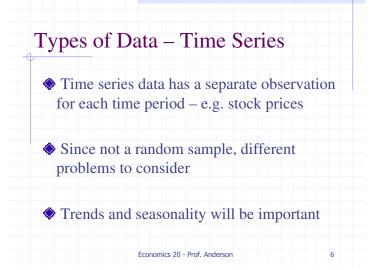
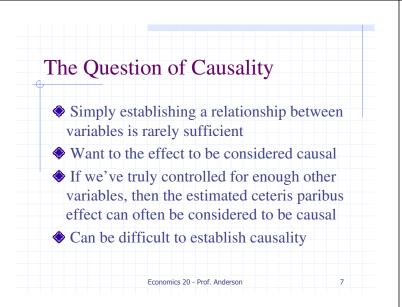


Types of Data – Panel Can pool random cross sections and treat similar to a normal cross section. Will just need to account for time differences. Can follow the same random individual observations over time – known as panel data or longitudinal data





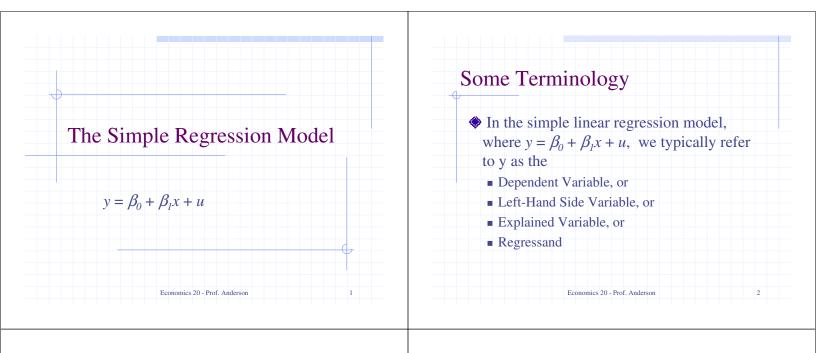
Example: Returns to Education

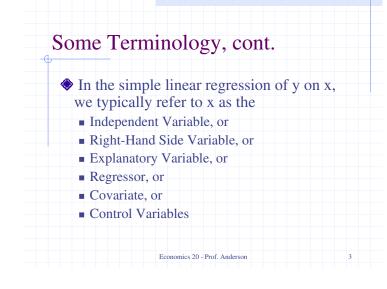
- A model of human capital investment implies getting more education should lead to higher earnings
- In the simplest case, this implies an equation like

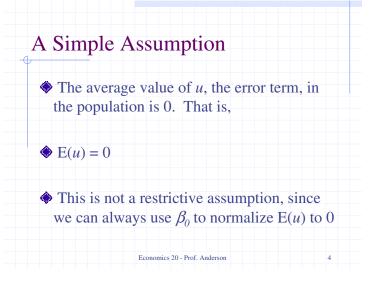
$Earnings = \beta_0 + \beta_1 education + u$

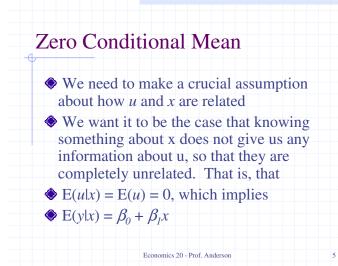
Economics 20 - Prof. Anderson

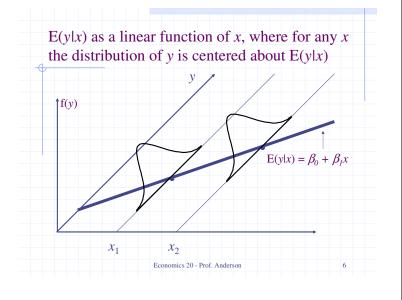
Example: (continued)
The estimate of β₁, is the return to education, but can it be considered causal?
While the error term, u, includes other factors affecting earnings, want to control for as much as possible
Some things are still unobserved, which can be problematic

