Finance 400
A. Penati - G. Pennacchi
The Risk-Neutral Valuation Method

I. Basic Concepts and Pricing Forward Contracts
The “risk-neutral” technique is frequently used to value derivative securities. It was developed
by John Cox and Stephen Ross in a 1976 article “The Valuation of Options for Alternative
Stochastic Processes” Journal of Financial Economics 3, p.145-66. This note considers the
intuition for this technique and the technique’s important applications for the case of the risk-
free interest rate being constant. Later, we will see how the risk-neutral technique can be
generalized to the case in which risk-free interest rates are stochastic.

Recall the result from the Cox, Ross, Rubinstein model that we derived simply by ruling

out the existence of arbitrage:

C = Rif (pCu + (1—p)Cal. (1)

where Ry is the risk-free return (one plus the risk-free interest rate). The term [pCy + (1 —p) Cq]
is the one-period expected payoff on a call option if all investors were risk-neutral, since in this

case the probability of an “up” move, q, equals p. Thus, the equation could be written as

Ct = —E[Cr] (2)
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where C} is the call option at time ¢, and E [ C’t+1 ] is the ezpected value of the call at time ¢ + 1
i a risk-neutral world. Therefore, Cy is the “risk-neutral expected value” of C’t+1 discounted

at the risk-free rate, that is,
— =" (3)

where 1 is defined as the continuously-compounded one-period interest rate. As we saw earlier,
this “risk-neutral” valuation result is not just coincidental to options but will hold whenever
markets are complete. For example, it can hold for valuing other securities, such as forward

contracts.



A forward contract is an agreement where two parties agree to exchange an asset at some
future date for a pre-agreed price. The long (short) party agrees to receive (deliver) the asset in
exchange for paying (receiving) this pre-agreed price at a future date, say date 7. No payment
occurs between the parties at the time of the agreement of the contract, only at the maturity
of the contract. The payoff to the long party at the maturity of the forward contract can be
written as S — K, where S is the underlying asset price at the maturity of the forward contract
and K is the previously agreed upon “delivery” price for the forward contract, which is said to
equal the “forward price” at the agreement date of the contract. Assume that the underlying
asset pays no dividends and define f as the current date t value of the forward contract and
7 =T —t as its time until maturity. Now consider the following two portfolios:

At date t:

Portfolio A: A long position in one forward contract written on an asset having current value
of S and having a forward price of K

Portfolio B: One share of the underlying asset plus borrowing an amount e™" K

At date T

Portfolio A: Sp — K

Portfolio B: S’T - K

Since the two portfolios produce exactly the same cash flow at date T, the absence of
arbitrage implies that their values at date ¢ must also be the same, that is, f = S— e K.
What can also be shown is that the risk-neutral technique can also be used to derive this no-
arbitrage value for f. Applying the above risk-neutral method, the current value of a long

position, f, is

f=e'TE[Sr— K] =e"TE[Sr] — e 'TK. (4)

What is £ [S'T}, the expected value of Sp in a risk-neutral world?In a risk-neutral world, the

expected rate of return on S would be r , and E[Sr] = Se'”. Thus,

f=e""SedT —e""K =S —-e 'K (5)



which is the same as our earlier no-arbitrage derivation. Thus, the “risk-neutral” technique also
works for forward contracts. Note when the contract is agreed to initially, f = 0 and K = F,

where [’ is the initial forward price. Therefore,

0=8—Fe ', or
(6)
F = Se'.
To gain more intuition, consider the standard approach to valuing risky cashflows. The present
value of a long position, f, equals its expected cashflows discounted at a risk-adjusted rate of

return:
f=e"E[Sr] - Ke" (7)

where 6 is the true expected rate of return on the risky asset and £ [ST] is the true expected value
of Sy. K is discounted by the risk-free rate, r, since it is a certain, not risky, cashflow. 6 depends
on risk aversion, and might be the result of the CAPM, for example, 6 =r + 3 (E[7),] —1).

