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Choice Under Uncertainty

FEconomists typically analyze the price of a good or service by considering the determinants
of its supply and demand. The same approach can be taken to price an asset. As a starting
point, let us think about how investor demand for an asset might be modeled. In contrast to
goods and services, assets do not provide direct, immediate consumption benefits to individuals.
Rather, assets are a vehicle for saving. As the components of an investor’s financial wealth,
assets represent claims on future purchasing power or consumption. The main distinguishing
feature of assets is differences in their future payoffs. With the exception of assets that pay a
risk-free return, assets’ payoffs are random. Thus, a theory of the demand for assets needs to
specify investors’ preferences for assets with different, uncertain payoffs. In other words, how
investors choose between assets that have different probability distributions of returns needs to
be modeled.

Let us consider some intuitive criteria that individuals might use to rank their preferences for
different risky assets. One possible measure of the attractiveness of an asset is the expected value
of its payoff. Suppose an asset offers a single random payoff that has a discrete distribution with

n
n outcomes, (z1,...,Ty), and corresponding probabilities (pi,...,pn), where > p; = 1. Then
i=1

n
the expected value of the payoff is & = z;p;.
i=1
How reasonable is it to think that individuals value risky assets based on the assets’ expected
values? In 1728, Nicholas Bernoulli clearly demonstrated a weakness of using expected value
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as the sole measure of preferences with his “St. Petersberg Paradox.” He gave the following
example. Suppose a particular asset’s payoff is determined a game based on a sequence of coin
flips. If, on the first flip, the coin comes up “tails,” the asset’s payoff is zero and the game is
over. However, if it comes up “heads,” the asset pays $1 and, in addition, the coin is flipped
again. If, on the second flip, “tails” occurs, the game is over, but if “heads” occurs the asset
pays an additional $2 and the coin is flipped once again. If “heads” comes up on the third flip,
the asset pays an additional $22 = $4 and so on. Thus, given the coin comes up “heads” on

the first n flips, the asset’s payment if a “heads” is obtained on the n + 1% flip is $27.

How much would an individual pay to acquire this risky asset? In other words, what would



someone pay to participate in this coin flipping game? If an individual values the asset’s payoff

according to its expected value, the price he would be willing to pay is

= 3($1+ 81481+ ... = $o0

Thus, the expected value of this asset is infinite. Clearly, most individuals would pay only
a moderate, not infinite, amount to play this game. In 1738, Daniel Bernoulli, a cousin of
Nicholas, provided an explanation for the St. Petersberg Paradox by stating that people cared
about the expected “utility” of an asset’s payoff, not the expected value of its payoff. As an
individual’s wealth increases, the “utility” that one receives from the additional increase in
wealth grows less than proportionally. In the St. Petersberg Paradox, prizes go up at the same
rate that the probabilities decline. In order to obtain a finite valuation, the trick would be to

“value” or “utility” of prizes to increase slower than the rate probabilities decline.

allow the

The first complete axiomatic development of expected utility is due to von Neumann and
Morgenstern (1944), which we now illustrate. Define a lottery to be risky payoff (asset) and
consider an individual’s optimal choice of a lottery from a given set of different lotteries. All lot-
teries have possible payoffs that are contained in the set {x1, ...,z }. In general, the elements of
this set can be viewed as different, uncertain outcomes. For example, they could be interpreted
as particular consumption levels (bundles of consumption goods) that the individual obtains
in different states of nature or, more simply, different monetary payments received in different
states of the world. A given lottery can be characterized as an ordered set of probabilities
P ={p1,...,pn}, where, of course, i p; =1 and p; > 0. A different lottery is characterized by
another set of probabilities, for exs?;nlple, P* ={pj,....,pL}. Let =, <, and ~ denote preference

and indifference between lotteries. We will show that if an individual’s preferences satisfy the

following conditions (axioms), then these preferences can be represented by a real-valued utility



function defined over a given lottery’s probabilities, that is, a function V(p1, ..., pn).

Axioms:

1) Completeness

For any two lotteries P* and P, either P* >~ P, or P* < P, or P* ~ P.

2) Transitivity

If P** = P*and P* = P, then P** = P.

3) Continuity

If P** » P* = P, there exists some A € [0,1] such that P* ~ AP** + (1 — X\)P, where
AP* 4+ (1 — A\)P denotes a “compound lottery,” namely with probability A one receives the
lottery P** and with probability (1 — A) one receives the lottery P.

