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The Cox-Ross-Rubinstein Option Pricing Model

The previous notes showed that the absence of arbitrage restricts the price of an option in

terms of its underlying asset. However, the no-arbitrage assumption alone cannot determine

an exact option price as a function of the underlying asset price. To do so, one needs to make

additional assumptions regarding the distribution of returns earned by the underlying asset.

Certain distributional assumptions can imply a complete market for the underlying asset’s risk

that allows us to determine a unique option price.

The model in these notes makes the assumption that the underlying asset, hereafter referred

to as a stock, takes on one of only two possible values each period. While this may seem

unrealistic, the assumption leads to a formula that can accurately price options. This “binomial”

option pricing technique is often applied by Wall Street practitioners to numerically compute

the prices of complex options. Here, we start by considering the pricing of a simple European

option written on a non-dividend-paying stock.

In addition to assuming the absence of arbitrage opportunities, the binomial model assumes

that the current stock price, S, either moves up, by a proportion u, or down, by a proportion

d, each period. The probability of an up move is q, so that the probability of a down move is

1− q. This can be illustrated as

uS with probability q

S
%
&

dS with probability 1− q

(1)

Denote Rf as one plus the risk-free interest rate for the period. This risk-free return is

assumed to be the constant over time. To avoid arbitrage between the stock and the risk-free

investment, we must have d < Rf < u.

Let C equal the value of a European call option written on the stock and having a strike

price of X. At expiry, C = max[0, ST −X]. Thus:
One period prior to expiry:
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Cu ≡ max [0, uS −X] with probability q

C
%
&

Cd ≡ max [0, dS −X] with probability 1− q

(2)

What is C one period before expiry? Consider a portfolio containing ∆ shares of stock and $B

of bonds. It has current value equal to ∆S + B. Then the value of this portfolio evolves over

the period as

∆uS +RfB with probability q

∆S +B
%
&

∆dS +RfB with probability 1− q

(3)

With two securities (the bond and stock) and two states of the world (up or down), ∆ and B

can be chosen to replicate the payoff of the call option:

∆uS +RfB = Cu (4a)

∆dS +RfB = Cd (4b)

Solving for ∆ and B that satisfy these two equations, we have

∆∗ =
Cu −Cd
(u− d)S (5a)

B∗ =
uCd − dCu
(u− d)Rf (5b)

Hence, a portfolio of ∆∗ shares of stock and $B∗ of bonds produces the same cashflow as

the call option. This is possible because the market is complete. Trading in the stock and bond

produces payoffs that span the two states. Now since the portfolio’s return replicates that of

the option, the absence of arbitrage implies
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C = ∆∗S +B∗ (6)

Example: If S = $50, u = 2, d = .5, Rf = 1.25, X = $50, then

uS = $100, dS = $25, Cu = $50, Cd = $0.

Therefore:

∆∗ =
50− 0

(2− .5) 50 =
2

3

B∗ =
0− 25

(2− .5) 1.25 = −
40

3

so that

C = ∆∗S +B∗ =
2

3
(50)− 40

3
=
60

3
= $20

If C < ∆∗S +B∗, then an arbitrage is to short sell ∆∗ shares of stock, invest $−B∗ in bonds,
and buy the call option. Conversely, if C > ∆∗S + B∗, then an arbitrage is to write the call

option, buy ∆∗ shares of stock, and borrow $−B∗.
The resulting option pricing formula has an interesting implication. It can be re-written as

C = ∆∗S +B∗ =
Cu −Cd
(u− d) +

uCd − dCu
(u− d)Rf (7)

=

h
Rf−d
u−d max [0, uS −X] +

u−Rf
u−d max [0, dS −X]

i
Rf

which does not depend on the probability of an up or down move of the stock, q. Thus, given

S, investors will agree on the no-arbitrage value of the call option even if they do not agree on

q.

Since q determines the stock’s expected rate of return, uq+ d(1− q)− 1, this does not need
to be known or estimated in order to solve for the no-arbitrage value of the option, C. However,
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we do need to know u and d, the size of movements per period, which determine the stock’s

volatility.

But note that the call option value, C, does not directly depend on investors’ attitudes

toward risk. It is a relative (to the stock) pricing formula.

Note also that we can re-write C as

C =
1

Rf
[pCu + (1− p)Cd] (8)

where p ≡ Rf−d
u−d .

