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Consumption- Savings, Portfolio Choice, and Asset Pricing

I. The Consumption - Portfolio Choice Problem

We have studied the portfolio choice problem of an individual who maximizes expected

utility of end-of-period wealth. Utility from consuming initial beginning-of-period wealth was

not modeled, so that all initial wealth was assumed to be saved (invested in a portfolio of

assets). Let us now consider a slightly different problem where the individual obtains utility

from consuming at both the initial and terminal dates. Therefore, we model the individual’s

initial consumption-savings decision as well as his portfolio choice decision. In doing this, we

can derive relationships between asset prices and the individual’s optimal levels of consumption

that generalize many of our previous results.

Let W0 and C0 be the individual’s initial date 0 wealth and consumption, respectively. At

date 1, the end of the period, the individual is assumed to consume all of his wealth which

we denote as C1. The individual’s utility function is defined over beginning- and end-of-period

consumption and takes the following form

U (C0) + δE
h
U
³ eC1´i (1)

where δ is a subjective discount factor that reflects the individual’s rate of time preference

and E [·] is the expectations operator conditional on information at date 0.1 Suppose that the
individual can choose to invest in n different assets. Let Pi be the date 0 price per share of

asset i, i = 1, ..., n , and let Ri be the date 1 random payoff (price plus dividend) of asset i. The

individual may also receive labor income of y0 at date 0 and possibly uncertain labor income

of y1 at date 1. If wi is the proportion of date 0 savings that the individual chooses to invest

in asset i, then his intertemporal budget constraint is

C1 = y1 + (W0 + y0 −C0)
nX
i=1

wi
Ri
Pi

(2)

1δ is sometimes written as 1
1+ρ where ρ is the rate of time preference. A value of δ < 1 (ρ > 0) reflects

impatience on the part of the individual, that is, a preference for consuming early.
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The individual’s maximization problem can then be stated as

max
C0,{wi}

U (C0) + δE [U (C1)] (3)

subject to equation (2) and the constraint
Pn
i=1wi = 1. The first order conditions are

U 0 (C0)− δE

"
U 0 (C1)

nX
i=1

wi
Ri
Pi

#
= 0 (4a)

δE

·
U 0 (C1)

Ri
Pi

¸
− λ = 0, i = 1, ..., n (4b)

where λ = λ0/ (W0 + y0 −C0) and λ0 is the Lagrange multiplier for the constraint Pn
i=1wi = 1.

The first order conditions in (4b) describes how the investor chooses between different assets.

Substituting out for λ, one obtains:

E

·
U 0 (C1)

Ri
Pi

¸
= E

"
U 0 (C1)

Rj
Pj

#
(5)

for any two assets, i and j. Since Ri/Pi is the random return on asset i, equation (5) tells us

that the investor trades off investing in asset i for asset j when the expected marginal utilities

of their returns are equal. Another result of the first order conditions involves the intertemporal

allocation of resources. Substituting (4b) into (4a) gives

U 0 (C0) = δE

"
U 0 (C1)

nX
i=1

wi
Ri
Pi

#
=

nX
i=1

wiδE

·
U 0 (C1)

Ri
Pi

¸
(6)

=
nX
i=1

wiλ = λ

Therefore, the first order conditions in (4b) can be written as:

δE

·
U 0 (C1)

Ri
Pi

¸
= U 0 (C0) , i = 1, ..., n (7)

or
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PiU
0 (C0) = δE

£
U 0 (C1)Ri

¤
, i = 1, ..., n (8)

Equation (8) has an intuitive meaning. It says that when the investor is acting optimally,

he invests in asset i until the loss in marginal utility of giving up Pi dollars at date 0 just equals

the expected marginal utility of receiving the random payoff of Ri at date 1. To see this more

clearly, suppose that one of the assets pays a risk-free return over the period. Call it asset f ,

and suppose Pf = 1 so that Rf is the risk-free return (one plus the risk-free interest rate). For

the risk-free asset, equation (8) becomes

U 0 (C0) = RfδE
£
U 0 (C1)

