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Arbitrage, Equivalent Martingale Measures, Risk-Neutral Val-
uation, and Pricing Kernels

In these notes, we formally show in that when asset prices follow diffusion processes and
trading is continuous, then the absence of arbitrage allows us to value assets using the “risk-
neutral” or “martingale pricing” technique. Under these conditions, a continuous-time “state
price deflator” or “pricing kernel” also exists.

I. No Arbitrage Implies the Existence of an Equivalent Martingale Measure

Let S be the value of a risky asset which follows the process

dS = pgdt + ogdW (1)

where both g and og may be functions of S and t. For simplicity, we assume that ug, og, and
dW are scalar processes. Later we will discuss how the model can be generalized to allow for
multiple sources of uncertainty. Now let f (S,t) denote the value of a contingent claim whose

payoff depends solely on S and t. From [t0’s lemma, we know that this value satisfies

df = pydt 4+ opdW (2)

where py = fi + psfs + %(T%fsg and oy = o0gfs, and the subscripts on f denote partial
derivatives.
Next, following Black and Scholes (1973), consider forming a portfolio of —1 units of the

contingent claim and fg units of the risky asset. Let V' be the value of this portfolio. Then

V=-f+/fsS (3)

and the change in value of this portfolio over the next instant is

dV = —df + fedS (4)



= —ppdt —opdW + fspsdt + fsogdW

= [fsps — pyldt

Since the portfolio is riskless, the absence of arbitrage implies that it must earn the risk-free

rate. Denoting the (possibly stochastic) instantaneous risk-free rate as r (), we have!

AV = [fsps — pgldt = rVdt = r[—f + fsS]dt (5)

which implies

fsits — pg =7[—f + fsS] (6)

If we substitute pp = ft—i—ugf5+%(7%f55 into (6), we obtain a Black-Scholes-Merton equilibrium

partial differential equation.

Sokfss +rSfs —rf + fi=0 @

However, consider a different interpretation of equation (6). Substitute fg = %SL into (6) and

re-arrange to obtain

ps —rS  pp—rf
os oy

=06(t) (8)

Condition (8) is the usual no-arbitrage condition that requires a unique market price of risk.
We denote this price of risk as 6 (t). Then the stochastic process for the contingent claim can

be written as

df = pydt +o0pdW = [rf + 6o dt + opdW 9)

'For simplicity, we have assumed that the contingent claim’s value depends only on a single risky asset price,
S (t). However, when the interest rate is stochastic, the contingent claim’s value might be also a function of r (),
that is, f (S, r,t). If, for example, the interest rate followed the process dr = p, (r) dt + o, (r) dW, where dW,
is an additional Brownian motion process affecting interest rate movements, then the contingent claim’s process
would be given by a bi-variate version of It0’s lemma. Also, to create a portfolio that earns an instantaneous
risk-free rate, the portfolio would need to include a bond whose price is driven by dW,.. Later, we discuss how
our results generalize to multiple sources of uncertainty. However, the current univariate setting can be fully
consistent with stochastic interest rates if the risky asset is, itself, a bond so that S (r,t) and dW = dW,. The
contingent claim could then be interpreted as a fixed-income (bond) derivative security.



We now apply Girsonov’s Theorem, which says that a change in the Brownian motion process,
which changes the future probability distribution for asset prices, allows us to adjust the drift
of a diffusion process to almost any desired level. We do this by defining a process W, =

Wi + J2 0 (n)dn, so that dW; = dW; + 0 (t) dt. Then (9) can be rewritten:

df = rfdt+ opdW (10)

Hence, converting from the Brownian motion process dW to dW, which removes the risk-
premium 6oy from the first term on the right-hand side of (9), results in the expected rate
of return of f being equal to the risk-free rate if we now viewed dW, rather than dW, as a
Brownian motion process. The probability distribution of future values of f that are generated
by dW, which we can denote as P, is referred to as the risk-neutral measure.? This risk-neutral
measure is “equivalent” to the original “physical” probability measure for f, denoted as P, in
that any future value of f that has positive probability (density) under the physical measure also
has positive probability (density) under the risk-neutral measure. We can next show that the
contingent claim’s “deflated” price process will be a martingale under the probability measure
P. Let B (t) be the value of a “money market fund” which invests in the instantaneous maturity

risk-free asset. Also assume B (0) = 1. Then

dB/B = r(t)dt (11)

Note that B (t) = B (0) edo s — o Jo )5 Now define F(t) = f(t)/B(t) as the deflated price

process for the contingent claim. A trivial application of It6’s lemma gives

f

1 Of .=
dFF = Edf — ﬁdB = rFdt + EdW —rEdt (12)

= O’FdW

where o = Foy/f is the instantaneous standard deviation of the return on F. Thus, the

deflated price process under the equivalent probability measure generated by dW follows a

2The risk-neutral probability measure is often referred to as the Q, rather than ﬁ, measure.



martingale process:

F(t) = B [F(T)] (13)

where E; denotes the expectation operator under the probability measure generated by dW. To
summarize, the absence of arbitrage implies the existence of an equivalent probability measure
such that the deflated price process is a martingale. Note that (13) holds for any deflated
contingent claim, including the deflated underlying risky asset, S/B, since we could define the
contingent claim as f = S.