These three axioms are analogous to those in standard consumer theory and are needed to
establish the existence of a real-valued utility function. The fourth axiom is crucial to expected
utility theory.

4) Independence

For any two lotteries P and P*, P* > P if and only if for all A € (0,1] and all P**:

AP* + (1 = A)P*™ = AP + (1 — \)P**

Further, for any two lotteries P and P', P ~ P! if and only if for all A €(0,1] and all P**:

AP + (1= NP* ~ APT 4 (1 —\)P*

To better understand the meaning of the independence axiom, note that P* is preferred
to P by assumption. Now the choice between AP* + (1 — X\)P** and AP + (1 — A\)P** is
equivalent to a toss of a coin that has a probability (1 — A) of landing “tails”, in which case
both compound lotteries are equivalent to P**, and a probability A of landing “heads,” in which
case the first compound lottery is equivalent to the single lottery P* and the second compound
lottery is equivalent to the single lottery P. Thus, the choice between AP* + (1 — \)P** and
AP + (1 — X\)P** is equivalent to being asked, prior to the coin toss, if one would prefer P* to

P in the event the coin lands “heads.”



It would seem reasonable that should the coin land “heads,” we would go ahead with our
original preference in choosing P* over P. The independence axiom assumes that preferences
over the two lotteries are independent of the way in which we obtain them.! For this reason,
it is also known as the “no regret” axiom. However, experimental evidence finds some sys-
tematic violations of this independence axiom. See the Machina (1987) Journal of Economic
Perspectives article and, in particular, the Allais Paradox regarding this point.

The final axiom is similar to the independence and completeness axioms.

5) Dominance

Let P! be the compound lottery A\ P* 4+ (1 — A\;)PT and P? be the compound lottery
APt 4 (1 — \o) P, If P = PT then P! = P2 if and only if A1 > Aa.

Given preferences characterized by the above axioms, we now show that the choice between
any two (or more) arbitrary lotteries is that which has the higher (highest) expected utility.

The completeness axiom’s ordering on lotteries naturally induces an ordering on the set
of outcomes. Without loss of generality, suppose that the outcomes are ordered such that
Ty = Tp_1 = ... = x1. This follows from the completeness axiom for the case of n degenerate
or “primitive” lotteries where the " primitive lottery is defined to return outcome z; with
probability 1 and all of the other outcomes have probability zero. Note that this ordering may
not necessarily coincide with ranking the elements of x strictly by the size of their monetary
payofls, as the state of nature for which x; is the outcome may differ from the state of nature
for which x; is the outcome, and these states of nature may have different effects on how an
individual values the same monetary outcome. For example, z; may be received in a state of
nature when the economy is depressed, and monetary payoffs may be highly valued in this state
of nature. In contrast, x; may be received in a state of nature characterized by high economic
expansion, and monetary payments may not be as highly valued.

From the continuity axiom, we know that for each x;, there exists a U; € [0, 1] such that

'In the context of standard consumer choice theory, A would be interpreted as the amount (rather than
probability) of a particular good or bundle of goods consumed (say C) and (1 — A) as the amount of another
good or bundle of goods consumed (say C**). In this case, it would not be reasonable to assume that the choice
of these different bundles is independent. This is due to some goods being substitutes or complements with other
goods. Hence, the validity of the independence axiom is linked to outcomes being uncertain (risky), that is, the
interpretation of A as a probability rather than a deterministic amount.



and for ¢ = 1, this implies Uy = 0 and for ¢ = n, this implies U,, = 1. The values of the
U; weight the most and least preferred outcomes such that the individual is just indifferent
between a combination of these polar payoffs and the payoff of x;. The U; can adjust for
both differences in monetary payoffs and differences in the states of nature during which the
outcomes are received.