Since 0 < p < 1, p has the properties of a probability. In fact, this “pseudo-probability” p

would equal the true probability q if investors were risk-neutral, since then the expected return

on the stock would equal Rf :

[uq + d (1− q)]S = RfS (9)

or

q =
Rf − d
u− d = p. (10)

Perhaps this is not surprising, since the expression

C =
1

Rf
[pCu + (1− p)Cd]

does not depend on risk-preferences, and so it must be consistent with all possible risk prefer-

ences, including risk-neutrality.

Next, consider the option’s value with:

Two periods prior to expiration:

The stock price process is
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u2S

uS
%
&

S
%
&

duS

dS
%
&

d2S

(11)

so that the option price process is

Cuu ≡ max
£
0, u2S −X¤

Cu
%
&

C
%
&

Cdu ≡ max [0, duS −X]

Cd
%
&

Cdd ≡ max
£
0, d2S −X¤

(12)

Using the results from our analysis when there was only one period to expiry, we know that

Cu =
pCuu + (1− p)Cdu

Rf
(13a)

Cd =
pCdu + (1− p)Cdd

Rf
(13b)

With two periods to expiry, the one period to go cashflows of Cu and Cd can be replicated

once again by the stock and bond portfolio composed of ∆∗ = Cu−Cd
(u−d)S shares of stock and

B∗ = uCd−dCu
(u−d)Rf of bonds. No-arbitrage implies

C = ∆∗S +B∗ =
1

Rf
[pCu + (1− p)Cd] (14)
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Substituting in for Cu and Cd, we have

C =
1

R2f

h
p2Cuu + 2p (1− p)Cud + (1− p)2Cdd

i
(15)

=
1

R2f

h
p2max

h
0, u2S −X

i
+ 2p (1− p)max [0, duS −X] + (1− p)2max

h
0, d2S −X

ii

Note that C depends only current S, X, u, d, Rf , and the time until maturity, 2 periods.

Repeating this analysis for three, four, five, ..., n periods prior to expiry, we always obtain

C = ∆∗S +B∗ =
1

Rf
[pCu + (1− p)Cd]

By repeated substitution for Cu, Cd, Cuu, Cud, Cdd, Cuuu, etc., we obtain the formula:

n periods prior to expiration:

C =
1

Rnf

 nX
j=0

µ
n!

j! (n− j)!
¶
pj (1− p)n−j max

h
0, ujdn−jS −X

i (16)

This formula can be simplified by defining “a” as the minimum number of upward jumps

of S for it to exceed X. Thus a is the smallest non-negative integer such that uadn−aS > X.

Taking the natural logarithm of both sides, a is the minimum integer > ln(X/Sdn)/ln(u/d).

Therefore for all j < a (the option expires out-of-the money),

max
h
0, ujdn−jS −X

i
= 0, (17a)

while for all j > a (the option expires in-the-money),

max
h
0, ujdn−jS −X

i
= ujdn−jS −X (17b)

Thus, the formula for C can be re-written:

C =
1

Rnf

 nX
j=a

µ
n!

j! (n− j)!
¶
pj (1− p)n−j

h
ujdn−jS −X

i (18)

Breaking this up into two terms, we have:
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C = S

 nX
j=a

µ
n!

j! (n− j)!
¶
pj (1− p)n−j

"
ujdn−j

Rnf

# (19)

−XR−nf
 nX
j=a

µ
n!

j! (n− j)!
¶
pj (1− p)n−j


The terms in brackets are complementary binomial distribution functions, so that we can write

this as

C = Sφ[a;n, p0]−XR−nf φ[a;n, p] (20)

where p0 ≡
³
u
Rf

´
p and φ[a;n, p] = the probability that the sum of n random variables which

equal 1 with probability p and 0 with probability 1−p will be ≥ a. These formulas imply that C
is the discounted expected value of the call’s terminal payoff that would occur in a risk-neutral

world.

If we define τ as the time until maturity of the call option and σ2 as the variance per unit

time of the stock’s rate of return (which depends on u and d), then by taking the limit as the

number of periods n → ∞, but the length of each period τ
n → 0, the Cox-Ross-Rubinstein

binomial option pricing formula becomes the well-known Black-Scholes-Merton option pricing

formula1

C = SN (z)−XR−τf N
¡
z − σ

√
τ
¢

(21)

where z ≡

·
ln

µ
S

XR−τ
f

¶
+ 1
2
σ2τ

¸
(σ
√
τ)

and N (·) is that standard normal distribution function.

1In the Black-Scholes-Merton formula, Rf is now the risk-free return per unit time rather than the risk-free
return for each period. The relationship between σ and u and d will be discussed shortly.
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