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Mean Variance Analysis

Consider the utility of an individual who invests her beginning-of-period wealth, W0, in a

particular portfolio of assets. Let r̃p be the random rate of return on this portfolio, so that the

individual’s end-of-period wealth is W̃ = W0(1 + r̃p). Denote this individual’s end-of-period

utility by U(W̃ ). Given W0, for notational simplicity we can write U(W̃ ) = U (W0(1 + r̃p))as

just U(r̃p) because W̃ is fully determined by r̃p.

Now take a Taylor series expansion of U(r̃p) around the mean of r̃p, denoted as E[r̃p], and

let U 0 (·), U 00 (·), and U (n) (·) be the first, second, and nth derivatives of the utility function:

U(r̃p) = U (E[r̃p]) + (r̃p −E[r̃p])U 0 (E[r̃p]) + 1
2 (r̃p −E[r̃p])2U 00 (E[r̃p]) + ... (1)

1
n! (r̃p −E[r̃p])n U (n) (E[r̃p]) + ...

If

(a) The utility function is quadratic (U 000 = 0), then

E [U(r̃p)] = U (E[r̃p]) +
1
2E

h
(r̃p −E[r̃p])2

i
U 00 (E[r̃p]) (2)

= U (E[r̃p]) +
1
2V [r̃p]U

00 (E[r̃p])

where V [r̃p] is the variance of the rate of return on the portfolio.
1

Alternatively, if U(r̃p) is a general concave utility but

(b) Portfolio rates of return are normally distributed, then third, fourth, and all higher

central moments are either zero or a function of the variance: E [(r̃p −E[r̃p])n] = 0, for n odd,
and E [(r̃p −E[r̃p])n] = n!

(n/2)!

³
1
2V [r̃p]

´n/2
, for n even. For this case we have

E [U(r̃p)] = U (E[r̃p]) +
1
2V [r̃p]U

00 (E[r̃p]) + 0 +
1

8
(V [r̃p])

2U 0000 (E[r̃p]) + 0 + ... (2’)

1The expected value of the second term in the Taylor series, E [(r̃p − E[r̃p])U 0 (E[r̃p])], equals zero.

1



+
1

(n/2)!

µ
1

2
V [r̃p]

¶n/2
U (n) (E[r̃p]) + ...

Thus for case (a) or (b), we see that E [U(r̃p)] can be written as a function of only the mean,

E[r̃p], and the variance, V [r̃p], of the portfolio return distribution. Given that expected utility

is a function of only the mean and variance of a portfolio’s rate of return, clearly, it can be

written also as a function of the mean and variance of one plus the portfolio’s rate of return,

which we denote as R̃p ≡ 1 + r̃p.
Before we analyze portfolio choice decisions assuming that the individual cares only about

the mean and variance of her portfolio’s return (or mean and variance of her end-of-period

wealth), we should pause to ask whether case (a) or case (b) is realistic. If not, then there is

little justification in assuming that the first two moments of the portfolio return distribution

are the only ones that matter to the individual investor. Clearly, the assumption of quadratic

utility, case (a), is problematic. As mentioned earlier, marginal utility for quadratic utility is

non-negative only for levels of wealth below the “bliss point.” There is also a potential problem

with case (b). The assumption that asset returns are normally distributed over a finite period

of time implies that assets can take on negative values.2 For some assets, such as stockholders’

equity, negative values are inconsistent with limited-liability.

It turns out, however, that the assumption of normal rates of return can be modified if

we generalize the model to have multiple periods and assume that asset rates of return follow

continuous-time stochastic processes. In that context, one can assume that assets’ rates of

return are instantaneously normally distributed, which implies that if their means and variances

are constant over infinitesimal intervals, then over any finite internal asset values are lognormally

distributed. This turns out to be a better way of modeling limited liability assets because the

lognormal distribution bounds these assets’ values to be no less than zero. As we shall see

when we later consider multi-period models, the results derived here assuming a single-period,

discrete-time model continue to hold, under particular conditions, in the more-realistic multi-

period context.