¤
(9)

which states that the investor trades off date 0 for date 1 consumption until the marginal utility

of giving up $1 of date 0 consumption just equals the expected marginal utility of receiving $Rf

of date 1 consumption. For example, suppose that U (C) = Cγ/γ, for γ < 1. Then equation

(9) can be re-written as

1

Rf
= δE

"µ
C0
C1

¶1−γ#
(10)

Hence, when the interest rate is high, so will be the expected growth in consumption. For the

special case of there being only one risk-free asset and non-random labor income, so that C1 is

non-stochastic, equation (10) becomes

Rf =
1

δ

µ
C1
C0

¶1−γ
(11)

Taking logs of both sides of the equation, we obtain

ln (Rf ) = − ln δ + (1− γ) ln

µ
C1
C0

¶
(12)

Since ln(Rf ) is the continuously-compounded risk-free interest rate and ln(C1/C0) is the growth

rate of consumption, when 0 < γ < 1, a higher interest rate raises second period consumption

less than one-for-one. This implies that initial savings decreases as the interest rate rises

for someone who is less risk-averse than logarithmic utility (the income effect dominates the
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substitution effect). Conversely, when γ < 0, a rise in the interest rate raises second period

consumption more than one-for-one, implying that initial savings increases with a higher return

on savings (the substitution effect dominates the income effect). For the logarithmic utility

investor (γ = 0), a change in the interest rate has no effect on savings.

II. An Asset Pricing Interpretation

Until now, we have analyzed the consumption-portfolio choice problem of an individual

investor. For such an exercise, it makes sense to think of the individual taking the current

prices of all assets and the distribution of their payoffs as given when deciding on his optimal

consumption - portfolio choice plan. However, the first order conditions we have derived might

be re-interpreted as asset pricing relationships. Equation (8) can be re-written as:

Pi = E

·
δU 0 (C1)
U 0 (C0)

Ri

¸
(13)

= E [m01Ri]

where m01 ≡ δU 0 (C1) /U 0 (C0) is the marginal rate of substitution between initial and end-of-

period consumption. The term, m01, is also referred to as, alternatively, a stochastic discount

factor, state price deflator, or pricing kernel. Equation (13) appears in the form of an asset

pricing formula. The current asset price, Pi, is an expected discounted value of its payoffs,

where the discount factor is a random quantity because it depends on the random level of

future consumption. In states of nature where future consumption turns out to be high (due to

high asset portfolio returns or high labor income), marginal utility, U 0 (C1), is low and the asset’s

payoffs in these states are not highly valued. Conversely, in states where future consumption is

low, marginal utility is high so that the asset’s payoffs in these states are highly desired.

The relationship in (13) holds for any asset that the investor can choose to hold. For

example, a dividend-paying stock might have a date 1 random return of eRi = eP1i + eD1i,
wherefP 1i is the date 1 stock price and eD1i is the stock’s dividend paid at date 1. Alternatively,
for a coupon-paying bond, fP 1i would be the date 1 bond price and eD1i would be the bond’s
coupon paid at date 1.2 However, in writing down the individual’s consumption - portfolio choice

2The coupon payment would be uncertain if default on the payment is possible and/or the coupon is not fixed
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problem, we implicitly assumed that returns are expressed in real or “purchasing power” terms.

The reason is that an individual’s utility should depend on the real, not nominal (currency

denominated), value of consumption. Therefore, in the budget constraint (2), if C1denotes real

consumption, then asset returns and prices (as well as labor income) need to be in real terms.

Thus if Pi and Ri are assumed to be in nominal terms, we need to deflate them by a price

index. Letting CPIt denote the consumer price index at date t, the pricing relationship in (13)

becomes

Pi
CPI0

= E

·
δU 0 (C1)
U 0 (C0)

Ri
CPI1

¸
(14)

or if we define Its = CPIs/CPIt as one plus the inflation rate between dates t and s, equation

(14) can be re-written as

Pi = E

·
1

I01

δU 0 (C1)
U 0 (C0)

Ri

¸
(15)

= E [M01Ri]

where M01 ≡ (δ/I01)U 0 (C1) /U 0 (C0) is the stochastic discount factor (pricing kernel) for dis-
counting nominal returns. Hence, this nominal pricing kernel is simply the real pricing kernel,

m01, discounted by the (random) rate of inflation between dates 0 and 1.

