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Extending Diffusion Processes to Allow for Jumps

I. Modeling Jumps in Continuous-Time Stochastic Processes

Until now, we have been concerned only with diffusion processes: continuous time stochastic

processes whose uncertainty results only from a Brownian motion component. While these

processes can provide a realistic modeling of many economic and financial time series, they may

be unrealistic for modeling random variables whose values can change very significantly over a

short period of time. This is because diffusion processes have continuous sample paths, they do

not allow for discontinuities or “jumps” in their values. In situations where it is more realistic to

allow for large, sudden changes in value, for example when significant new information results in

a sudden change in the market value of an asset, then we need to augment the diffusion process

with another type of uncertainty. This is where Poisson “jump” processes can be useful. In

particular, we can model an economic or financial time series as the sum of diffusion (Brownian

motion-based) processes and Poisson jump processes.

Consider the following continuous-time process

dS/S = (α− λk) dt + σ dz + dq (1)

where dz is a standard Wiener process and dq is a Poisson jump process having the following

characteristics:

dq =

 (Ỹ − 1) if a jump occurs

0 otherwise
(2)

During each time interval, dt, the probability that q will “jump” once during this interval

is λ dt. For simplicity, the analysis that follows assumes that λ is constant over time, though

extensions could allow for λ to change. When a jump occurs, since dq equals (Y − 1), the
discontinuous change in S is dS = (Y − 1)S, that is, S goes to Y S. In general, Ỹ may be a

random variable. In other words, given that a jump occurs (with probability λ dt), then the

jump size is a drawing from a random distribution, Ỹ − 1. Again, for simplicity, we assume
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that successive jump sizes, (Ỹ − 1), are independently and identically distributed.
We define k ≡ E[Ỹ − 1], that is, k is the mean jump size. Thus the expected change in S

from the jump component dq over the time interval dt is λk dt. Therefore, if we wish to let the

parameter α denote the instantaneous total expected rate of return (rate of change) on S, we

need to subtract off λk dt from the drift term of S:

E[dS/S] = E[(α− λk)dt] + E[σ dz] + E[dq] (3)

= (α− λk) dt + 0 + λk dt = α dt

Note that a sample path S(t) for a process described by equation (1) will be continuous

most of the time, but have finite jumps of differing signs and amplitudes at discrete points in

time. If S(t) is an asset price, these jump events can be thought of as times when important

information affecting the valuation of the asset are released.

Assuming α and σ are constants, so that the continuous component of S(t) is lognormally

distributed, and conditional upon there being n jumps in the interval (0, t)

S̃(t) = S(0) e(α−
1
2
σ2−λk) t+ z̃(t) ỹ(n) (4)

where z̃(t) ∼ N(0, σ2t). ỹ(0) = 1 and ỹ(n) =
nY
i=1

Ỹi for n ≥ 1 where {Ỹi}ni=1 is a set of
independent identically distributed jumps.

II. Extending Itô’s Lemma to Mixed Jump-Diffusion Processes

Let F (S, t) be the value of a variable that is a function of S(t), the above process following a

mixed jump-diffusion process. For example, F (S, t) might be the value of a contingent claim

on the asset having value S(t). A generalized version of Itô’s lemma for mixed jump-diffusion

processes implies that the value of this claim follows the process

dF = Fs [ (α− λk)S dt + σS dz ] +
1

2
Fssσ

2S2 dt + Ft dt + F dqf (5)
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where1

dqf =

 F (SỸ , t)/F (S, t)− 1 if a jump occurs

0 otherwise
(6)

Equation (6) implies that when S jumps, the contingent claim’s value has a corresponding jump,

where it goes from F (S, t) to F (SỸ , t). Now define αf as the instantaneous expected rate of

return on F , that is, E[dF/F ]. Also, define σf as the standard deviation of the instantaneous

rate of return on F , conditional on a jump not occurring. Thus, from equation (5) above, we

have

dF/F = [αf − λkf (t)] dt+ σfdz + dqf (7a)

where

αf ≡ 1

F

·
Fs (α− λk)S +

1

2
Fssσ

2S2 + Ft

¸
+ λkf (t) (7a)

σf ≡ Fs
F
σS, and (7b)

kf (t) ≡ 1

F (S, t)
Et
h
F
³
S eY , t´− F (S, t)i (7c)