Therefore, let us proceed by assuming that the individual’s utility function, U , is a general

2This because realizations from the normal distribution have no lower (or upper) bound.
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concave utility function and that R̃p (and, hence, r̃p) is normally distributed with probability

density function f(R̄p,σ2p), where we use the short-hand notation R̄p ≡ E[R̃p] and σ2p ≡ V [R̃p].
Expected utility can then be written:

E
h
U
³ eRp´i = Z ∞

−∞
U(R)f(R̄p,σ

2
p)dR (3)

We first analyze an individual’s indifference curves in portfolio mean-variance space. An

indifference curve represents the combinations of portfolio mean and variance that would give

an individual the same level of expected utility. Define ex ≡ R̃p−R̄p
σp

. Then

E
h
U
³ eRp´i = Z ∞

−∞
U(R̄p + xσp)n(x)dx (4)

where n(x) is the standardized normal probability density function, that is, the normal density

having a zero mean and unit variance. Taking the partial derivative with respect to R̄p:

∂E
h
U
³ eRp´i

∂R̄p
=
Z ∞
−∞

U 0n(x)dx > 0 (5)

since U 0 is always greater than zero. Next, take the partial derivative of (4) with respect to σ2p:

∂E
h
U
³ eRp´i

∂σ2p
=

1

2σp

∂E
h
U
³ eRp´i

∂σp
=

1

2σp

Z ∞
−∞

U 0xn(x)dx (6)

While U 0 is always positive, x ranges between −∞ and +∞ . Because x has a standard normal

distribution, which is symmetric, for each positive realization there is a corresponding negative

realization with the same probability density. For example, take the positive and negative pair

+xi and −xi. Then n(+xi) = n(−xi). Comparing the integrand of equation (6) for equal
absolute realizations of x, we can show

U 0(R̄p + xiσp)xin(xi) +U 0(R̄p − xiσp)(−xi)n(−xi) (7)

= U 0(R̄p + xiσp)xin(xi)− U 0(R̄p − xiσp)xin(xi)
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= xin(xi)
£
U 0(R̄p + xiσp)− U 0(R̄p − xiσp)

¤
< 0

because

U 0(R̄+ xiσp) < U 0(R̄− xiσp) (8)

due to the assumed concavity of U , that is, U 00 < 0. Thus, comparing U 0xin(xi) for each

positive and negative pair, we conclude that

∂E
h
U
³ eRp´i

∂σ2p
=

1

2σp

Z ∞
−∞

U 0xn(x)dx < 0 (9)

which is the intuitive result that higher portfolio variance, without higher portfolio expected

return, reduces a risk-averse individual’s expected utility.3

To obtain an indifference curve, take the total differential

dE
h
U
³ eRp´i = ∂E

h
U
³ eRp´i

∂σ2p
dσ2p +

∂E
h
U
³ eRp´i

∂R̄p
dR̄p = 0 (10)

The slope of each indifference curve is then

dR̄p
dσ2p

= −
∂E

h
U
³ eRp´i

∂σ2p
/
∂E

h
U
³ eRp´i

∂R̄p
> 0 (11)

Indifference curves are typically drawn in mean - standard deviation space, rather than mean

- variance space, because standard deviations of returns are in the same unit of measurement

as returns or interest rates (rather than squared returns). In Figure 1, the arrow indicates an

increase in utility. The curves are convex due to the concavity of the utility function.4

The Efficient Frontier

The individual’s optimal choice of portfolio mean and variance is determined by the point

where one of these indifference curves is tangent to the set of means and standard deviations

for all feasible portfolios, what we might describe as the “risk-expected return production

3Note that this result depends on the individual’s utility function being concave. If the individual had convex
utility, that is, was risk-loving, then the derivative in (9) would be positive.

4The proof of this is left as an exercise.
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Figure 0-1: Indifference Curves

possibility set.” This set represents all possible ways of combining various individual assets to

generate alternative combinations of portfolio mean and variance (or standard deviation). This

set includes inefficient portfolios (those in the interior of the opportunity set) as well as efficient

portfolios (those on the “frontier” of the set). Efficient portfolios are those that make best use

of the benefits of diversification.

To illustrate the effects of diversification, consider the following simple example. Suppose

there are two assets, assets A and B, that have expected returns R̄A and R̄B and variances of

σ2A and σ2B, respectively. Further the correlation between their returns is given by ρ. Let us

assume that R̄A < R̄B but σ
2
A < σ2B. Now form a portfolio with a proportion w invested in

asset A and a proportion 1−w invested in asset B. The expected return on this portfolio is

Rp = wR̄A + (1−w)R̄B (12)

The expected return of a portfolio is a simple weighted average of the expected returns of the

individual financial assets. Expected returns are not fundamentally transformed by combining

individual assets into a portfolio. The standard deviation of the return on the portfolio is

σp =
h
w2σ2A + 2w(1−w)σAσBρ+ (1−w)2σ2B

i 1
2 (13)

In general, portfolio risk, as measured by the portfolio’s return standard deviation, is a nonlinear
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function of the individual assets’ risks (standard deviations). Thus, risk is altered in a relatively

complex way when individual assets are combining into a portfolio.