The relation in (13) can be re-written to shed light on an asset’s risk premium. Let us

define ri = Ri/Pi− 1 as the random (real) rate of return on asset i. Then dividing each side of

equation (13) by Pi results in

1 = E [m01 (1 + ri)] (16)

= E [m01]E [1 + ri] +Cov [m01, ri]

= E [m01]

µ
E [1 + ri] +

Cov [m01, ri]

E [m01]

¶

Define rf ≡ Rf−1 as the risk-free real interest rate, and recall from (9) thatE [δU 0 (C1) /U 0 (C0)] =

but floating (tied to a market interest rate).
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E [m01] = 1/Rf . Then (16) can be re-written as

1 + rf = E [(1 + ri)] +
Cov [m01, ri]

E [m01]
(17)

or

E [ri] = rf − Cov [m01, ri]
E [m01]

(18)

= rf − Cov [U
0 (C1) , ri]

E [U 0 (C1)]

Equation (18) states that the risk premium for asset i equals minus the covariance between

the marginal utility of end-of-period consumption and the asset return divided by the expected

end-of-period marginal utility of consumption. If an asset pays a higher return when consump-

tion is high, its return has a negative covariance with the marginal utility of consumption, and

therefore the investor demands a positive risk premium over the risk free rate.

Conversely, if an asset pays a higher return when consumption is low, so that its return

positively covaries with the marginal utility of consumption, then it has an expected return less

than the risk-free rate. Investors will be satisfied with this lower return because the asset is

providing insurance against low consumption states of the world, that is, it is helping to smooth

consumption across states.

Now suppose there exists a portfolio with return, r̃m, that is perfectly negatively correlated

with the marginal utility of date 1 consumption, U 0
³ eC1´, implying that it is also perfectly

negatively correlated with the pricing kernel, m01:

U 0(C̃1) = −γ r̃m, γ > 0. (19)

Then this implies

Cov[U 0(C1), rm] = −γCov[rm, rm] = − γ V ar[rm] (20)
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and

Cov[U 0(C1), ri] = −γ Cov[rm, ri]. (21)

For the portfolio having return r̃m, the risk premium relation (18) is

E[rm] = rf − Cov[U
0(C1), rm]

E[U 0(C1)]
= rf +

γ V ar[rm]

E[U 0(C1)]
(22)

Using (18) and (22) to substitute for E[U 0(C1)], and using (21), we obtain

E[rm]− rf
E[ri]− rf =

γ V ar[rm]

γCov[rm, ri]
(23)

and re-arranging

E[ri]− rf = Cov[rm, ri]

V ar[rm]
(E[rm]− rf ) (24)

or

E[ri] = rf + βi (E[rm]− rf ) . (25)

So we obtain the CAPM if the market portfolio is perfectly negatively correlated with the

marginal utility of end-of-period consumption, that is, perfectly negatively correlated with the

pricing kernel. Note that for an arbitrary distribution of asset returns and non-random labor

income, this will always be the case if utility is quadratic because marginal utility is linear in

consumption and the market return is linear in consumption.

Another implication of the stochastic discount factor is that it places bounds on the means

and standard deviations of individual securities and, therefore, determines an efficient frontier.