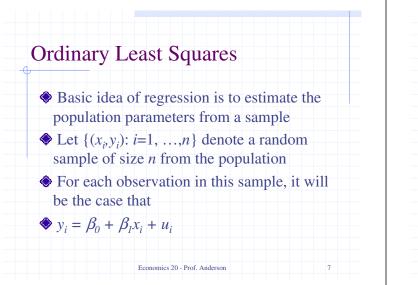


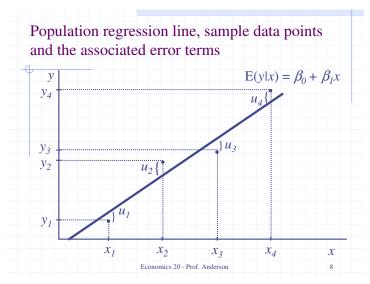


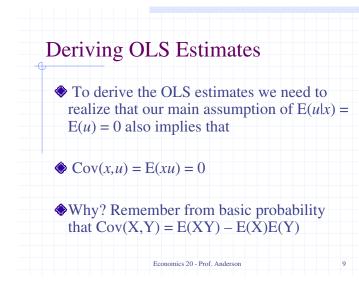


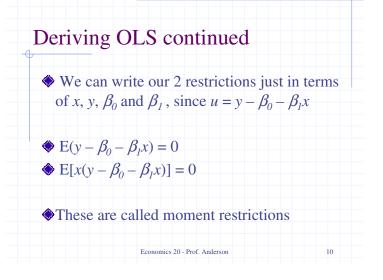


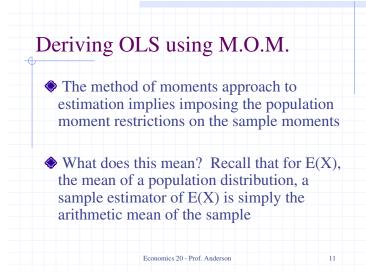


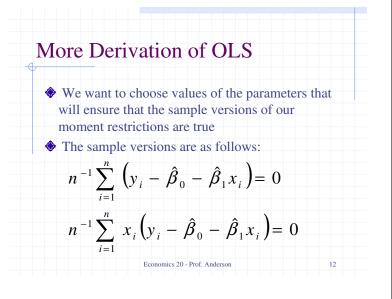


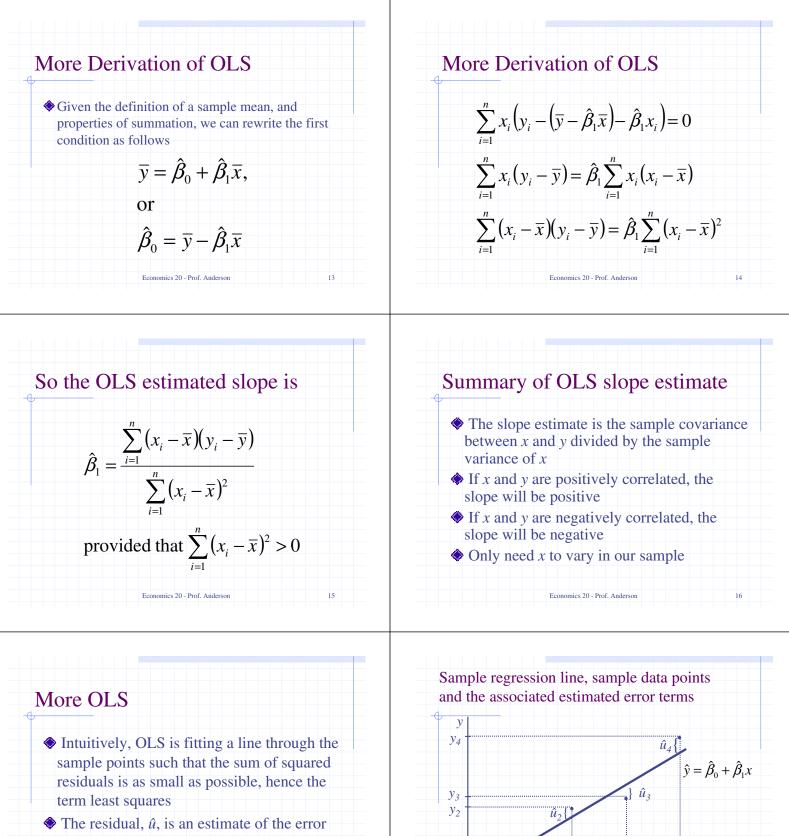




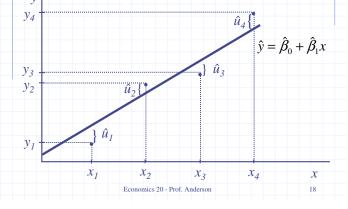


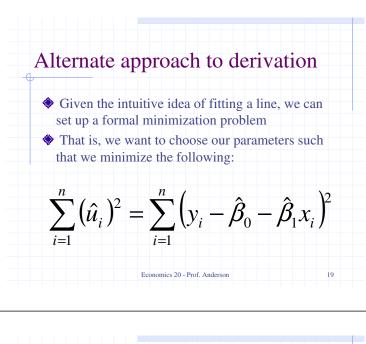






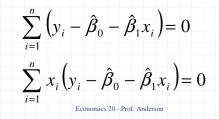
term, u, and is the difference between the fitted line (sample regression function) and the sample point

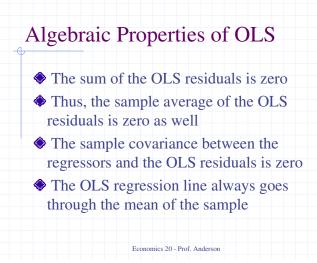


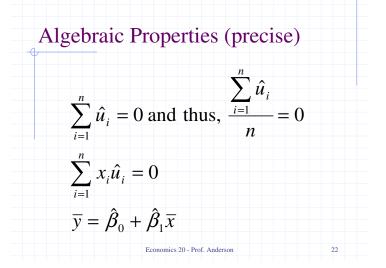


Alternate approach, continued

