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An Equilibrium Model of the Term Structure of Interest Rates

When bond prices are assumed to be driven by continuous-time stochastic processes, no-

arbitrage restrictions and continuous-trading can lead to equilibrium relationships between the

prices of different maturity bonds. Many equilibrium bond pricing models assume that a single

source of uncertainty affects bonds of all maturities. In these so-called “one-factor” bond pricing

models, it is often convenient to think of this uncertainty as being summarized by the yield on

the shortest (instantaneous) maturity bond, r (t).1 Define P (t, τ) as the date t price of a bond

that pays $1 in τ periods. The instantaneous rate of return on this bond is dP (t,τ)P (t,τ) . Also note

that P (t, 0) = $1. The instantaneous yield, r (t), is defined as

lim
τ→0

dP (t, τ)

P (t, τ)
≡ r (t) dt (1)

The model of Oldrich Vasicek (1977) “An Equilibrium Characterization of the Term Structure of

Interest Rates,” Journal of Financial Economics 5, p.177-188 assumes r (t) follows an Ornstein-

Uhlenbeck process

dr(t) = α [γ − r (t)] dt+ σdz (2)

where α, γ, and σ are > 0. σ measures the instantaneous volatility of r (t) while α measures

the strength of the process’s mean reversion to γ, the unconditional mean value of the process.

In discrete time, (2) is equivalent to a normally distributed, auto-regressive (1) process.

Now assume bond prices of all maturities depend on the current level of r (t), P (r (t) , τ).

Itô’s lemma implies

dP (r, τ) =
∂P

∂r
dr +

∂P

∂t
dt+ 1

2

∂2P

∂r2
(dr)2 (3)

1We note that another approach is to assume that forward interest rates of all maturities are affected by one
or more sources of risk. David Heath, Robert Jarrow, and Andrew Morton (1992) “Bond Pricing and the Term
Structure of Interest Rates: A New Methodology for Contingent Claims Valuation,” Econometrica 60, p.77-106,
pioneered this approach.
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=
h
Prα (γ − r) + Pt + 1

2Prrσ
2
i
dt+ Prσdz

≡ µ (r, τ)P (r, τ) dt− σp (τ)P (r, τ) dz

where µ (r, τ) ≡
h
Prα(γ−r)+Pt+12Prrσ2

i
P (r,τ) and σp (τ) ≡ − Prσ

P (r,τ) are the mean and standard devia-

tion, respectively, of the bond’s instantaneous rate of return.

Consider forming a portfolio containing one bond of maturity τ1 and −σp(τ1)P (r,τ1)
σp(τ2)P (r,τ2)

units of

a bond with maturity τ2. Then if we continually re-adjust the amount of the τ2-maturity bonds

to equal −σp(τ1)P (r,τ1)
σp(τ2)P (r,τ2)

as r (t) changes, the value of this portfolio is

W (t) = P (r, τ1)− σp (τ1)P (r, τ1)

σp (τ2)P (r, τ2)
P (r, τ2) (4)

= P (r, τ1)

"
1− σp (τ1)

σp (τ2)

#

The portfolio’s instantaneous return is

dW (t) = dP (r, τ1)− σp (τ1)P (r, τ1)

σp (τ2)P (r, τ2)
dP (r, τ2) (5)

= µ (r, τ1)P (r, τ1)dt− σp (τ1)P (r, τ1)dz − σp (τ1)

σp (τ2)
P (r, τ1)µ (r, τ2) dt+ σp (τ1)P (r, τ1) dz

= µ (r, τ1)P (r, τ1)dt− σp (τ1)

σp (τ2)
P (r, τ1)µ (r, τ2) dt

Since the portfolio return is riskless at each instant of time, the absence of arbitrage implies

that its rate of return must equal the instantaneous riskless interest rate, r (t):

dW (t) =

"
µ (r, τ1)− σp (τ1)

σp (τ2)
µ (r, τ2)

#
P (r, τ1) dt (6)

= r (t)W (t)dt = r (t)

"
1− σp (τ1)

σp (τ2)

#
P (r, τ1)dt

The implication of equation (6) is

2



µ (r, τ1)− r (t)
σp (τ1)

=
µ (r, τ2)− r (t)

σp (τ2)
(7)

Equation (7) says that the “excess” rates of return on bonds, divided by their standard

deviations, must be equal. This must hold for any sets of bonds τ1, τ2, τ3, etc. Assuming this

“market price of interest rate risk” is constant over time and equal to q, we have for any bond

maturity, τ

µ (r, τ)− r (t)
σp (τ)

= q (8)

or

µ (r, τ) = r (t) + qσp (τ)

Substituting µ (r, τ) and σp (τ) from Itô’s lemma into (8) and simplifying, we obtain

Prα (γ − r) + Pt + 1
2Prrσ

2 = rP − qσPr (9)

This can be re-written as

σ2

2 Prr + (αγ + qσ − αr)Pr − rP + Pt = 0 (10)

Equation (10) is the equilibrium partial differential equation that all bonds must satisfy.

