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The Essentials of Diffusion Processes and Itô’s Lemma

I. Introduction

These notes cover the basic properties of continuous time stochastic processes. They describe

the characteristics of these processes that are helpful for modeling many financial and economic

time series. Modeling a variable as a continuous time process can lead to different implications

versus modeling it as a discrete time process. A continuous time stochastic process allows a

variable to change randomly and yet be observed at each moment. In contrast, a discrete-

time stochastic process implies no change in the value of the variable over a fixed interval or

that the change cannot be observed in-between discrete points in time. A natural implication

of a discrete time asset price process is that no trading occurs in the asset over the discrete

interval. Often this makes problems involving the hedging of an asset’s risk difficult, since

portfolio allocations cannot be re-balanced over this non-trading interval. Thus hedging the

risk of assets may be less than perfect when a discrete time process is assumed.

In contrast, if one assumes that asset prices follow continuous time processes, prices can be

observed and trade can take place continuously. This can permit dynamic trading strategies

that can fully hedge an asset’s risk. Making this continuous hedging assumption often simplifies

optimal portfolio choice problems and problems of valuing contingent claims (derivative securi-

ties). It allows for a continuous distribution of asset returns (an infinite number of states), yet

obtain market completeness because payoffs can be replicated through continuous trading.

The following analysis is done at an intuitive level rather than a mathematically rigorous

one. We start with Brownian motion, which is the fundamental building block of diffusion

processes. Later, we consider Itô’s Lemma, which tells us how to derive the continuous time

process of a variable that is a function of another variable that follows a continuous time process.

II. Pure Brownian Motion

Here we show how a Brownian motion process can be defined as the limit of a discrete time

process. Consider the following stochastic process observed at date t, z(t). Let ∆t be a discrete
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change in time, that is, some time interval. The change in z(t) over the time interval ∆t is

given by

z(t+∆t)− z(t) ≡ ∆z =
√
∆t ²̃ (1)

where ²̃ is a random variable with E[ ²̃ ] = 0, V ar[ ²̃ ] = 1, and Cov[ z(t+∆t)−z(t), z(s+∆t)−
z(s) ] = 0 if (t, t +∆t) and (s, s +∆t) are non-overlapping intervals. z(t) is an example of a

process referred to as a random walk.

Thus, given the assumed moments of ²̃, E[∆z] = 0 and V ar[∆z] = ∆t. Note also that z(t)

has serially uncorrelated (independent) increments. Now consider the change in z(t) over a

fixed interval, from 0 to T . Assume T is made up of n intervals of length ∆t. Then

z(T ) − z(0) =
nX
i=1

∆zi (2)

where ∆zi ≡ z(i ·∆t)− z( [i− 1] ·∆t) ≡ √∆t ²̃i. Hence (2) can also be written as

z(T ) − z(0) =
nX
i=1

√
∆t ²̃i =

√
∆t

nX
i=1

²̃i. (3)

Now note that the first two moments of z(T )− z(0) are

E0[ z(T ) − z(0) ] =
√
∆t

nX
i=1

E0[ ²̃i ] = 0 (4)

V ar0[ z(T ) − z(0) ] =
³√
∆t
´2 nX

i=1

V ar0 [̃²i] = ∆ t · n · 1 = T. (5)

where Et [·] and V art [·] and the mean and variance operators, respectively, conditional on
information at date t. We see that holding T , the length of the time interval, fixed, the mean

and variance of z(T )−z(0) are independent of n. Now let us perform the following experiment.
Suppose we keep T fixed but let n, the number of intervening increments of length ∆t, go to

infinity. Can we say something else about the distribution of z(T )− z(0) besides what its first
two moments are? Yes we can. Assuming the distributions of ²̃i are sufficiently well-behaved,
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we can state

plim
n→∞

(z(T )− z(0)) = plim
∆ t→0

(z(T )− z(0)) ∼ N(0, T ). (6)

In other words, z(T ) − z(0) has a normal distribution with mean zero and variance T . This
follows from the Central Limit Theorem which states that the sum of random variables having

an arbitrary (but sufficiently well-behaved) probability distribution has a limiting normal dis-

tribution. Thus, the distribution of z(t) over any finite interval, [ 0, T ], can be thought of as the

sum of infinitely many tiny independent increments, ∆ zi =
√
∆t ²̃i, that have some arbitrary

distribution. However, when added together, these increments result in a normal distribution.

