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1 Statistic

Consider some collection yt = (yt1, yt2, ..., ytn) of observable excess returns on n risky portfo-

lios, at some dates t = 1, 2, ..., T . Suppose that the primary objective is to find a relatively

small number K << n of observed key portfolios whose (excess) returns xt = (xt1, ..., xtK)

are strongly related to yt, both in history t = 1, 2, ..., T and, plausibly, into the future. Two

specific objectives are to link time series variation within target portfolios with key portfolios

and to link cross section variation between target portfolios with key portfolios.

Suppose that the collection zt = (xt, yt) of random variables is jointly normally distrib-

uted, and is independent and identically distributed (IID) over time. Fama and French (1993,

FF93 henceforth) are not explicit about whether they view their data as IID and normally

distributed, but their econometric style is ideally suited to this case. In this setting, the

relationship between x and y is adequately summarized by the linear model:

yit = αi + βixt + εit, (1)

with unobserved portfolio-specific intercept parameters αi, coefficient K-vectors βi, and

model errors εit which are normal zero-mean random variables with some variances σ2
i and

a (collective) variance-covariance matrix Vε. The linear model (1) nominally presents itself

as a rather generic econometric model of panel data, with heterogeneous fixed effects αi and

slopes βi.

In terms of the regression model (1), FF93 view small regression error magnitude |εit| as
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good, consistent with standard econometrics, and also view small intercept magnitude |αi| as

good, with the idea that small intercepts are more consistent with financial theory. However,

Fama and French do not commit themselves to any formal measure, or metric, for assessing

overall goodness of fit, and instead rely on a succession of informal commentaries. To cater

more specifically to the demands that FF93 place on financial models, one possibility is to

try to fit a model so as to minimize a linear combination of intercept (αi) and variability (σ)

of error squares i.e. the root mean squared error (RMSE). We define the i-th square error

δ2
i as:

δ2
i = α2

i + σ2
i

with squared bias term α2
i and variance term σ2

i . We want to size up the errors δi in models

of systematic risk. In the aggregate, across assets i = 1, 2, ..., n, RMSE is a simple measure

of the magnitude of model error:

φ =

√√√√ 1

n

n∑

i=1

δ2
i .

RMSE can be expressed as a sum of these two components:

φ =

√√√√ 1

n

n∑

i=1

(α2
i + σ2

i ).

We further define constants χ1 =
√

1
n

∑n
i=1 α2

i and χ2 =
√

1
n

∑n
i=1 σ2

i , in which case

φ =
√

χ2
1 + χ2

2.

The constant χ1 is the root mean square of biases, and hence represents the model’s non-

stochastic error magnitude, whereas χ2 is the root mean square of standard deviations, and

is therefore the stochastic error magnitude. Table 1 summarizes our notation for future

reference.

RMSE is a simple, ex ante measure of goodness of fit, and for a given sample we can

estimate it ex post via fitted intercepts and standard errors. As a model performance criterion
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RMSE is novel in econometric terms. Such novelty is necessary, as no standard model

performance criterion (mean squared error, information criteria, etc.) adequately formalizes

the FF93 perspective on model building. To apply the RMSE value φ, and its components,

note that all of these constants can be computed if bias αi and error variance σ2
i is known for

each asset i. It then suffices to have good estimators of α and σ. To estimate the regression

system (1), we suppose that for all n asset returns there are observations at successive times,

denoted t = 1, 2, ..., T , such that the return probability distribution exhibits independence

over time. With assumed normality, the maximum likelihood estimator (MLE) of (α, β) is

the same as the ordinary least squares (OLS) estimator applied to each separate instance

i = 1, 2, ..., n. Denoting these MLEs by α̂, β̂, which are unbiased estimators, let σ̂2
i be the

OLS regression standard error (of the estimate), which is a bias-corrected version of the

MLE for σ2. Plugging in α̂ and σ̂ into formulas in Table 1, we obtain consistent estimates

χ̂1, χ̂2, and φ̂. While not necessarily supported by empirical evidence, this set-up is implicitly

assumed in FF93.