If one uses calculus to solve the minimization problem for the two parameters you obtain the following first order conditions, which are the same as we obtained before, multiplied by n



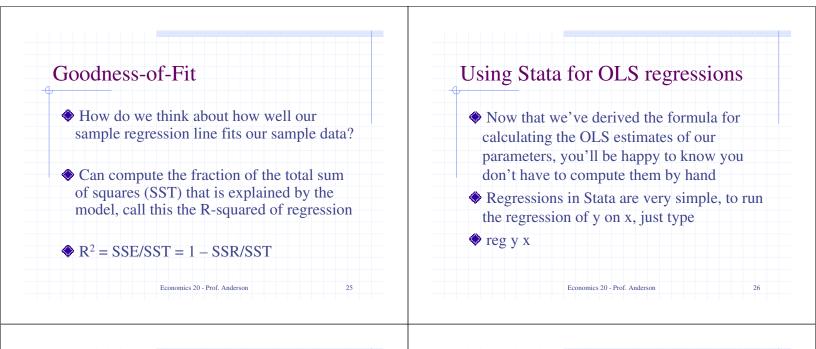


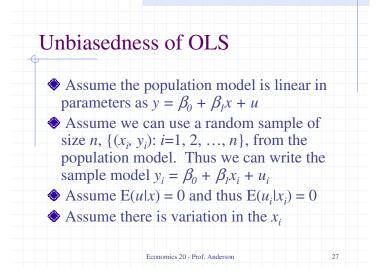


Proof that $SST = SSE + SSR$	
$\sum (y_i - \overline{y})^2 = \sum [(y_i - \hat{y}_i) + (\hat{y}_i - \overline{y})]^2$	
$=\sum \left[\hat{u}_i + (\hat{y}_i - \overline{y})\right]^2$	
$=\sum \hat{u}_i^2 + 2\sum \hat{u}_i(\hat{y}_i - \overline{y}) + \sum (\hat{y}_i - \overline{y})^2$	
$= SSR + 2\sum \hat{u}_i (\hat{y}_i - \overline{y}) + SSE$	
and we know that $\sum \hat{u}_i(\hat{y}_i - \overline{y}) = 0$	
Economics 20 - Prof. Anderson 24	