Now if we re-write (13) in terms of the undeflated contingent claims price, we obtain

ft) = BOE, [f (T) ﬁ] (14)

_ 7 [e [ r(s)ds f (T)]

Equation (14) can be interpreted as a solution to the partial differential equation (7) and,
indeed, is referred to as the Feynman-Kac solution.® From a computational point of view,
equation (14) says that we can price (value) a derivative security by taking the expected value
of its discounted payoff, where we discount at the risk-free rate but also assume that when
taking the expectation of f(7°) that the rate of return on f (and all other asset prices, such
as S) equals the risk-free rate. This an attractive way of calculating the derivative’s value
because no assumption regarding the market price of risk is required. This procedure is also
the idea behind the Cox-Ross risk-neutral valuation technique. Equivalently, using equation
(13) requires that to value f(t) /B (t), we take the expectations of the deflated price process,
where this deflated process has zero drift.

II. The No Arbitrage Condition Also Determines a Pricing Kernel

This is not the first time that we have taken expectations to value a security. Recall in the

standard intertemporal consumption-portfolio choice problem with time-separable utility that

3To solve (7), a boundary condition for the derivative is needed. For example, in the case of a European call
option it would be f (7') = max[0,S (1T') — X]. The solution given by (14) incorporates this boundary condition,

(D).



we obtained the Euler condition

f(t) = E¢ [f (h) M /M) (15)

or

1 = E, [Rp M,/ M| (15")

where M; = U.(Cy,t) was the marginal utility of consumption at date ¢ and Ry, is the return
on security f between dates t and h. M; can be referred to as a state price deflator or state
price density or pricing kernel. In general, a pricing kernel is a strictly positive 1td process such
that the deflated price process, f(t) My, is a martingale. But note the difference here versus
our earlier analysis: the expectation in (15) is taken under the physical probability measure,
P, while in (13) and (14) the expectation is taken under the equivalent martingale measure, P.

In the standard time-separable utility portfolio choice model, M; is the marginal utility of
consumption. But the concept of a pricing kernel is more general than this. What we will
show is that the absence of arbitrage opportunities, which earlier guaranteed the existence of
an equivalent martingale measure, also determines a pricing kernel, M;. In fact, the concepts
of an equivalent martingale measure and state pricing kernel are one and the same.

Since we have defined the pricing kernel or state price deflator as an Itd process, we can

write it as

dM = pmdt + o dW (16)

Now consider the restrictions that the Black-Scholes no-arbitrage conditions place on i,
and o, if (15) and (16) hold. For any arbitrary security, f, define f = fM and apply 1t6’s

lemma:

df™ fAM + Mdf + (df) (dM) (17)

= [fttm+Mps+opop)dt + [fom + Moy dW



If f™ = fM satisfies (15), that is, f™ is a martingale, then its drift must be zero, implying

Bf _  HBm  OfOm

¥ M~ fM

(18)

Now consider the case in which f is the instantaneously riskless asset, that is, f (t) = B () is
the money market investment following the process in equation (11). This implies that oy =0

and py/f =r(t). Using (18), requires

Hm
(t) = ~tm (19

In other words, the expected rate of change of the pricing kernel must equal minus the instan-
taneous risk-free interest rate. Next, consider the general case where the asset f is risky, so

that of # 0. Using (18) and (19) together, we obtain

fef Tfom
2L () = 2
L () - L2 (20)
or
porf o om (20"
of M
Comparing (20') to (8), we see that
Om
—— =0t 21
(1) (21)

Thus, the no-arbitrage condition implies that the form of the pricing kernel must be

AM/M = —r (t)dt — 0 (£) AW (22)

Note that if we define m = In M, then dm = — [r + %92} dt — 8dW . Hence, in using the

pricing kernel to value any contingent claim, we can re-write (15) as

f@) = E[f(h) Mp/M] = E; [f (h) e™ ™ ] (23)



= B |f(h)e [ r(s)+26%(s)]ds— [ ()W (s)
Given processes for 7 (s), 6(s) and the contingent claim’s payoff, f(h), it may be easier to
compute (23) rather than, say (13) or (14). Of course, in computing (23), we need to use the

actual drift for f, that is, we compute expectations under P, not P.

Technical Aside:

M; can be related to the Radon-Nikodym derivative of P with respect to P. Let P be the
probability density at some future date, say h > t, that is generated by the physical Brownian
motion process, W (h), and let P be the equivalent probability density generated by the risk-
neutral process W (h) = W (h) + f(? 0 (n) dn. Also let X (h) be any random variable such that
Ei[| X (h) |] < co. Then since P and P are equivalent probability distributions, there exists a

sequence of strictly positive random variables, &, such that

E&X (h)] = Bi&.X ()] (24)

or

E[X (h)] = EdfénX (h)]/& (24))

¢ is referred to as the Radon-Nikodym derivative of P with respect to P, that is, & = Ey[dP/dP).
For an economy in which prices are measured in terms of the money market investment, F (t) =
f(t) /B (t), so that the instantaneous risk-free rate is zero, then M; is identical to &.