Let us consider some special cases regarding the correlation between the two assets. Suppose

ρ = 1, so that the two assets are perfectly positively correlated. Then assuming that wσA +

(1−w)σB > 0, the portfolio standard deviation equals

σp =
h
w2σ2A + 2w(1−w)σAσB + (1−w)2σ2B

i 1
2 (14)

= wσA + (1−w)σB

which is a simple weighted average of the individual assets’ standard deviations. Since rear-

ranging (14) implies w = −(σp − σB)/ (σB − σA), and we can substitute in for w in (12) to

obtain

R̄p = R̄B +

·
σp − σB
σB − σA

¸
(R̄B − R̄A) (15)

This relationship between portfolio risk and expected return is a positively sloped line in R̄p, σp

space. It goes through the points (R̄A,σA) and (R̄B,σB) when w = 1 and w = 0, respectively.

Next, suppose ρ = −1, so that the assets are perfectly negatively correlated. Then

σp =
h
(wσA − (1−w)σB)2

i 1
2 (16)

One can see that there is a w such that portfolio risk can be eliminated. σp equals zero when

w =
σB

σA + σB
(17)

Hence there is a portfolio with positive proportions of both assets A and B that produces a

riskless return, equal to R̄p|σp=0 = (σBR̄A+σAR̄B)/(σA+σB). When ρ = −1, we see from (16)
that when (wσA − (1 − w)σB) ≥ 0, σp = w(σB + σA) − σB. Since R̄p = R̄B + w(R̄A − R̄B),
substituting for w give us
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Figure 0-2: Efficient Frontier for Two Risky Assets

R̄p = R̄B +−
·
σB + σp
σA + σB

¸
(R̄B − R̄A) (18)

which is a negatively sloped line in R̄p, σp space and goes through the point (R̄A,σA) when

w = 1. In equation (16), when wσA − (1−w)σB ≤ 0, σp = σB −w(σA + σB). In this case

R̄p = R̄B +

·
σp − σB
σA + σB

¸
(R̄B − R̄A) (19)

which is, a positively sloped line in R̄p, σp space and goes through the point (R̄B,σB) when

w = 0. Figure 2 summarizes these risk - expected return constraints.

In general, when −1 < ρ < 1, if the portfolio expected return is between R̄A and R̄B,

the efficient frontier will be a concave function contained in the triangle of the above diagram.

Maximum benefits from diversification occur where the individual’s indifference curve is tangent

to the frontier. Note that there is no need to have ρ < 0 to obtain diversification benefits, only

ρ < 1. We now set out to prove the above assertions for the general case of N assets.

Mathematics of the efficient frontier

The problem we wish to solve is the following: Given the expected returns and the covariance

matrix of N individual assets, find the set of portfolio weights that minimizes the variance of

the portfolio for each feasible portfolio expected return. The locus of these points is the efficient

portfolio frontier.
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Let R̄ = (R̄1 R̄2 ... R̄n)
0 be an N × 1 vector of the expected returns of the N assets. Let V

be the N × N covariance matrix of the returns on the N assets. V is assumed to be of full

rank.5 Also, let w = (w1w2 ... wn)
0 be an N × 1 vector of portfolio proportions, such that wi is

the proportion of total portfolio wealth invested in the ith asset. Thus, the expected return on

the portfolio is given by

R̄p = w
0R̄ (20)

and the variance of the portfolio return is given by

σ2p = w
0V w (21)

The constraint that the portfolio proportions must sum to 1 can be written as w0e = 1 where e

is defined to be an N×1 vector of ones. The problem can be stated as a quadratic optimization
exercise:

min
w
L = 1

2w
0V w+ λ

h
Rp −w0R̄

i
+ γ[1−w0e] (22)

The first order conditions are:

∂L

∂w
= V w − λR̄− γe = 0 (23a)

∂L

∂λ
= Rp −w0R̄ = 0 (23b)

∂L

∂γ
= 1−w0e = 0 (23c)

Solving (23a), the optimal portfolio weights satisfy

w∗ = λV −1R̄+ γV −1e (24)

