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Risk Aversion and Risk Premia

An individual is said to be risk averse if and only if the individual’s utility function is

concave. This aversion to risk implies that the individual would not accept a “fair” lottery

(asset). A fair or “pure risk” lottery is defined as one that has an expected value of zero. To see

why a risk averse individual would have lower expected utilility from accepting a fair lottery,

consider the following example. Let there be a lottery that has a random payoff, eε, where

eε =
 h1with probability p

h2 with probability 1− p
(1)

The requirement that it be a fair lottery restricts its expected value to equal zero:

E [eε] = ph1 + (1− p)h2 = 0 (2)

which implies h1/h2 = − (1− p) /p, or, solving for p, p = −h2/ (h1 − h2).
Now suppose a von Neumann-Morgenstern expected utility maximizer whose current wealth

equals W is offered the above lottery. Would this individual accept it, that is, would she place

a positive value on this lottery?

If the lottery is accepted, expected utility is given by V = E [U (W + eε)]. Instead, if it is
not accepted, expected utility is given by V = E [U (W )] = U (W ). Thus, if the individual

refuses to accept a fair lottery, it implies

U (W ) > E [U (W + eε)] = pU (W + h1) + (1− p)U (W + h2) (3)

To show that this is equivalent to having a concave utility function, note that U (W ) can be

re-written as

U(W ) = U (W + ph1 + (1− p)h2) (4)

since ph1 + (1− p)h2 = 0 by the assumption that the lottery is fair. Re-writing inequality (3),
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we have

U (W + ph1 + (1− p)h2) > pU (W + h1) + (1− p)U (W + h2) (5)

which is the definition of U being a concave function. A function is concave if a line joining any

two points of the function lies entirely below the curve. When U(W ) is concave, a line connecting

the points U(W+h2) to U(W+h1) lies below U(W ) for allW such thatW+h2 < W < W+h1.

pU(W + h1) + (1 − p)U(W + h2) is exactly the point on this line directly below U(W ). This

is clear by substituting p = −h2/(h1 − h2). Note that when U(W ) is a continuous, second
differentiable function, concavity implies that its second derivative, U 00(W ), is less than zero.

To show the reverse, that concavity of utility implies the unwillingness to accept a fair

lottery, we can use a result from statistics known as Jensen’s inequality. If U(·) is some concave
function, and ex is a random variable, then Jensen’s inequality says that

E[U(x̃)] < U(E[x̃]) (6)
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Therefore, substituting x̃ =W + eε, with E[eε] = 0, we have
E [U(W + eε)] < U (E [W + eε]) = U(W ) (7)

which is the desired result.

We have defined risk aversion in terms of the individual’s utility function. We now consider

how this aversion to risk can be quantified. This is done by defining a risk premium, the amount

that an individual is willing to pay to avoid a risk.

Let π denote the individual’s risk premium for a particular lottery, eε. It can be likened
to the maximum insurance payment an individual would pay to avoid a particular risk. Pratt

(1964) defined the risk premium for lottery (asset) eε as
U(W − π) = E [U(W + eε)] (8)

This is the definition of a risk premium that is commonly used in the insurance literature. In

financial economics, a somewhat different concept is often used, namely, that an asset’s risk

premium is its expected rate of return in excess of the risk-free rate of return. This alternative

concept will be considered later.

To analyze this Pratt (1964) risk premium, we continue to assume the individual is an

expected utility maximizer and that eε is a fair lottery, that is, its expected value equals zero.
Further, let us consider the case of eε being “small,” so that we can study its effects by taking
a Taylor series approximation of equation (8) around the point eε = 0 and π = 0.1 Expanding

the left hand side of (8) around π = 0 gives

U(W − π) ∼= U(W )− πU 0(W ) (9)

and expanding the right hand side of (8) around eε = 0 (and taking a three term expansion since
E [eε] = 0 implies that a third term is necessary for a limiting approximation) gives