Therefore, without loss of generality, we can assume that each of the ²̃i have a standard (mean

0 variance 1) normal distribution.1

The limit of one of these tiny independent increments can be defined as

dz(t) ≡ lim
∆ t→0

∆z = lim
∆t→0

√
∆ t̃² (7)

where ²̃ ∼ N(0 1). Hence, E[ dz(t) ] = 0 and V ar[ dz(t) ] = lim
∆t→0

∆ t = dt. dz is referred to as a

pure Brownian motion process or a Wiener process. We can now write the change in z(t) over

any finite interval [ 0, T ] as

z(T )− z(0) =
Z T

0
dz(t) ∼ N(0, T ). (8)

The integral in (8) is a stochastic (Itô) integral, not the standard Riemann integral. Note that

z(t) is a continuous process but constantly changing (by ²̃ over each infinitely small interval ∆t),

such that over any finite interval it has unbounded variation. Hence, it is nowhere differentiable

(very jagged), that is, its derivative ∂z(t)/∂t does not exist.

Brownian motion provides the basis for more general continuous time stochastic processes,

also known as diffusion processes. Let us see how these more general processes can be developed.

1Note that sums of normally distributed random variables are also normally distributed. Thus, the Central
Limit Theorem also applies to sums of normals.
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III. Diffusion Processes

To illustrate how we can build on the basic Wiener process, consider the process for dz multiplied

by a constant, σ. Define a new process x(t) by

dx(t) = σ dz(t) (9)

Then over a discrete interval, [0, T ],x(t) is distributed

Z T

0
dx = x(T )− x(0) =

Z T

0
σ dz(t) = σ

Z T

0
dz(t) ∼ N(0, σ2T ). (10)

Next, consider adding a deterministic (non-stochastic) change of µ(t) per unit of time to the

x(t) process.

dx = µ(t)dt+ σdz (11)

Now over any discrete interval, [0, T ], we have

Z T

0
dx = x(T )−x(0) =

Z T

0
µ (t)dt+

Z T

0
σ dz(t) =

Z T

0
µ (t)dt+σ

Z T

0
dz(t) ∼ N(

Z T

0
µ (t)dt, σ2T ).

(12)

For example, if µ(t) = µ, a constant, then x(T )−x(0) = µT +σ
R T
0 dz(t) ∼ N(µT, σ2T ). Thus,

we have been able to generalize the standard trend-less Wiener process to have a non-zero mean

or “drift” as well as any desired variance or “volatility.” The process dx = µdt+σdz is referred

to as arithmetic Brownian motion (with drift).

In general, both µ and σ can be time varying, either as a simple function of time, t, or even

a function of the value of the random variable, x(t). In this case, the stochastic differential

equation describing x(t) is

dx(t) = µ[x(t), t] dt + σ[x(t), t] dz (13)

and the corresponding integral equation is

Z T

0
dx = x(T )− x(0) =

Z T

0
µ[x(t), t] dt +

Z T

0
σ[x(t), t] dz (14)
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In this general case, dx(t) could be described as being instantaneously normally distributed with

mean µ[x(t), t] dt and variance σ[x(t), t]2 dt, but over any finite interval, x(t) will not, in general,

be normally distributed. One needs to know the functional form of µ[x(t), t] and σ[x(t), t]

to determine the discrete time distribution of x(t) implied by its continuous time process.