More terminology

We can think of each observation as being made up of an explained part, and an unexplained part, $y_i = \hat{y}_i + \hat{u}_i$ We then define the following : $\sum (y_i - \overline{y})^2$ is the total sum of squares (SST) $\sum (\hat{y}_i - \overline{y})^2$ is the explained sum of squares (SSE) $\sum \hat{u}_i^2$ is the residual sum of squares (SSR) Then SST = SSE + SSR



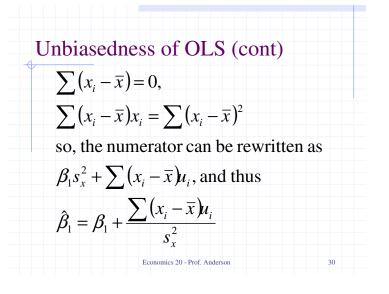


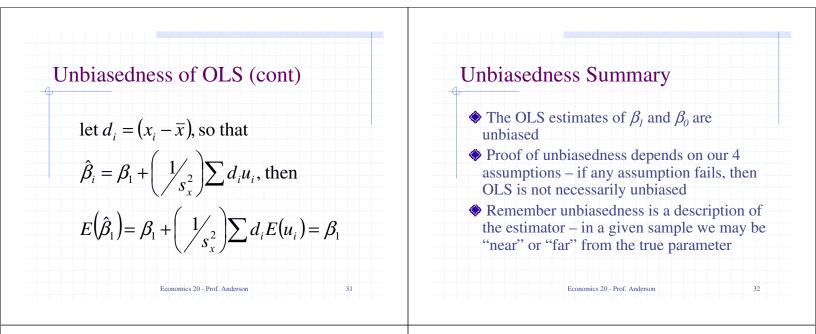
In order to think about unbiasedness, we need to rewrite our estimator in terms of the population parameter
 Start with a simple rewrite of the formula as

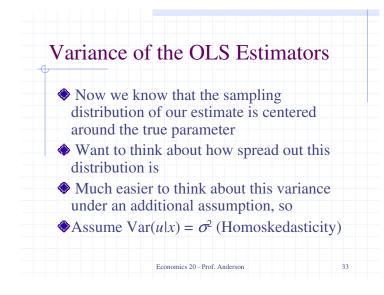
$$\hat{\beta}_{1} = \frac{\sum (x_{i} - \overline{x})y_{i}}{s_{x}^{2}}, \text{ where}$$

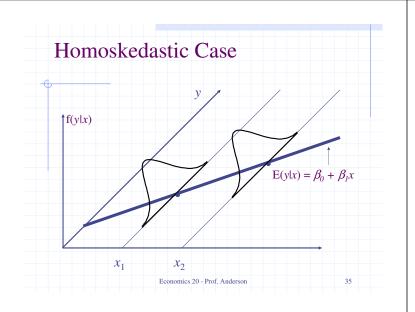
$$s_{x}^{2} \equiv \sum (x_{i} - \overline{x})^{2}$$
Economics 20 - Prof. Anderson