Since τ ≡ T − t, so that Pt ≡ ∂P
∂t = −∂P

∂τ ≡ −Pτ , equation (10) can be re-written as

σ2

2 Prr + (αγ + qσ − αr)Pr − rP − Pτ = 0 (11)

and solved subject to the boundary condition that at τ = 0, the bond price equals $1, that is,

P (r, 0) = 1. Doing so, gives the following solution

P (r (t) , τ) = A (τ) e−B(τ)r(t) (12)

where
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B (τ ) ≡ 1− e−ατ
α

(13)

A (τ ) ≡ exp

"
(B (τ)− τ)

Ã
γ + q

σ

α
− 1

2

σ2

α2

!
− σ2B (τ)2

4α

#
(14)

Using equation (12) we see that

σp (τ) = −σPr
P
= σB (τ) =

σ

α

¡
1− e−ατ¢ (15)

which implies that a bond’s standard deviation of its rate of return (volatility) increases with

τ , but at a decreasing rate. In addition, from equation (8) we see that a bond’s expected rate

of return increases (decreases) with its time until maturity if q is positive (negative).

The duration (or interest rate sensitivity) of a coupon bond, or a portfolio of zero-coupon

bonds, is defined to be the maturity of a zero coupon bond that has the same rate of return

standard deviation, σp (τ), as the coupon bond.2 Thus, if σc is the standard deviation of the

rate of return of a given coupon bond, its duration, D, is that which satisfies

σc = σp (D) (16)

or for the above Vasicek model

σc =
σ

α

³
1− e−αD

´
(17)

which implies

D = − 1
α
ln

µ
1− ασc

σ

¶
(18)

Valuing options on bonds

The Black-Scholes option-pricing model assumed that interest rates are constant. Often,

this may be a reasonable approximation when valuing options on assets, such as stocks, where

2This definition is that used by J. Cox, J. Ingersoll, and S. Ross (1979) “Duration and the Measurement of
Basis Risk,” Journal of Business 52, 51-61.
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changes in the value of the asset do not result primarily from changes in interest rates. However,

for options written on bond-like assets (fixed-income securities), it is clearly unreasonable to

assume that they are unaffected by interest rates.

Another assumption of the Black-Scholes formula is at odds with valuing options on bonds.

The Black-Scholes derivation assumes that the volatility of the underlying asset, σ, is constant

over the life of the option. This is counter to the observation that a bond’s volatility, σp, tends to

shrink as it approaches maturity: unlike stocks, a bond’s value must equal its known face (par)

value when it matures. For short-term options on long maturity bonds (for example, Treasury

bonds), assuming σp is constant over the life of the option is not unreasonable. Making this

assumption of a constant σp, one can use the Black-Scholes as an approximation. Defining r as

the interest rate on an investment that matures at the expiration of the option, then the values

of call and put options on a bond with current value P are:

c ≈ PN (d1)− e−rτXN (d2) (19)

and

p ≈ e−rτXN (−d2)− PN (−d1) (20)

where d1 =
ln( PX )+

µ
r+

σ2p
2

¶
τ

σp
√
τ

and d2 = d1 − σp
√
τ .

To more precisely model the notion that a discount bond’s volatility shrinks as it approaches

maturity, we use the Vasicek model bond volatility

σp(T ) =
σ

α

³
1− e−αT

´
(21)

where T is the bond’s time until maturity and σ and α are positive constants. Note that as

T → 0, then σp → 0 as well.

With this new modeling of bond volatility, σp(T ), one can solve for the value of European

call and put options on a discount bond (zero-coupon bond) with maturity T . Again defining

r as the interest rate on an investment that matures at the expiration of the option, the value

of options on a discount bond with current value P and time to maturity T are
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c = PN (d1)− e−rτXN (d2) (22)

and

p = e−rτXN (−d2)− PN (−d1) (23)

where d1 =
ln( PX )+rτ+

σ2
b
2

σb
, d2 = d1 − σb, and σ2b =

σ2

2α4
¡
1− e−2ατ¢2 ³1− e−αT´2. See Robert

C. Merton (1973) “Theory of Rational Option Pricing,” Bell Journal of Economics and Man-

agement Science 4, p.141-183 and F. Jamshidian (1989) “An Exact Bond Option Formula,”

Journal of Finance 44, p.205-209 for a proof of this.

There are numerous other models that are used to value options on fixed-income securities.

Many of these models use more complex ways of modeling bond volatility. In addition, numerical

methods for estimating options on fixed-income securities using binomial tree techniques (c.f.

the Cox-Ross-Rubinstein approach) are frequently used. See T. Ho and S. Lee (1986) “Term

Structure Movements and Pricing Interest Rate Contingent Claims,” Journal of Finance 41,

p.1011-1029 for an example of this approach.
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