5This implies that there are no redundant assets among the N assets. An asset would be redundant if its
return was an exact linear combination of the the returns on other assets. If such an asset exists, it can be
ignored since whether or not it is held will not affect the efficient portfolio frontier.
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Pre-multiplying equation (24) by R̄0, we have

Rp = R̄
0w∗ = λR̄0V −1R̄+ γR̄0V −1e (25)

Pre-multiplying equation (24) by e0 we have

1 = e0w∗ = λe0V −1R̄+ γe0V −1e (26)

Equations (25) and (26) are two linear equations in two unknowns, the Lagrange multipliers λ

and γ. The solution is

λ =
δRp − α

ςδ − α2
(27a)

γ =
ς − αRp
ςδ − α2

(27b)

where α ≡ R̄0V −1e = e0V −1R̄, ς ≡ R̄0V −1R̄, and δ ≡ e0V −1e. Note that the denominators of
λ and γ, given by ςδ − α2, are guaranteed to be positive when V is of full rank. This can be

shown using the Cauchy-Schwartz inequality which states that correlations must be less than

unity in absolute value. Substituting for λ and γ in equation (24), we have

w∗ =
δRp − α

ςδ − α2
V −1R̄+

ς − αRp
ςδ − α2

V −1e (28)

Collecting terms in R̄p gives

w∗ = hRp + g (29)

where h ≡ δV −1R̄− αV −1e
ςδ − α2

and g ≡ ςV −1e− αV −1R̄
ςδ − α2

.

Equation (29) is both a necessary and sufficient condition for portfolio efficiency. Given Rp,

a portfolio must have weights satisfying (29) to be efficient.

Having solved for the optimal portfolio weights and given Rp, the variance of the efficient

portfolio is
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σ2p = w
∗0V w∗ = (hRp + g)0V (hRp + g) =

δR
2
p − 2αRp + ς

ςδ − α2
(30)

which is a parabola in σ2p, Rp space, or a hyperbola in σp, Rp space. Equation (30) is therefore

the function for the efficient frontier. In σp, Rp space, this is the upper arc of the hyperbola

and, thus, is a concave function. See Figure 3.

Separation property

We now state and prove a fundamental result:

Any frontier portfolio can be duplicated by any of two other frontier portfolios;

and an individual will be indifferent between choosing among the N financial assets,

or choosing a combination of just two efficient portfolios.

The proof is as follows. Let R̄1p and R̄2p be the expected returns on any two distinct frontier

portfolios. Let R̄3p be the expected return on a third frontier portfolio. Now consider investing

a proportion of wealth, x, in the first frontier portfolio and the remainder, (1−x), in the second
frontier portfolio. Clearly, a value for x can be found that makes the expected return on this

“composite” portfolio equal to that of the third frontier portfolio.6

R̄3p = xR̄1p + (1− x)R̄2p (31)

In addition, because portfolios 1 and 2 are frontier portfolios, we can write their portfolio

proportions as a linear function of their expected returns. Specifically, we have w1 = g + hR̄1p

and w2 = g+hR̄2p where w
i is the N×1 vector of optimal portfolio weights for frontier portfolio

i. Now create a new portfolio with an N × 1 vector of portfolio weights given by

xw1 + (1− x)w2 = x(g + hR̄1p) + (1− x)(g + hR̄2p) (32)

= g + h(xR̄1p + (1− x)R̄2p)
= g + hR̄3p = w

3

6x may be any positive or negative number.

10



where, in the last line of (32) we have substituted in equation (31). Based on the portfolio

weights of the composite portfolio, xw1 + (1− x)w2 ,equalling g + hR̄3p, which is the portfolio

weights of the third frontier portfolio, w3 , this composite portfolio replicates the third frontier

portfolio. Hence, any arbitrary efficient portfolio can be replicated by two others.

The Efficient Frontier with a Riskless Asset

Thus far, we have assumed that all assets are risky. Introducing the possibility of investing

in a riskless asset changes the problem in a fundamental manner. Assume that there is a riskless

asset with return Rf . Let w continue to be the N × 1 vector of portfolio proportions invested
in the risky assets. Now, however, the constraint 1 = w0e does not apply. We can impose the

restriction that the portfolio weights for all N + 1 assets sum to one by writing the expected

return on the portfolio as

R̄p = Rf +w
0(R̄−Rfe) (33)

The variance of the return on the portfolio continues to be given by w0V w. Thus, the individual’s

optimization problem is changed to:

min
w
L = 1

2w
0V w+ λ

n
Rp −

£
Rf +w

0(R̄−Rfe)
¤o

(34)