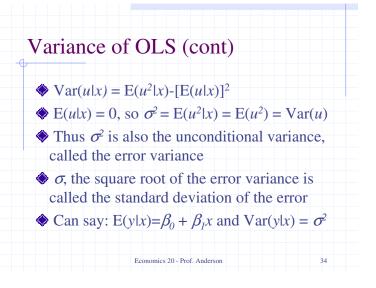
Unbiasedness of OLS (cont) $\sum (x_i - \overline{x})y_i = \sum (x_i - \overline{x})(\beta_0 + \beta_1 x_i + u_i) =$ $\sum (x_i - \overline{x})\beta_0 + \sum (x_i - \overline{x})\beta_1 x_i$ $+ \sum (x_i - \overline{x})u_i =$ $\beta_0 \sum (x_i - \overline{x}) + \beta_1 \sum (x_i - \overline{x})x_i$ $+ \sum (x_i - \overline{x})u_i$ Economics 20-Prof. Anderson 29

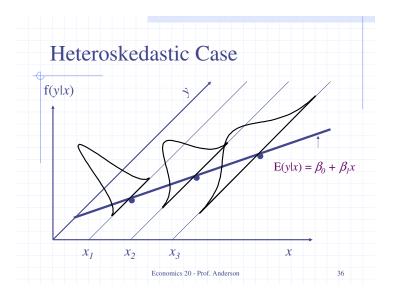




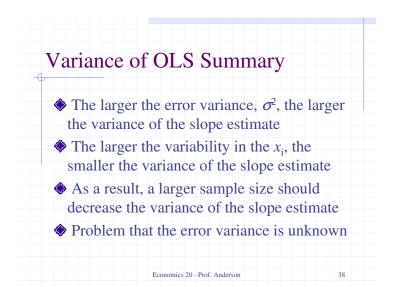


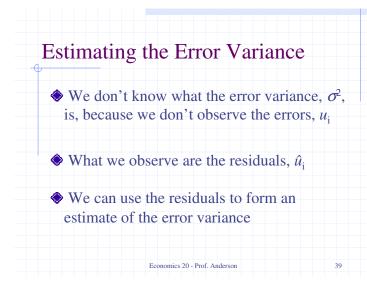


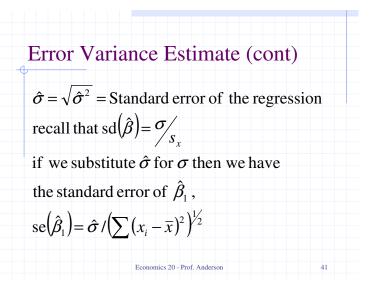




Variance of OLS (cont) $Var(\hat{\beta}_1) = Var\left(\beta_1 + \left(\frac{1}{s_v^2}\right)\sum d_i u_i\right) =$ $\left(\frac{1}{s_{\pi}^{2}}\right)^{2} Var\left(\sum d_{i}u_{i}\right) = \left(\frac{1}{s_{\pi}^{2}}\right)^{2} \sum d_{i}^{2} Var(u_{i})$ $= \left(\frac{1}{s_x^2}\right)^2 \sum d_i^2 \sigma^2 = \sigma^2 \left(\frac{1}{s_x^2}\right)^2 \sum d_i^2 =$ $\sigma^2 \left(\frac{1}{s_x^2}\right)^2 s_x^2 = \frac{\sigma^2}{s_x^2} = Var(\hat{\beta}_1)$ Economics 20 - Prof. Anderson

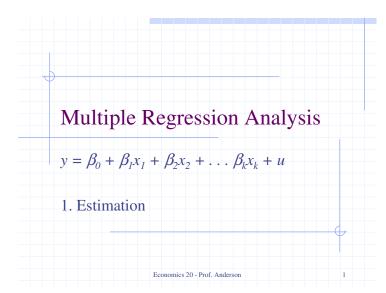


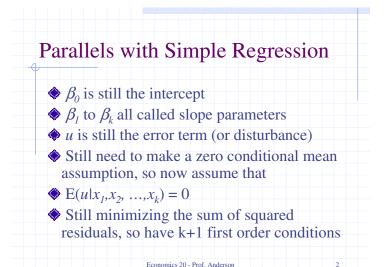




Error Variance Estimate (cont)