To see this, re-write the first line in (18) as

E [ri] = rf − ρm01,ri

σm01σri
E [m01]

(26)

where σm01 , σri , and ρm01,ri are the standard deviation of the discount factor, the standard

deviation of the return on asset i, and the correlation between the discount factor and the

return on asset i, respectively. Re-arranging (26) leads to

E [ri]− rf
σri

= −ρm01,ri

σm01

E [m01]
(27)
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The left hand side of (27) is known as the “Sharpe ratio,” after William Sharpe a developer of

the CAPM. Since −1 ≤ ρm01,ri ≤ 1, we know that

¯̄̄̄
E [ri]− rf

σri

¯̄̄̄
≤ σm01

E [m01]
= σm01 (1 + rf ) (28)

If there exists an asset portfolio whose return is perfectly negatively correlated with the

discount factor, m01, then the bound in (28) holds with equality. As we just showed in equations

(19) to (25), such a situation implies the CAPM, so that the slope of the capital market line,

Se ≡ E[rm]−rf
σrm

, equals σm01 (1 + rf ). Thus, the slope of the capital market line, which represents

(efficient) portfolios that have a maximum Sharpe ratio, can be related to the standard deviation

of the discount factor.

The inequality in (28) has empirical implications. σm01 can be estimated if we could ob-

serve an individual’s consumption stream and we know his or her utility function. Then,

according to (28), the Sharpe ratio of any portfolio of traded assets should be less than or

equal to σm01/E [m01]. For power utility, U (C) = C
γ/γ, γ < 1, so that m01 ≡ δ (C1/C0)

γ−1 =

δe(γ−1) ln(C1/C0). If C1is assumed to be lognormally distributed, with parameters µc and σc then

σm01

E [m01]
=

q
V ar

£
e(γ−1) ln(C1/C0)

¤
E
£
e(γ−1) ln(C1/C0)

¤ =

q
E
£
e2(γ−1) ln(C1/C0)

¤−E £e(γ−1) ln(C1/C0)¤2
E
£
e(γ−1) ln(C1/C0)

¤ (29)

=
q
E
£
e2(γ−1) ln(C1/C0)

¤
/E

£
e(γ−1) ln(C1/C0)

¤2 − 1
=

q
e2(γ−1)µc+2(γ−1)2σ2c/e2(γ−1)µc+(γ−1)2σ2c − 1 =

q
e(γ−1)2σ2c − 1

≈ (1− γ)σc

where in the third line of (29) the expectations are evaluated assuming C1 is lognormally

distributed. Hence, with power utility and lognormally distributed consumption, we have

¯̄̄̄
E [ri]− rf

σri

¯̄̄̄
≤ (1− γ)σc (30)

For example, let ri be the return on a broadly diversified portfolio of U.S. stocks, such

as the S&P500. Over the last 75 years, this portfolio’s annual real return in excess of the

risk-free interest rate has averaged 8.3 percent, suggesting E [ri] − rf = .083. The portfolio’s
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annual standard deviation has been approximately σri = 0.17, implying a Sharpe ratio of
E[ri]−rf

σri
= 0.49. Assuming a “representative agent” and using per capita U.S. consumption

data to estimate the standard deviation of consumption growth, researchers have come up with

annualized estimates of σc between 0.01 and 0.0386.3 Thus, even if a diversified portfolio of U.S.

stocks was an efficient portfolio of risky assets, so that (30) held with equality, it would imply

a coefficient of relative risk aversion of γ = 1 −
³
E[ri]−rf

σri

´
/σc between -11.7 and -48.4 Since

reasonable levels of risk aversion are often taken to be in the range of -2 to -4, the inequality

(30) appears to not hold for U.S. stock market data and standard specifications of utility. In

other words, consumption appears to be too smooth relative to the premium that investors

demand for holding stocks. This phenomenon has been referred to as the “equity premium

puzzle.”5 Attempts to explain this puzzle have involved using different specifications of utility

and questioning whether the ex-post sample mean of U.S. stock returns is a good estimate of

the a priori expected return on U.S. stocks.6

III. Market Completeness, Arbitrage, and State Pricing

The notion that assets can be priced using a stochastic discount factor is attractive because

the discount factor, m01, is independent of the asset being priced: it can be used to price any

asset no matter what its risk. We derived this discount factor from a consumption - portfolio

choice problem and, in this context, showed that it equaled the marginal rate of substitution

between current and end-of-period consumption. However, the usefulness of this approach is in

doubt since empirical evidence using aggregate consumption data and standard specifications of

utility appears inconsistent with the discount factor equaling the marginal rate of substitution.