Importantly, however, it can be shown that the discrete distribution of x (t) satisfies particular

partial differential equations known as the Kolmogorov backward and forward equations. If we

let p (x, T ;x0, t0) be the probability density function for x at date T given that it equals x0 at

date t0, where T ≥ t0, then it must satisfy the backward Kolmogorov equation2

1

2
σ2 (x0, t0)

∂2p

∂x20
+ µ[x0, t0]

∂p

∂x0
+

∂p

∂t0
= 0 (15)

and the forward Kolmogorov equation

1

2

∂2σ2 (x, T ) p

∂x2
− ∂µ[x, T ]p

∂x
− ∂p

∂T
= 0 (16)

where the solutions to (15) and (16) satisfy the boundary equation that x (T ) = x0 when T = t0,

that is p (x, t0;x0, t0) = δ (x− x0), where δ (·) is the Dirac delta function that equals infinity
when its argument is zero, and equals zero everywhere else. Moreover,

R∞
−∞ δ (y)dy = 1.

An Itô integral is formally defined as a mean square limit of a sum involving the discrete

∆zi processes. For example, when σ[x(t), t] is a function of x (t) and t, the Itô integral in (14)

is defined from the relationship

lim
n→∞ E0

"
nX
i=1

σ [x ([i− 1] ·∆t) , [i− 1] ·∆t]∆zi −
Z T

0
σ[x(t), t] dz

#2
= 0 (17)

An important Itô integral that will be used below is
R T
0 [dz (t)]2. It is defined from

lim
n→∞ E0

"
nX
i=1

[∆zi]
2 −

Z T

0
[dz (t)]2

#2
= 0 (18)

Recall from (5) that

2A explanation for this result will be given in future notes.
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V ar0 [z (T )− z (0)] = V ar0
"
nX
i=1

∆zi

#
= E0

Ã nX
i=1

∆zi

!2 = E0
"
nX
i=1

[∆zi]
2

#
= T (19)

Further, straightforward algebra shows that

E0

"
nX
i=1

[∆zi]
2 − T

#2
= 2T∆t (20)

Hence, if we take the limit as ∆t→ 0, or n→∞, of the expression in (20), one obtains

lim
n→∞ E0

"
nX
i=1

[∆zi]
2 − T

#2
= lim
∆t→0

2T∆t = 0 (21)

Comparing (18) with (21) implies

Z T

0
[dz (t)]2 = T (22)

=

Z T

0
dt

Hence, we have [dz (t)]2 = dt.

To further generalize continuous-time processes, suppose that we have some variable, F ,

that is a function of the current value of a diffusion process, x(t), and (possibly) also is a direct

function of time. Can we then characterize the stochastic process followed by F (x(t), t), which

now depends on the diffusion process, x(t)? The answer is yes, and Itô’s lemma shows us to do

it.

IV. Functions of Continuous-Time Processes and Itô’s Lemma

Itô’s Lemma is sometimes referred to as the fundamental theorem of stochastic calculus. It gives

the rule for finding the differential of a function of one or more variables, each of which follow

a stochastic differential equation containing Wiener processes. Here, we state and prove Itô’s

lemma for the case of a univariate function.

Itô’s Lemma (univariate case): Let the variable x(t) follow the stochastic differential equa-
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tion dx(t) = µ(x, t)dt + σ(x, t) dz. Further, let F (x(t), t) be at least a twice differentiable

function. Then the differential of F (x, t) is given by:

dF =
∂F

∂x
dx +

∂F

∂t
dt +

1

2

∂2F

∂x2
(dx)2 (23)

where the product (dx)2 = σ(x, t)2dt. Hence, substituting in for dx and (dx)2, the above can

be re-written:

dF =

"
∂F

∂x
µ(x, t) +

∂F

∂t
+
1

2

∂2F

∂x2
σ(x, t)2

#
dt +

∂F

∂x
σ(x, t)dz. (24)

Proof: The proof is rather lengthy and will not be detailed here. An intuitive proof is given

in Jonathan E. Ingersoll (1987) Theory of Financial Decision Making, Rowman and Littlefield,