III. Valuing Contingent Claims When Assets Follow Jump-Diffusions

Consider constructing a portfolio that includes a contingent claim (for example, a call option)

having price F , an underlying asset whose price follows the process given in equation (1), and

a riskless bond paying the constant interest rate r per unit time. Denote the proportions of the

portfolio invested in the asset, contingent claim, and bond as w1, w2, and w3 = 1 − w1 − w2,
respectively. The instantaneous rate of return on this portfolio, denoted dP/P , is given by:

dP/P = w1 dS/S + w2 dF/F + (1−w1 −w2)r dt
= [w1(α− r) + w2(αf − r) + r − λ(w1k +w2kf ) ] dt (8)

+(w1σ +w2σf ) dz + w1 dq + w2 dqf

1Equivalently, the jump component can be written as Fdqf =

½
F (SỸ , t)− F (S, t) if a jump occurs

0 otherwise
.
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Consider the possibility of choosing w1 and w2 in order to eliminate risk from jumps. Note

that while jumps occur simultaneously in the asset and the contingent claim, that is, jump risk

is perfectly dependent for these two securities, these risks are not necessarily linearly dependent.

This is because the contingent claim price, F (S, t), is generally a nonlinear function of the asset

price and, unlike Brownian motion generated movements, jumps result in non-local changes in

S and F (S, t). Since, in general, the jump size (Ỹ − 1) is random, the ratio between the size of
the jump in S and the size of the jump in F cannot be known beforehand. Hence, the proper

hedge ratio, w1/w2, cannot be known.2

Instead, suppose we pick w∗1 and w∗2 to eliminate only the risk from the continuous Brownian

motion movements. This Black-Scholes hedge implies setting w∗1/w∗2 = −σf/σ = −FsS/F from
our definition of σf . This leads to the process for value of the portfolio:

dP/P = [w∗1 (α− r) + w∗2 (αf − r) + r − λ (w∗1 k +w
∗
2 kf )] dt + w∗1 dq + w∗2 dqf (9)

The return on this portfolio is a pure jump process. The return is deterministic, except when

jumps occur. Using the definitions of dq, dqf , and w∗1, we see that the portfolio jump term

equals

w∗1 dq + w∗2 dqf =

 w∗2
h
F (SỸ , t)
F (S, t) − 1 − Fs(S, t)SỸ−SF (S, t)

i
if a jump occurs

0 otherwise
(10)

Now consider the case when the contingent claim is an option on a stock with expiration date

T and strike price X. An implication of the option price being a strictly convex function of the

asset price is F (SY, t)−F (S, t)−Fs(S, t)[SY −S] ≥ 0 for all Y and t. Thus, the unanticipated
return on this hedge portfolio has the same sign as w∗2. This implies that w∗1k + w∗2kf , the

expected portfolio jump size, also has the same sign as w∗2. Therefore, a call option writer who

follows this Black-Scholes hedge by being short the call option (w∗2 < 0) and long the underlying

stock earns, most of the time, more than the expected rate of return. However, on those rare

occasions when the stock price jumps, a relatively large loss is incurred. Thus in “quiet” times,

option writers appear to make positive excess returns. However, during infrequent “active”

2If the size of the jump is deterministic, a hedge that eliminates jump risk can be found.
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times, option writers suffer large losses.

Since the hedge portfolio is not riskless, but is exposed to jump risk, somehow we need to

assign a “market price” to this jump risk. One way of doing so is to assume that this jump risk is

the result of purely firm specific information and, hence, the jump risk is perfectly diversifiable.

This would imply that the market price of jump risk is zero. Under this assumption that all

of the risk of the hedge portfolio is diversifiable, its expected rate of return must equal the

risk-free rate, r.

w∗1(α− r) + w∗2(αf − r) + r = r (11)

or

w∗1/w
∗
2 = −σf/σ = −(αf − r)/(α− r) (12)

Now define τ ≡ T − t as the time until maturity of the contingent claim, and use this as the
second argument for F (S, ·) rather than calendar time, t. Thus, F (S, τ) now denotes the price
of the contingent claim when the current asset price is S and the time until maturity of the

contingent claim is τ . With this redefinition, note that Fτ = −Ft. Using (12) and substituting
in for αf and σf from the definitions (7b) and (7c), we obtain the equilibrium partial differential

equation

1

2
σ2S2Fss + (r − λk)SFs − Fτ − rF + λEt

h
F (SỸ , τ) − F (S, τ)

i
= 0 (13)

For a call option, this is solved subject to the boundary conditions F (0, τ) = 0 and F (S, 0) =