In a manner similar to the previous derivation, the first order conditions lead to the solution

w∗ = kV −1(R̄−Rfe) (35)

where k ≡ Rp −Rf
ς − 2αRf + δR2f

.7 Thus, the amount optimally invested in the riskless asset is

1 − e0w∗. Note that since k is linear in Rp, so is w∗, the same as in the previous case of no
riskless asset. The variance of the portfolio now takes the form

σ2p = w
∗0V w∗ =

(Rp −Rf )2
ς − 2αRf + δR2f

(36)

or

7The proof of this is left to the reader.
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Figure 0-3: Efficient Frontier

σp =
Rp −Rf³

ς − 2αRf + δR2f

´1
2

(37)

Hence, the efficient frontier is linear in σp, Rp space. This case of including a riskless asset

can be compared with the previous case of only risky assets in Figure 3.

At point A, the ray from Rf is tangent to the hyperbola given by equation (30), the efficient

frontier for the case of only risky assets. This ray running through Rf and A is now the new

efficient frontier when holding a riskless asset is permitted. As one can see, it weakly dominates

the case with no riskless asset. To the left of point A, the individual holds a positive amount of

(invests in) the riskless asset. To the right of point A, the individual holds a negative amount

of (borrows) the riskless asset.

A Specific Example with Negative Exponential Utility

To illustrate our results, let us assume a specific form for an individual’s utility function.

This will enable us to determine the individual’s preferred efficient portfolio, that is, the point

of tangency between the individual’s highest indifference curve and the efficient frontier.

As before, let W̃ be the individual’s end-of-period wealth and assume that she maximizes

expected negative exponential utility.
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U(W̃ ) = −e−bW̃ (38)

where b is the individual’s coefficient of absolute risk aversion. Now define br ≡ bW0, which is

the individual’s coefficient of relative risk aversion at initial wealth W0. Equation (38) can be

re-written:

U(W̃ ) = −e−brW̃/W0 = −e−brR̃p (39)

where R̃p is the total return (one plus the rate of return) on the portfolio.

In this problem, we assume that initial wealth can be invested in a riskless asset and N

risky assets. As before, denote the return on the riskless asset as Rf and the returns on the N

risky assets as the N ×1 vector R̃. Also as before, let w = (w1 ... wN)0 be the vector of portfolio
weights for the N risky assets. The risky assets’ returns are assumed to have a joint normal

distribution where R̄ is the N ×1 vector of expected returns on the N risky assets and V is the

N ×N covariance matrix of returns. Thus, the expected return on the portfolio can be written

R̄p ≡ Rf+ w0(R̄−Rfe) and the variance of the return on the portfolio is σ2p ≡ w0V w.
Now recall the properties of the lognormal distribution. If x̃ is a normally distributed

random variable, for example, x̃ ∼ Φ(µ,σ2), then z̃ = eex is lognormally distributed. The
expected value of ez is

E[z̃] = eµ+
1
2
σ2 (40)

From (39), we see that if R̃p = w0R̃ is normally distributed, then U
³
W̃
´
is lognormally dis-

tributed. Using equation (40), we have

E
h
U
³fW´i

= −e−br[Rf+w0(R̄−Rf e)]+ 1
2
b2rw

0V w (41)

The individual chooses portfolio weights by maximizing expected utility:

max
w
E
h
U
³fW´i

= −e−br[Rf+w0(R̄−Rf e)]+ 1
2
b2rw

0V w (42)

Because the expected utility function is monotonic in its exponent, the maximization problem
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in (42) is equivalent to

max
w
E
h
U
³fW´i

= w0(R̄−Rfe)− 1
2brw

0V w (43)

The N first order conditions are

R̄−Rfe− brV w = 0 (44)

Solving for w, we obtain

w∗ =
1

br
V −1(R̄−Rfe) (45)

Thus, we see that the individual’s optimal portfolio choice depends on br, her coefficient of

relative risk aversion, and the expected returns and covariances of the assets. The greater the

individual’s relative risk aversion, br, the smaller the proportion of wealth invested in the risky

assets. In fact, multiplying both sides of (45) byW0, we see that the absolute amount of wealth

invested in the risky assets is

W0w
∗ =

1

b
V −1(R̄−Rfe) (46)

Thus the individual with constant absolute risk aversion, b, invests a fixed dollar amount in

the risky assets, independent of her initial wealth. As wealth increases, each additional dollar

is invested in the risk-free asset.
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