If 6 is the true expected rate of return on the asset, then E[Sy] = Se?”. Substituting in, we

have
f= e 78T —eTTTK = §— Ke ' (8)

which is the same result as before. Note how the risk-neutral technique “works.” By replacing
e 7 E[Sr] with e "7 E[ Sy ], we “pretend” the expected rate of return on the asset is r (rather
than #) and discount by r (rather than ¢). However, these two “mistakes” cancel out, giving us

the correct answer:
e "TE[Sr] = e ' E[Sr] = S. (9)

I1. Risk-Neutral Derivation of the Black-Scholes Formula

We now apply the risk-neutral technique to valuing a European call option on a non-dividend



paying stock:
¢ = e "7 E[max(0, Sy — X)]. (10)

To evaluate the “risk-neutral” expectation, we need to make an assumption regarding the
probability distribution of S7. If we assume that the stock price follows the binomial “tree”
process considered earlier, we obtain the Cox, Ross, Rubinstein binomial option formula.

Let us now assume a different distribution for Sz, namely, the lognormal distribution. Define

1 = annual expected rate of return on the stock, an
11

o® = annualized variance of the rate of return on the stock.

If Sy is a lognormally distributed random variable, then ln(ST) is a normally distributed random

variable:
In(St) ~ n (In(S) + (u—0%/2)7, 0?7) (12)

where n(-) is the normal probability density function. The lognormal distribution is attractive
because it allows S7 to take any possible value over the range 0 to co. Continuously compounded
returns on the stock over unit time intervals, In(S;;1) — In(S;) = In(S¢;1/S;), are therefore
normally distributed.

Let’s now calculate E[maxz(0, Sp — X)], the call’s expected payoff in a risk-neutral world. If

investors were risk-neutral, then y = r, so that
In(St) ~ n (In(S) + (r —o?/2)7, 0°7). (13)

Using this distributional assumption, we have!

¢ = e B[max(0, Sy — X)] = e /X " (Sr - X) g(Sr) dSr (14)

' As in the Black-Scholes option derivation, we need not assume that the actual distribution of the underlying
security be lognormal, just that o be constant. u could be time-varying. However, assuming the risk-free interest
rate, r, is constant implies that the risk-neutral distribution of the underlying security is lognormal, that is,
equation (13) holds.



where ¢(St) is the lognormal probability density function assuming p = r. Evaluating the

integral in (14), one obtains the Black-Scholes formula

c=SN (dl) —Xe '7N (dg)

where N () is the normal distribution function and

In(S/X)+ (r+302) 7
/T
dy = di—o\T

d =

Using put-call parity, the price of a European put option is

p=c+Xe'T-8

= Xe " N(—dy) — S N(—dy).

IT1. Some Properties of the Black-Scholes Formula

(16)

Consider the value of the European calls and puts when S becomes large. As S — oo,

dy — oo and dg — oo. Therefore N(d;) — 1 and N(d3) — 1, but N(—d;) — 0 and N(—dg) — 0.

Hence, as S — oo, for European options:

Call: Jim [SN(d) — Xe""N(dy)]
Put: Jim [Xe™7 N(~da) = S N(~dy)]

as we would expect.

Conversely, as S — 0, dj — —oo and d2 — —oo. Therefore N(d;) — 0 and N(d2) — 0, but



N(—dy) — 1 and N(—dy) — 1. Hence, as S — 0, for European options:

Call: lim [SN(di) — X "N(d)] =0,
Put: éin% [Xe ™" N(—dg) —SN(—=dy)] = Xe 7

Consider what happens when the stock’s volatility, o, becomes small. If In(S/X) + r7 > 0

(equivalent to S > Xe™'7), then as 0 — 0, d; — oo and d2 — oo so that

Call: lim ¢ =85—Xe T,
o—=0 18> Xerr

Put: lim p‘ = 0.
o—0 S>Xe rT

Instead, if S < Xe™ 7, as 0 — 0, dy — —o0 and da — —o0 so that

Call: lim ¢ =0,
o—=0 lg<xerT

Put: lim p‘ = Xe'T -8
0—0 S<Xe '™

This makes intuitive sense as well.