[S −X]+. Note that when λ = 0, equation (13) is the standard Black-Scholes equation which

has the solution

W (S, τ , X,σ2, r) ≡ S N(d1) − Xe−rτ N(d2) (14)

where d1 = [ ln(S/X) + (r + σ2)τ ] / (σ
√
τ) and d2 = d1 − σ

√
τ . R.C. Merton (1976) “Option

Pricing When Underlying Stock Returns are Discontinuous,” Journal of Financial Economics

3, p.125-44, shows that the general solution to (13) is

F (S, τ) =
∞X
n=0

e−λ τ (λ τ)n

n!
Et
h
W (S ỹ(n) e−λkτ , τ , X, σ2, r)

i
(15)
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where, recall that ỹ(0) = 1 and ỹ(n) =
nY
i=1

Ỹi for n ≥ 1. The intuition behind the formula

in (15) is that the option is a probability weighted average of expected Black-Scholes option

prices. Note that if the stock price followed (1), then conditional on no jumps occuring over

the life of the option, risk-neutral valuation would imply that the Black-Scholes option price

would be W (Se−λ k τ , τ ,X,σ2, r).3 Similarly, conditional on 1 jump occuring, risk-neutral val-

uation would imply that the option price would be W (Sy(1)e−λ k τ , τ ,X,σ2, r). Conditional

on two jumps, it would be W (Sy(2)e−λk τ , τ , X,σ2, r), and thus for n jumps, it would be

W (Sy(n)e−λ k τ , τ ,X,σ2, r).

Since e−λ τ (λ τ)n

n! is the probability of n jumps occuring, we see that (15) is the jump-

probability weighted average of expected option values conditioned over all possible numbers

of jumps.

Under particular assumptions regarding the distribution of Ỹ , solutions to (15) can be

calculated numerically or, in some cases, in closed-form. Here, we consider a case which leads

to a closed-form solution, namely the case in which Ỹ is lognormally distributed. Thus, if

E[ln Ỹ ] ≡ γ − 1
2δ
2 where var[ln Ỹ ] ≡ δ2, then E[Ỹ ] = eγ = 1 + k. Hence, γ ≡ ln(1 + k).

Given this assumption, if α is assumed to be constant, the probability density for ln[S(t+ τ)]

conditional on the value of S(t) is

∞X
n=0

g(ln[S(t+ τ)/S(t)] |n)h(n) (16)

where g(· |n) is the conditional density function given that n jumps occur during the interval
between t and t+ τ , and h(n) is the probability that n jumps occur between t and t+ τ . The

values of these expressions are

g

µ
ln

·
S (t+ τ)

S(t)

¸
|n
¶
≡ 1p

2πν2nτ
exp

−
³
ln
h
S(t+τ)
S(t)

i
−
³
α− λk + nγ

τ − ν2n
2

´
τ
´2

2ν2nτ

 (17a)
h (n) ≡ e−λτ (λτ)n

n!
(17b)

3Recall that since the drift is α− λk, and risk-neutral valuation sets α = r, then λk is like a dividend yield.
Hence W (Se−λ k τ , τ , X,σ2, r) is the Black-Scholes formula for an asset with a dividend yield of λk.
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where ν2n ≡ σ2 + nδ2/τ is the “average” variance per unit time. From (17a), we see that

conditional on n jumps occurring, ln[S(t + τ)/S(t)] is normally distributed. Using the Cox-

Ross “risk-neutral” (equivalent martingale) transformation which allows us to set α = r, we

can compute the expectation of [S −X]+ at time t + τ , discounted by the risk-free rate, and

conditional on n jumps occurring. This is given by

Et[W (Sỹ(n)e
−λ k τ , τ ,X,σ2, r) ] = e−λ k τ (1 + k)nW (S, τ ,X, ν2n, rn) (18)

= e−λ k τ (1 + k)n fn(S, τ)

where fn(S, τ) ≡ W (S, τ ,X, ν2n, rn) and where rn ≡ r − λk + nγ/τ . The actual value of the

option is then the weighted average of these conditional values, where each weight equals the

probability that a Poisson random variable with characteristic parameter λτ will take on the

value n. Defining λ0 ≡ λ(1 + k), this equals

F (S, τ) =
∞X
n=0

e−λ τ (λ τ )n

n!
e−λ k τ (1 + k)n fn(S, τ) (19)

=
∞X
n=0

e−λ0 τ (λ0 τ)n

n!
fn(S, τ)

IV. Valuing Contingent Claims Assuming an Equilibrium Price of “Jump”

Risk

In some circumstances, it is unrealistic to assume that “jump” risk is non-priced risk. For

example, a paper by David Bates (1991) “The Crash of ’87 — Was It Expected? The Evidence

from Options Markets,” Journal of Finance 46, p.1009-1044, investigates the stock market

crash of 1987, an event that certainly was not firm specific but affected the entire market for

equities. A similar paper that assumes market wide jump risk is Vasanttilak Naik and Moon Lee

