, the

short-term interest rate follows the process

dr = κ (γ − r)dt− θ (t) σ
√
rdt+ σ

√
rdz̃ (8)

= κ (γ − r)dt− qσrdt+ σ
√
rdz̃

= [κγ − (κ+ λ) r]dt+ σ
√
rdz̃

where λ ≡ qσ. Defining τ ≡ T − t and taking the expectation in (6) where the risk-neutral

process for r is given by (8), one obtains

P (t, T ) = A (τ) e
−B(τ)r (9)

where

A (τ) ≡

[
2φe

1

2
(κ+λ+φ)τ

(κ+ λ+ φ) (eφτ − 1) + 2φ

] 2κγ

σ
2

B (τ) ≡
2

(
e
φτ
− 1

)

(κ+ λ+ φ) (eφτ − 1) + 2φ

and φ ≡

[
(κ+ λ)

2 + 2σ2
]1
2 . Having derived the price of a default-free zero-coupon bond, now

consider the price of a default-risky zero-coupon bond maturing at date T . Default is modeled

as the arrival of an unpredictable Poisson process. Conditional on default having not occurred

prior to date t, the probability of default during the interval (t, t+ dt) under the equivalent

martingale measure P̃ is given by h (t)dt. h(t) is the time-varying default intensity and is

2κγ ≥ σ
2
, then r (t) > 0.

4



assumed to follow the following continuous-time process

dh = (α− βh)dt+ σh

√
hdz̃h (10)

where dz̃dz̃h = 0, that is, the changes in the default-free interest rate and the default intensity

are assumed to be uncorrelated.5 Now consider the value of a hypothetical bond that promises

$1 at date T but pays nothing if the firm defaults at or prior to date T . In other words, the

bond pays $1 at date T unless default occurs prior to this date, in which case the defaulted

bond is worthless. The date t value of this “all or nothing” bond, denoted as V (t, T ), is given

by

V (t, T ) = ˜Et

[
e
−

∫
T

t
[r(s)+h(s)]ds

]
(11)

Thus, we see that the value of this bond is similar to that of a default-free bond but with the

discount rate reflecting r (s)+h (s) rather than just r (s). Under the assumption that r (s) and

h (s) are uncorrelated processes, equation (11) becomes

V (t, T ) =

˜Et

[
e
−

∫
T

t
[r(s)+h(s)]ds

]
(12)

=

˜Et

[
e
−

∫
T

t
r(s)ds

]
˜Et

[
e
−

∫
T

t
h(s)ds

]

= P (t, T )Ah (τ) e
−Bh(τ)h

= A (τ)Ah (τ) e−B(τ)r−Bh(τ)h

where

Ah (τ) ≡

[
2φhe

1

2
(β+φh)τ

(β + φh) (eφhτ − 1) + 2φh

] 2α

σ2

h

Bh (τ) ≡
2

(
e
φhτ

− 1
)

(β + φh) (e
φhτ

− 1) + 2φh

5
See G. Duffee (1999) “Estimating the Price of Default Risk,” Review of Financial Studies 12, p.197-226 for a

slight generalization of this modeling that allows for non-zero correlation between the default-free term structure

and default probabilities.
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and φh ≡
[
α
2
+ 2σ

2

h

]1
2 . Next, we can generalize the consequences of default to allow for a non-

zero recovery value.6 In the event of default, it is assumed that the bond pays, at the time of

default, a fixed fraction, δ, of an otherwise equivalent default-free bond, that is, δP (t, T ).7 The

equivalent assumption is that when default occurs the debtholders receive the amount δ at date

T. Denote the price of this positive recovery bond as D (t, T ). Then the absence of arbitrage

implies that after default the price of this bond equals δP (t, T ) and that prior to default its

value is

D (t, T ) = δP(t, T ) + (1− δ)V (t, T ) (13)

= δP (t, T ) + (1− δ)P (t, T )Ah (τ) e
−Bh(τ)h

= P (t, T )
[
δ + (1− δ)Ah (τ) e

−Bh(τ)h
]

= A (τ) e−B(τ)r
[
δ + (1− δ)Ah (τ) e

−Bh(τ)h
]

While the default-risky bond price, D (t, T ), depends on the current unobserved default

intensity, h(t), this default intensity could be inferred from the market prices of one or more

of the issuer’s bonds. This could help determine whether a given bond issued by a particular

issuer is relatively over- or under-priced relative to another bond of the same issuer.

6
D. Dufffie and K. Singleton (1999) describe alternative specifications of recovery value in the context of

reduced-form models.
7
For example, G. Duffee (1999) reports that the recovery rate, δ, estimated by Moody’s for senior unsecured

bondholders is approxmately 44 percent.
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