Totowa, NJ, ( p.348-349). It involves looking at the change in F (x, t) over a discrete interval

of time for a given realization of x, that is, F (xj(t+∆t), t+∆t)−F (x, t). Expanding the end
of interval value of F in a Taylor series around the (known) value of x and t at the start of

the interval, one sees that many of the higher order Taylor series terms go to zero in the limit

as the interval shrinks. Taking the expected value and variance of the change in F over this

interval provides the relevant drift and stochastic terms for dF . Similar arguments show that

(dx)2 = (µ(x, t)dt + σ(x, t)dz)2 (25)

= σ(x, t)2 ( dz)2 = σ(x, t)2dt

Note from (24) that the process followed by F (t) is similar to that of x(t) in that the stochas-

tic component depends on dz. Thus, while F will have a mean (drift) and variance (volatility)

that differs from x, they will both depend on the single source of uncertainty generated by dz.

Example:

A process that is used in many applications is the geometric Brownian motion process. It is

given by

dx = µxdt+ σxdz (26)
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where µ and σ are constants. It is an attractive process because if x starts at a positive value,

it always remains positive. This is because its mean and variance are both proportional to its

current value, x. Hence a process like dx is often used to model the price of a limited-liability

security, such as a common stock. Now consider the following function y = ln(x). What type

of process does y follow? Applying Itô’s lemma, we have

dy = d (lnx) =

"
∂(lnx)

∂x
µx +

∂(lnx)

∂t
+
1

2

∂2(lnx)

∂x2
(σx)2

#
dt +

∂(lnx)

∂x
σxdz (27)

=

·
µ + 0 − 1

2
σ2
¸
dt + σ dz.

Thus we see that if x follows geometric Brownian motion, then y = lnx follows arithmetic

Brownian motion. Since we know that

y(T ) − y(0) ∼ N

µ
(µ− 1

2
σ2)T, σ2T

¶
(28)

then x(t) = ey(t) has a lognormal distribution over any discrete interval (by the definition of

a lognormal random variable). Hence, geometric Brownian motion is lognormally distributed

over any time interval.

In a number of applications we need to derive the stochastic process for a function of several

variables, each of which follows a diffusion process. So suppose we have m different diffusion

processes of the form:3

dxi = µi dt+ σi dzi i = 1, . . . , m, (29)

and dzidzj = ρijdt, where ρij has the interpretation of a correlation coefficient of the two Wiener

processes. What is meant this correlation? Recall that dzidzi = (dzi)
2 = dt. Now the Wiener

process dzj can be written as a linear combination of two other Wiener processes, one being

dzi, and another process that is uncorrelated with dzi, call it dziu:

dzj = ρijdzi +
q
1− ρ2ijdziu (30)

3Note µi and σi may be functions of calendar time, t, and the current values of xj , j = 1, ..., m.

8



Then from this interpretation of dzj , we have

dzjdzj = ρ2ij (dzi)
2 +

³
1− ρ2ij

´
(dziu)

2 + 2ρ
q
1− ρ2ijdzidziu (31)

= ρ2ijdt+
³
1− ρ2ij

´
dt+ 0

= dt

and

dzidzj = dzi
³
ρijdzi +

q
1− ρ2ijdziu

´
(32)

= ρij (dzi)
2 +

q
1− ρ2ijdzidziu

= ρijdt+ 0

Thus, ρij can be interpreted the proportion of dzj that is correlated with dzi.

We can now state (again without proof) a multivariate version of Itô’s Lemma.

Itô’s Lemma (multivariate version): Let F (x1, . . . , xm, t) be at least a twice differentiable

function. Then the differential of F (x1, . . . , xm, t) is given by:

dF =
mX
i=1

∂F

∂xi
dxi +

∂F

∂t
dt +

1

2

mX
i=1

mX
j=1

∂2F

∂xi ∂xj
dxi dxj (33)

where dxi dxj = σiσjρij dt. Hence, the above can be re-written

dF =

 mX
i=1

Ã
∂F

∂xi
µi +

1

2

∂2F

∂x2i
σ2i

!
+

∂F

∂t
+

mX
i=1

mX
j>i

∂2F

∂xi ∂xj
σiσjρij

 dt + mX
i=1

∂F

∂xi
σi dzi. (34)
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