Fortunately, a general pricing relationship of the form Pi = E0 [m01Ri] can be shown to hold

without assuming that m01 represents a marginal rate of substitution. In other words, we need

not assume a consumption- portfolio choice structure to derive this relationship. Instead, our

3See John Y. Campbell (1999) “Asset Prices, Consumption, and the Business Cycle,” in John Taylor and
Michael Woodford, eds. Handbook of Macroeconomics 1, North-Holland, Amsterdam and Stephen G. Cecchetti,
Pok-Sam Lam, and Nelson C. Mark (1994) “Testing Volatility Restrictions on Intertemporal Rates of Substitution
Implied by Euler Equations and Asset Returns,” Journal of Finance 49, 123-52.

4 If the stock portfolio was less than efficient, so that a strict inequality held in (30), the magnitude of the
risk-aversion coefficient would need to be even higher.

5See Rajnish Mehra and Edward Prescott (1985) “The Equity Premium: A Puzzle,” Journal of Monetary
Economics 15, 145-61.

6Jeremy J. Siegel and Richard H. Thaler (1997) “Anomalies: The Equity Premium Puzzle,” Journal of
Economic Perspectives 11, 191-200 review this literature.

9



derivation can be based on the notions of market completeness and the absence of arbitrage.

With these alternative assumptions, one can show that a law of one price holds and that a

stochastic discount factor exists.

To illustrate, suppose once again that an individual can freely trade in n different assets.

We also assume that there are a finite number of end-of-period “states of the world,” with state

s having probability πs. Let Rsi be the cashflow generated by one share (unit) of asset i in

state s. Also assume that there are k states of the world and n assets. The following vector

describes the payoffs to financial asset i:

Ri =


R1i
...

Rki

 . (31)

Thus, the per-share cashflows of the universe of all assets can be represented by the k×n matrix

R =


R11 · · · R1n
...

. . .
...

Rk1 · · · Rkn

 . (32)

We will assume that n = k and that R is of full rank. A necessary condition for there to be a

complete market (and unique state prices) is that n ≥ k. If n > k, there are some “redundant”
assets, that is, assets whose cashflows in the k states are linear combinations of others. In this

case we could reduce the number of assets to k by combining them into k linearly independent

(portfolios of) assets without loss of generality.

Suppose an individual wishes to divide her wealth among the k assets so that she can obtain

target levels of wealth in each of the states. Let W denote this kx1 vector of target wealth

levels:

W =


W1

...

Wk

 . (33)

whereWs is the level of wealth in state s. To obtain this set of target wealth levels, at the initial

date the individual needs to purchase shares in the k assets, which we denote as w = [w1 . . . wk]0.
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w must satisfy

Rw =W (34)

or

w = R−1W. (35)

Hence, we see that any arbitrary levels of wealth in the k states can be attained because the

assets’ payoffs span the k states, that is, markets are complete. Given an absence of arbitrage

opportunities, the price of the new security (contingent claim) represented by the payoff W

must equal the cost of creating it. If P = [P1 . . . Pk]0 is the kx1 vector of beginning-of-period

per share prices of the k assets, then the amount of initial wealth required to produce the target

level of wealth given in (33) is simply P 0w.

Consider a special case of a security that has a payoff of 1 in state s and 0 in all other states.

We refer to such a security as a primitive or “elementary” security. Specifically, elementary

security “s” has the vector of cashflows

es =



W1

...

Ws

...

Wk


=



0
...

1
...

0


. (36)

Let ps be the beginning of period price or value of this primitive security s. Then as we just

showed, its price in terms of the payoffs and prices of the original k assets must equal

ps = P
0R−1es (37)

It is insightful to now consider how any other security (contingent claim) can be valued in

terms of these elementary or basis securities. Note that the portfolio composed of the sum of

all primitive securities will give a cashflow of 1 unit with certainty. The price of this portfolio
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defines the risk free interest rate, rf , by the relation:

kX
s=1

ps =
1

1 + rf
. (38)

In general, let there be some multi-cashflow asset, a, whose cashflow paid in state s is Rsa.