IV. Estimating the Volatility Parameter

The Black-Scholes formula depends on S, X, r, 7, and o. r is usually taken as the risk-free
interest rate on an investment maturing in 7 periods, at the expiration of the option contract.
The only parameter that is not directly observable is the stock’s volatility, o. This can be
estimated using historical data on stock prices or stock returns.

Recall that if  is assumed to be constant, then In(S7) ~ n (In(S) + (u—0?/2)7, 0%7), s0
that In(S7/S) ~ n ((n—0?/2)7, 0?7). Now suppose we observe n+ 1 stock prices (or n stock
returns) at intervals of length 7. Define u; = In(S;/S;—1) as the continuously compounded
stock return over the i" interval. Then u; ~ n ((u— 0%/2)7, 0°7) and we can use the usual

estimates for a sample mean and sample variance to calculate o

1 n
S 1 U= — i 17
ample mean: u n;u (17)



2 ].

Sample variance: §° = (u; —w)* (18)

is

8
o= 8/r = — 19
= (19)
where § = sample standard deviation of the w;’s.
If daily data is used to calculate o, rather than using 7 = W}E), the practice is to use 7 = 2—%)0,

where 250 is approximately the number of trading days (days stock exchanges are open) per
year. Reason: empirical evidence finds stock volatility is much higher on trading days. We can

ignore days when exchanges are closed.

Example: You are given 180 daily percentage holding period returns, r; = %, for a stock.
How would you calculate o7 Note that r; = % = %—1 — 1. Thus, we form u; = In(1+17;)
and find the sample standard deviation of the u;’s with n = 180:
| 18
s — | — )2
5= 1\l179 Z(uZ u)?. (20)
=1
Since there are approximately 250 trading days per year, 7 = Q_éo and so o = % = /2503s.

Implied volatility is the value of o such that the actual option price equals the theoretical
(Black-Scholes formula) option price. Thus, if the actual market price of a call option is ¢, and

c(S, X, r, 7, o) is the theoretical formula, implied volatility, &, satisfies

co = (S, X, r, T,0). (21)

Example: An October 70 call on Amgen sells for $6 and the non-dividend paying stock price is



$66. Implied volatility satisfies

8
6 = c(S=66X=70,r=.061=150). (22)

Numerically solving, one obtains 6 = 0.3053.

An implied volatility, &, has several uses:

1. The 6 from one option can be used to price another option on the same stock. This will

give an indication of which options are relatively overvalued or undervalued.

2. The ¢ from an option (or a weighted average of 6’s from many options on the same stock)
can be viewed as a measure of investors’ forecast of the future risk of a stock. For example,
an increase in the & of a firm’s stock may indicate that the firm is now believed to be a

takeover candidate.

V. Modifying the Formula for Dividends
Consider a Furopean option on a dividend paying stock. Assume that the stock’s dividends are
known over the life of the option. The current value of the stock, S, equals the present value of

(assumed) riskless dividends paid during the life of the option, D, and a risky component, S,

equal to the expected present value of both capital gains and other risky dividends.

S=D+38 (23)

Since the price of the stock will decline when dividends are paid, D will not be received
by the holder of a call, nor paid by the holder of a put. Therefore, the option is essentially
written on S, not on S = D + S. Thus, we can value a European call or put by using the

Black-Scholes formula replacing S with § = S — D.

Example: A stock is currently priced at $75 and has a ¢ of 0.35. It will pay two $1 dividends in

1 month and 4 months. If r = 6%, what is the value of a European put option with an exercise



price of $65 maturing in 6 months?

4

D = $1e7006(55) 4 §1006(s5) ~ $1.9752.

Thus, S =S — D = $75 — $1.9752 = $73.02.

n(S/X) + (r+ 1o2)7

di =
' o\/T
-~ In(73.02/65.00) + (0.06 + %0_352) %
0.354/ %
= 0.715
dy = dy — (7\/;
/ 6
= 0.715 — 0.354/ —
12
= 0.468.

N(—0.715) 2 0.2373 and N(—0.468) = 0.3199, so

p= Xe'"N(—dy) —SN(—dy)

Il

$65 006 (33) (0.3199) — $73.02 (0.2373)

I

$20.179 — $17.328

I

$2.85.