Now consider a given arbitrary lottery, P = {p1,...,pn}. This can be considered a compound
lottery over the n primitive lotteries, where the ¥ primitive lottery which pays x; with certainty
is obtained with probability p;. By the independence axiom, and using equation (2), the
individual is indifferent between the compound lottery, P, and the following lottery given on

the right-hand-side of the equation below:

PIT1 + oo + Ppy ~ D121+ oo + Pi1Ti1 + Pi (Ui, + (1 = Up)x1] + pis1Tig1 + .. + Dy, (3)

where we have used the indifference relation in equation (2) to substitute for z; on the right
hand side of (3). By repeating this substitution for all 7, ¢ =1, ..., n, we see that the individual
will be indifferent between P, given by the left hand side of (3), and

n n
P11 + oo + Ppp ~ <Z piUi> Tn + <1— > piUi> 1 (4)
i=1 i=1

Now define A Ei piU;. Thus, we see that lottery P is equivalent to a compound lottery
consisting of a A przo:l;ability of obtaining z, and a (1 — A) probability of obtaining ;. In a
similar manner, we can show that any other arbitrary lottery P* = {p7,...,p};} is equivalent to
a compound lottery consisting of a A* probability of obtaining x, and a (1 — A*) probability
of obtaining x1, where A* Efj p;U;.

Thus, we know from the él?)ininance axiom that P* = P if and only if A* > A , which implies

n n
> piU; >> piU;. So defining an expected utility function as
i=1 i=1



n

V(p1,.spn) =Y pils (5)
i=1

will imply that P* >~ P if and only if V (p3,...,p%) > V(p1,.-.; Pn)-

The utility function given in equation (5) is known as a von Neumann - Morgenstern utility
function. Note that it is linear in the probabilities and is unique up to a linear transforma-
tion. This implies that the utility function is “cardinal,” unlike the ordinal utility functions of
standard consumer theory.?2 For example, if U; = U(z;), an individual’s choice over lotteries
will be the same under the transformation aU(x;) 4 b, but not a non-linear transformation that
changes the “shape” of U(x;).

The von Neumann-Morgenstern expected utility framework may only partially explain the
phenomenon illustrated by the St. Petersberg Paradox. Suppose utility is given by the square
root of a monetary payoff, that is, U; = U(x;) = /z;. This is a monotonically increasing,
concave function of x, which we here assume is simply a monetary amount. Then the expected

utility (value) of the payoff of the St. Petersberg asset is

n o0 1 (0] i
1% ;p,U, §§x/ 22 3 (6)
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which is finite. The asset would be worth $1.71 to a square-root utility maximizer.

However, the reason that this is not a complete resolution of the paradox is that one can
always construct a “super St. Petersberg paradox” where even expected utility is infinite. Note
that in the regular St. Petersberg paradox, the probability of winning declines at rate 2™ while
the winning payoff increases at rate 2”. In a super St. Petersberg paradox, we can make the

winning payoff increase at a rate z, = U 1(2") and expected utility would no longer be finite.

2 An ordinal utility function preserves preference orderings for any strictly increasing transformation, not just
linear ones.



If we take the example of square-root utility, let the winning payoff be z,, = 22”72, that is,
r1 = 1, x93 = 4, 3 = 16, etc. In this case, the value placed on the asset by a square-root

expected utility maximizer is

n o0

V=Y pli =) il.\/z%’—2 =00 (7)

i=1 i=1

Should we be concerned by the fact that if we let the prizes grow quickly enough, we can
get infinite valuations for any chosen form of expected utility function? Maybe not. One could
argue that St. Petersberg games are unrealistic, particularly ones where the payoffs are assumed
to grow rapidly. The reason is that any person offering this asset has finite wealth (even Bill
Gates). This would set an upper bound on the amount of prizes that could feasibly be paid,
making expected utility, and even the expected value of the payoff, finite.

The von Neumann-Morgenstern expected utility approach can be generalized to the case of a
continuum of outcomes and lotteries having continuous probability distributions. For example,
if outcomes are a possibly infinite number of purely monetary payoffs or consumption levels
denoted by the variable x, a subset of the real numbers, then a generalized version of equation

(5) is

V(F) = / U (z) dF () (8)

where F'(z) is a given lottery’s cumulative distribution function over the payoffs, 2.2 Hence,
the generalized lottery represented by the distribution function F'is analogous to our previous
lottery represented by the discrete probabilities P = {p1, ...,p,}. For a given lottery, expected

utility defined over the random payoff T can also be represented as

EU@) = [U()dF @) Q0

*When the random payoff, x, is absolutely continuous, then expected utility can be written in terms of the
probability density function, f (z), as V (f) = [U (z) f (=) da.
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