We use an updated version of the FF93 monthly data for the sample 1926:7-2008:9. The

dependent variables to be explained are excess stock returns on 25 portfolios, sorted on size

and (independently) on book-to-market equity (BE/ME). The portfolios are constructed

by FF93 as follows. The quintile breakpoints for size in a given year are based on market

capitalization of NYSE stocks in June of the same year. The quintiles for book-to-market

ratios are calculated using NYSE stocks using BE and ME from December of the previous

year. The portfolios are then formed using stocks from NYSE, AMEX and NASDAQ, for

which there is a positive book equity (from COMPUSTAT) available from December of the

previous year and market equity available in June of the given year and December of the

previous year. Finally, value-weighted monthly portfolio returns are computed starting in

July of the current year and ending in June of the following year (stock prices are from

CRSP). The excess returns are calculated using the one-month Treasury bill rate (from
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Ibbotson Associates).

The explanatory variables are the market excess return plus the two additional empirically

motivated factors – SMB and HML – related to size and book-to-market ratios. The market

excess return is defined as the value-weight return on all NYSE, AMEX, and NASDAQ

stocks (from CRSP) minus the one-month Treasury bill rate (from Ibbotson Associates).

The two latter factors are constructed from six portfolios, again sorted on size and book-to-

market equity. The algorithm to construct these portfolios is the same as above, with size

breakpoint being the median and book-to-market equity breakpoints being respectively the

30th and the 70th NYSE percentiles.

To construct the SMB factor, all available stocks are divided into two groups based on

median market equity (size), Small and Big. For the HML factor, the stocks are grouped

by their book-to-market equity ratios (BE/ME), and the breakpoints are the 30th and

the 70th BE/ME percentiles, resulting in three BE/ME categories: High, Medium and

Low. High BE/ME is consistently associated with low earnings on assets (the so called

value stocks) and vice versa (the growth stocks). The returns on SMB and HMB are

respectively calculated as

SMB = 1/3 (Small High + Small Medium + Small Low)
− 1/3 (Big High + Big Medium + Big Low).

(2)

and

HML = 1/2 (Small High + Big High)
− 1/2 (Small Low + Big Low).

(3)

2 Results

We first calculate the three statistics for the full sample i.e. 1926:7-2008:9. χ1 statistic in

Table 2 suggests that the Fama-French model may not be better then CAPM when the

intercepts are concerned. What is interesting is that this result is due to high alpha’s for
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the lowest book-to-market/small size and the highest book-to-market/small size groups -

see Table 3. We calculated the statistics for each month using five-year data windows- see

Figure 1. The Fama-French model tends to do better in periods of higher volatility in the

sense of the alphas closer to zero.
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Figure 1: Model Errors for Five-year Samples
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Table 1: Measures of Model Error

Measure Symbol Formula

non-stochastic error χ1

√√√√ 1

n

n∑

i=1

α2
i

stochastic error χ2

√√√√ 1

n

n∑

i=1

σ2
i

total error (RMSE) φ

√√√√ 1

n

n∑

i=1

(α2
i + σ2

i )
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Table 2: Sample Errors of CAPM and Fama-French Models, Size/Value Portfolios, 1926:07-
2008:09

Model χ1 χ2 φ

CAPM 0.32 4.66 4.67
Fama-French 0.34 3.44 3.46

Note:

χ1, χ2, φ are defined in Table 1.
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Table 3: Alphas and Idiosyncratic Risk

Book-to-market quintile
Low 2 3 4 5 Low 2 3 4 5

Size quintile

CAPM
α2

i σ2
i

small 0.35 0.02 0.02 0.13 0.27 73.33 50.29 29.20 25.41 35.22
2 0.05 0.02 0.08 0.10 0.13 18.53 14.77 12.54 13.62 21.48
3 0.02 0.03 0.07 0.08 0.06 10.79 5.92 6.82 8.88 18.02
4 0.00 0.00 0.03 0.05 0.03 5.12 3.89 5.31 8.79 19.81
big 0.00 0.00 0.00 0.00 1.07 2.43 2.44 4.75 10.19 134.61

Fama-French
α2

i σ2
i

small 0.75 0.17 0.02 0.00 0.01 54.18 22.28 12.03 5.65 6.19
2 0.06 0.00 0.01 0.00 0.00 6.74 4.40 3.40 2.83 3.61
3 0.03 0.01 0.01 0.00 0.01 4.17 3.29 3.62 3.39 4.84
4 0.01 0.00 0.00 0.00 0.04 2.73 3.07 3.69 3.96 6.72
big 0.01 0.00 0.00 0.05 1.74 1.44 2.08 3.10 3.63 125.63
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