In the absence of arbitrage, its price, Pa, must equal

Pa =
kX
s=1

psRsa (39)

Next define ms ≡ ps/πs to be the price of elementary security s divided by the probability that
state s occurs. Then (39) can be written as

Pa =
kX
s=1

πs
ps
πs
Rsa (40)

=
kX
s=1

πsmsRsa

= E [mRa]

implying that the stochastic discount factor equals the prices of the elementary securities nor-

malized by their state probabilities. Hence, in a complete market, a unique stochastic discount

factor exists.

An alternative formula for pricing assets can be developed. Define bπs ≡ ps(1 + rf ) as the
price of elementary security s times one plus the risk-free interest rate. Then

Pa =
kX
s=1

psRsa (41)

=
1

1 + rf

kX
s=1

ps (1 + rf ) Rsa

=
1

1 + rf

kX
s=1

bπsRsa
=

1

1 + rf
bE [Ra]
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where bE [·] denotes the expectation operator evaluated using the “pseudo” probabilities bπs
rather than the true or “physical” probabilities πs. Note that since ms ≡ ps/πs, bπs can be
written as

bπs = (1 + rf )msπs (42)

so that the pseudo probability transforms the physical probability by multiplying by the product

of the stochastic discount factor and the risk-free growth factor. To see what this entails,

suppose that in each state the stochastic discount factor equaled the risk-free discount factor,

that is, ms = 1
1+rf

. In that case, the pseudo probability would equal the physical probability,

and Pa = E [mRa] = E [Ra] /(1 + rf ). Because the price equals the expected payoff discounted

at the risk-free rate, the asset is priced as if investors are risk-neutral. Hence, bπs is referred to as
the “risk-neutral” probability and bE [·] is referred to as the risk-neutral expectations operator.
If the stochastic discount factor is interpreted as the marginal rate of substitution, then we see

that bπs is higher than πs in states where the marginal utility of consumption is high (or the

level of consumption is low). Thus, the risk-neutral probability places extra probability weight

on “bad” states and less probability weight on “good” states.

The complete markets or “State Preference” framework can be generalized to an infinite

number of states and primitive securities. Basically, this is done by defining probability densities

of states and replacing the summations in expressions like (38) and (39) with integrals. For

example, let states be indexed as all possible points on the real line between 0 and 1, that is,

the state s ∈ (0, 1). Also let p(s) be the price (density) of a primitive security that pays 1 unit
in state s. Further, define Ra(s) as the cashflow paid by security a in state s. Then, analogous

to (38) we can write Z 1

0
p(s)ds =

1

1 + rf
(43)

and instead of (39) we can write the price of security a as

Pa =
Z 1

0
p(s)Ra(s)ds. (44)

In some cases, namely where markets are intertemporally complete, State Preference The-
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ory can be extended to allow assets’ cashflows to occur at different dates in the future. This

generalization is sometimes referred to as Time State Preference Theory. See Stewart C. My-

ers (1968) “A Time-State Preference Model of Security Valuation,” Journal of Financial and

Quantitative Analysis 3, 1-34. To illustrate, suppose that assets can pay cashflows at both date

1 and date 2 in the future. Let s1 be a state at date 1 and let s2 be a state at date 2. States

at date 2 can depend on which states were reached at date 1.

For example, suppose there are two events at each date, economic recession (r) or expansion

(e). Then we could define s1 ∈ {r1, e1} and s2 ∈ {r1r2, r1e2, e1r2, e1e2}. By assigning suitable
probabilities and primitive security state prices for assets that pay cashflows of 1 unit in each

of these six states, we can sum (or integrate) over both time and states at a given date to

obtain prices of complex securities. Thus, when primitive security prices exist at all states for

all future dates, we are essentially back to a single period complete markets framework, and

the analysis is the same as that derived previously.
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