(1990) “General Equilibrium Pricing of Options on the Market Portfolio with Discontinuous

Returns” Review of Financial Studies 3, p. 493-521. Both of these papers start with the

assumption that aggregate wealth in the economy follows a mixed jump-diffusion process. This

could result from a representative agent Cox, Ingersoll, and Ross - type “production” economy

in which technologies follow a jump-diffusion process and individuals select investments in these

technologies such that their optimally invested aggregate wealth follows a mixed jump-diffusion
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process (Bates). Or it can simply be assumed that the economy is a Lucas-type “endowment”

economy and there is an exogenous firm dividend process that follows a mixed-jump diffusion

process, and these dividends cannot be invested but must be consumed (Naik and Moon).

In both of these papers, jumps in aggregate wealth or consumption (endowment) are as-

sumed to be of the lognormal type that we assumed earlier. Further, utility is assumed to be of

the constant relative risk aversion type. Given this setup, contingent claims, which are assumed

to be in zero net supply, can be priced.

Consider a special case of the Bates (1991) model, where a contingent claim is written on

the “market” portfolio.4 Following the model and notation used in Bates (1991), assume that

optimally invested wealth, Wt, follows the process

dW/W = (µ − λk̄ − C/W ) dt + σ dz + k dq (20)

where µ is constant, Prob(dq = 1) = λdt, and k̃ (≡ Ỹ − 1) is the percentage change in wealth,
conditional on the Poisson event occurring. ln(1 + k̃) ∼ N(γ − 1

2δ
2, δ2) and k̄ ≡ E[k̃] = eγ − 1.

Also assume the representative individual maximizes expected lifetime utility of the form

Et

· Z ∞
t
e−ρs(C(s)1−R − 1)/(1−R)ds

¸
≡ J(W, t). (21)

The Bellman equation for this problem is

0 =max
C

[u(C(t), t) + L[J ] ] , (22)

but now L[J ] must reflect a potential change due to a jump over the interval dt. Thus,

0 =max
C

 u(C(t), t) + Jt(W ) + (µ − λk̄ − C/W )W JW (W )

+λEt[JW (W (1 + k̃)) − JW (W )] + 1
2σ

2W 2JWW (W ).

 (23)

Following the procedure in John Cox, Jonathan Ingersoll, and Stephen Ross (1985) “An In-

tertemporal General Equilibrium Model of Asset Prices,” Econometrica 53, p.385-407, if we

4For example, Bates assumes that the rate of return on the S&P500 market index equals the rate of return
on optimally invested aggregate wealth.
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assume that the representative individual can invest in the instantaneous maturity risk-free

bond paying rate of return r(W, t), then equating the first order conditions for the demand for

this asset to zero (since it is assumed to be in zero net supply), we get that its equilibrium rate

of return must be

r(W, t) = µ − Rσ2 + λ

Jw
Et[(JW (W (1 + k̃)) − JW (W )) k̃]. (24)

Now since utility is constant relative risk aversion, we have JW = Ae−ρtW−R, and thus

1

JW (W )
(JW (W (1 + k̃)) − JW (W )) = (1 + k̃)−R − 1 (25)

is independent of wealth, which implies that the risk-free rate

r = µ − Rσ2 + λEt[ ((1 + k̃)
−R − 1) k̃ ] (26)

is constant. Now if F (W, t) is the price of a contingent claim on the “market” portfolio,

following a similar exercise to CIR that we have just done for the risk-free bond, one can show

that the equilibrium rate of return on this contingent claim, µf , satisfies

(µf − r)F = RWFWσfσ +
1

JW
Et
nh
JW (W (1 + k̃)) − JW (W )

i h
F (W (1 + k̃)) − F (W )

io
.

(27)

Equating µf and σf to that defined by Itô’s lemma, gives us the equilibrium partial differential

equation for this contingent claim.

Ft +
h
r − λEt[ ((1 + k̃)

−R − 1) k̃
i
WFW +

1

2
σ2W 2FWW (28)

+λEt
h
(1 + k̃)−R

n
F (W (1 + k̃)) − F (W )

oi
− rF = 0

subject to the boundary condition appropriate to the particular contingent claim. Note that

this equation is similar in form to the above equation (13). A series solution of the same form

as Merton’s can then be found for the case of the call option.
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