The above analysis has been done under the assumption of a single source of uncertainty,
dW. In a straightforward manner, it can be extended to allow for n independent sources of risk.
If we had asset returns depending, in general, on an nx 1 vector of independent Brownian motion

/

processes, dW = (dW;...dW,,)" with corresponding n x 1 vector of market prices, 8 = (0;...0,,)’,

and if oy was a 1 x n vector oy = (0y1...0fy), then we would have the no-arbitrage condition

pp—rf =050 (25)

Equations (13) and (14) would still hold, and now the pricing kernel’s process would be given



dM/M = —r (t)dt — 0 (t)" dW (26)

ITI. Different Price Deflators

In section I above, we found it convenient to deflate a contingent claim price by the money
market fund’s price, B (t). Sometimes, however, it may be convenient to deflate or “normalize”
a contingent claims price by the price of a different type of security. Such a situation can
occur when a contingent claim’s payoff depends on multiple risky assets. Let’s now consider an
example of this, in particular, where the contingent claim is an option written on the difference

between two securities’ (stocks’) prices. The date ¢ price of stock 1, Sj (¢), follows the process

dS1/Sl = Oé1dt -+ O'ldWl (27)

and the date ¢ price of stock 2, S (t), follows the process

dSQ/SQ = aodt + o9dWs (28)

where 01 and 02 are assumed to be constants and dW; and dW5s are Brownian motion processes
for which dW1dWs = pdt. Let C (t) be the date t price of a European option written on the
difference between these two stocks’ prices. Specifically, at this option’s maturity date, T', the

value of the option equals

C(T) = maz [0, S (T) — S (T)] (29)

Now define ¢(t) = C(t)/Si(t), s(t) = S1(t) /S2(t), and B(t) = S2(t)/S2(t) = 1 as the
deflated price processes, where the prices of the option, stock 1, and stock 2 all are normalized
by the price of stock 2. With this normalized price system, the terminal payoff corresponding

to (29) is now

¢(T) =max[0,s(t) —1] (30)

Applying 1t6’s lemma, the risk-neutral process for s (t) is given by



ds/s = asdt + o,dW3 (31)

where a; = a1 — ag + (T% — po10a, 0sdW3 = o1dWo — g9dWs, and o? = (7% + (7% — 2po109.

2 =
Further, when prices are measured in terms of stock 2, the deflated price of stock 2 becomes
the riskless asset, with the riskless rate of return given by dB/B = 0dt, that is, the riskless
rate of return equals zero. Using It6’s lemma once again, the deflated option price, ¢ (s (t),t),

follows the process

1
dc = |csags + ¢ + 5638 0352 dt + c5058dWs. (32)

With this deflated price system, the usual Black-Scholes (1973) hedge portfolio can be created

from the option and stock 1. The hedge portfolio’s value is given by
V = —c+ c¢ss (33)

and the instantaneous change in value of the portfolio is

dV = —dc + cids (34)

1
= _ [csass + ¢ + 5633 0352] dt — cs058dW3 + csassdt + cso58 dW3
_ 1 2.2
= — |+ 5 Css 058 dt
When measured in terms of stock 2’s price, the return on this portfolio is instantaneously

riskless. In the absence of arbitrage, it must earn the riskless return, which as noted above,

equals zero under this deflated price system. Thus we can write

1
av = — |:Ct + 5Css (75252] dt =0 (35)
which implies
1
o+ o Css 0252 =0 (36)



which is the usual Black-Scholes partial differential equation, but with the risk-free rate, r, set
to zero. Solving it subject to the boundary condition (30), which implies a unit exercise price,

gives the usual Black-Scholes formula
¢(S,t) = sN(dy) — N(ds) (37)

where

n(s 152 —
4 - 1 ((t);+;_st(T t) (38)

do = di — osV/T —t.

To convert back to the undeflated price system, we simply multiply (37) by Sz (t) and obtain

C(t) = S1 N(dy) — S N(ds) (39)

Note that the option price does not depend on the risk-free rate for the non-deflated price
system, 7 (t). Hence, the formula holds even for stochastic interest rates. The same formula
could be derived using the Black-Scholes hedging argument with the non-deflated price system.
In this case, the hedge portfolio would involve a unit short position in the option, Cs, = dC/051
shares of stock 1, and cg, = 9C/0Sy shares of stock 2. The resulting equilibrium partial

differential equation would then be

1 1
Ct + 505151 0%512 —+ 505252 (T%SQQ —+ 05152,0(71(725’152 —+ 051517“ —+ 052527‘ —rC =0 (40)

which when solved subject to the boundary condition C'(T") = max [0, 5 (T") — Sz (T)] gives
exactly the solution (39). Hence, hedging arguments based on a non-deflated price system are
valid also for a deflated price system. Similarly, risk-neutral pricing and the existence of a

pricing kernel also holds for the deflated price system.
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