E [U(W + eε)] ∼= E hU(W ) + eεU 0(W ) + 1
2
eε2U 00(W )i (10)

1By describing the random variable eε as “small” we mean that its probability density is concentrated around
its mean 0.
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= U(W ) + 1
2σ

2U 00(W )

where σ2 ≡ E £eε2¤ is the lottery’s variance. Equating the results in (9) and (10), we have
π = −12σ2

U 00(W )
U 0(W )

≡ 1
2σ

2R(W ) (11)

where R(W ) ≡ −U 00(W )/U 0(W ) is the Pratt (1964) - Arrow (1970) measure of absolute risk
aversion. Note that the risk premium, π, depends on the uncertainty of the risky asset, σ2, and

on the individual’s coefficient of absolute risk aversion. Since σ2 and U 0(W ) are both greater

than zero, concavity of the utility function ensures that π must be positive.

From (11) we see that the concavity of the utility function, U 00(W ), is not sufficient to

quantify the risk premium an individual is willing to pay, even though it is necessary and

sufficient to indicate if an individual is risk-averse or not. We also need the first derivative,

U 0(W ), which tells us the marginal utility of wealth. An individual may be very risk averse

(−U 00(W ) is large), but he may be unwilling to pay a large risk premium if he is poor since his

marginal utility is high (U 0(W ) is large).

To illustrate this point, consider the following utility function:

U(W ) = −e−bW , b > 0 (12)

Note that U 0(W ) = be−bW > 0 and U 00(W ) = −b2e−bW < 0. Consider the behavior of a very

wealthy individual, that is, one whose wealth approaches infinity:

lim
W→∞

U 0(W ) = lim
W→∞

U 00(W ) = 0 (13)

As W → ∞, the utility function is a flat line. Concavity disappears, which might imply that
this very rich individual would be willing to pay very little for insurance against a random

event, eε, certainly less than a poor person with the same utility function. However, this is not
true because the marginal utility of wealth is also very small. This neutralizes the effect of

smaller concavity. Indeed:
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R(W ) =
b2e−bW

be−bW
= b (14)

which is a constant. Thus, we can see why this utility function is sometimes referred to as a

constant absolute risk aversion utility function.

If we want to assume that absolute risk aversion is declining in wealth, a necessary, though

not sufficient, condition for this is that the utility function have a positive third derivative,

since

∂R(W )

∂W
= −U

000(W )U 0(W )− [U 00(W )]2
[U 0(W )]2

(15)

Also, it can be shown that the coefficient of risk aversion contains all relevant information

about the individual’s risk preferences. Note that

R(W ) = −U
00(W )
U 0(W )

= −∂ (ln [U
0(W )])

∂W
(16)

Integrating both sides of (16), we have

−
Z
R(W )dW = ln[U 0(W )] + c (17)

Taking the exponential function of (17)

e−
R
R(W )dW = U 0(W )ec (18)

Integrating once again gives

Z
e−
R
R(W )dWdW = ecU(W ) + d ˜ U(W ) (19)

Because expected utility functions are unique up to a linear transformation, ecU(W ) + d

reflects the same risk preferences as U(W ).

Relative risk aversion is another frequently used measure of risk aversion and is defined

simply as
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Rr(W ) =WR(W ) (20)

Some useful utility functions:

a. Negative exponential (constant absolute risk aversion)

U(W ) = −e−bW , b > 0

As we saw earlier, R(W ) = b, so that Rr(W ) = bW .

b. Power (constant relative risk aversion)

U(W ) = 1
γW

γ, γ < 1

implying that R(W ) = −γ(γ−1)Wγ−2
γWγ−1 = (1−γ)

W and, therefore, Rr(W ) = 1− γ.

c. Logarithmic

This is a limiting case of power utility. To see this, write the power utility function as

1
γW

γ − 1
γ =

Wγ−1
γ . (Recall that we can do this because utility functions are unique up to

a linear transformation.) Next take the limit of this utility function as γ → 0. Note that

the numerator and denominator both go to zero, so that the limit is not obvious. However,

we can re-write the numerator in terms of an exponential and natural log function and apply

L’Hospital’s rule to obtain:

lim
γ→0

W γ − 1
γ

=lim
γ→0

eγ ln(W ) − 1
γ

=lim
γ→0

ln(W )W γ

1
= ln(W )

Thus, logarithmic utility is equivalent to power utility with γ = 0, or a coefficient of relative

risk aversion of unity:

R(W ) = −W−2
W−1 =

1
W and Rr(W ) = 1.

d. Quadratic

U(W ) =W − b
2W

2, b > 0
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Note that U 0(W ) = 1− bW , which is > 0 if and only if b < 1
W . Thus, this utility function only

makes sense when W < 1
b , which is know as the “bliss point.” We have R(W ) =

b
1−bW and

Rr(W ) =
bW
1−bW .

e. HARA (hyperbolic absolute risk aversion)

U(W ) =
1− γ

γ

µ
αW

1− γ
+ β

¶γ

subject to the restrictions γ 6= 1, α > 0, αW
1−γ + β > 0, and β = 1 if γ = −∞. Thus,

R(W ) =
³
W
1−γ +

β
α

´−1
. Since R(W ) must be > 0, it implies β > 0 when γ > 1. Rr(W ) =

W
³
W
1−γ +

β
α

´−1
. HARA utility nests constant absolute risk aversion (γ = −∞, β = 1), constant

relative risk aversion (γ < 1, β = 0), and quadratic (γ = 2) utility functions. Thus, depending

on the parameters, it is able to display constant absolute risk aversion or relative risk aversion

that is increasing, decreasing, or constant.

Kenneth Arrow (1970) independently derived a coefficient of risk aversion that is identical

to Pratt’s measure, but Arrow’s derivation is based on a concept of a risk premium that is

commonly used in financial markets. Suppose that an asset (lottery), eε, has the following
payoffs and probabilities (this could be generalized to other types of fair payoffs):

eε =
 +h with probability 1

2

−h with probability 1
2

(21)

Note that, as before, E [eε] = 0. Now consider the following question. By how much should
we change the expected value (return) of the asset, by changing the probability of winning, in

order to make the individual indifferent between taking and not taking the risk? If p is the

probability of winning, we can define the risk premium as

θ = prob (eε = +h)− prob (eε = −h) = p− (1− p) = 2p− 1 (22)

Therefore, from (22) we have

prob (eε = +h) ≡ p = 1
2(1+ θ)

prob (eε = −h) ≡ 1− p = 1
2(1− θ)

(23)
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These new probabilities of winning and losing are equal to the old probabilities, 12 , plus half

of the increment, θ. Thus, the premium, θ, that makes the individual indifferent between

accepting and refusing the asset is

U(W ) =
1

2
(1+ θ)U(W + h) +

1

2
(1− θ)U(W − h) (24)

Taking a Taylor series approximation around h = 0, gives

U(W ) =
1

2
(1+ θ)

h
U(W ) + hU 0(W ) + 1

2h
2U 00(W )

i
(25)

+
1

2
(1− θ)

h
U(W )− hU 0(W ) + 1

2h
2U 00(W )

i

= U(W ) + hθU 0(W ) + 1
2h
2U 00(W )

Re-arranging (25) implies

θ = 1
2hR(W ) (26)

which, as before, is a function of the coefficient of absolute risk aversion. Note that the Arrow

premium, θ, is in terms of a probability, while the Pratt measure, π, is in units of a monetary

payment. If we multiply θ by the monetary payment received, h, then (26) becomes

hθ = 1
2h
2R(W ) (27)

Since h2 is the variance of the random payoff, eε, equation (27) shows that the Pratt and Arrow
measures of risk premia are equivalent. Both were obtained as a linearization of the true

function around eε = 0.
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