 $\hat{u}_{i} = y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1}x_{i}$ $= (\beta_{0} + \beta_{1}x_{i} + u_{i}) - \hat{\beta}_{0} - \hat{\beta}_{1}x_{i}$ $= u_{i} - (\hat{\beta}_{0} - \beta_{0}) - (\hat{\beta}_{1} - \beta_{1})$ Then, an unbiased estimator of σ^{2} is $\hat{\sigma}^{2} = \frac{1}{(n-2)} \sum \hat{u}_{i}^{2} = SSR / (n-2)$





Interpreting Multiple Regression $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + ... + \hat{\beta}_k x_k$, so $\Delta \hat{y} = \Delta \hat{\beta}_1 x_1 + \Delta \hat{\beta}_2 x_2 + ... + \Delta \hat{\beta}_k x_k$, so holding $x_2, ..., x_k$ fixed implies that $\Delta \hat{y} = \Delta \hat{\beta}_1 x_1$, that is each β has a *ceteris paribus* interpretation

A "Partialling Out" Interpretation Consider the case where k = 2, i.e. $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2$, then $\hat{\beta}_1 = (\sum \hat{r}_{i1} y_i) / \sum \hat{r}_{i1}^2$, where \hat{r}_{i1} are the residuals from the estimated regression $\hat{x}_1 = \hat{\gamma}_0 + \hat{\gamma}_2 \hat{x}_2$

"Partialling Out" continued

- Previous equation implies that regressing y on x₁ and x₂ gives same effect of x₁ as regressing y on residuals from a regression of x₁ on x₂
- This means only the part of x_{i1} that is uncorrelated with x_{i2} are being related to y_i so we're estimating the effect of x_1 on yafter x_2 has been "partialled out"

Economics 20 - Prof. Andersor

Simple vs Multiple Reg Estimate

Compare the simple regression $\tilde{y} = \tilde{\beta}_0 + \tilde{\beta}_1 x_1$ with the multiple regression $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2$ Generally, $\tilde{\beta}_1 \neq \hat{\beta}_1$ unless : $\hat{\beta}_2 = 0$ (i.e. no partial effect of x_2) OR x_1 and x_2 are uncorrelated in the sample

Goodness-of-Fit

We can think of each observation as being made up of an explained part, and an unexplained part, $y_i = \hat{y}_i + \hat{u}_i$ We then define the following : $\sum (y_i - \overline{y})^2$ is the total sum of squares (SST) $\sum (\hat{y}_i - \overline{y})^2$ is the explained sum of squares (SSE) $\sum \hat{u}_i^2$ is the residual sum of squares (SSR) Then SST = SSE + SSR

Economics 20 - Prof. Anderson

Goodness-of-Fit (continued)

How do we think about how well our sample regression line fits our sample data?

Can compute the fraction of the total sum of squares (SST) that is explained by the model, call this the R-squared of regression

Economics 20 - Prof. Anderson

 $R^2 = SSE/SST = 1 - SSR/SST$

Goodness-of-Fit (continued)

 $R^{2} = \frac{\left(\sum (y_{i} - \overline{y})(\hat{y}_{i} - \overline{\hat{y}})\right)^{2}}{\left(\sum (y_{i} - \overline{y})^{2}\right)\left(\sum (\hat{y}_{i} - \overline{\hat{y}})^{2}\right)}$

Economics 20 - Prof Anderson

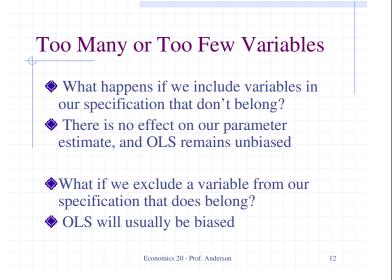
We can also think of R^2 as being equal to the squared correlation coefficient between the actual y_i and the values \hat{y}_i

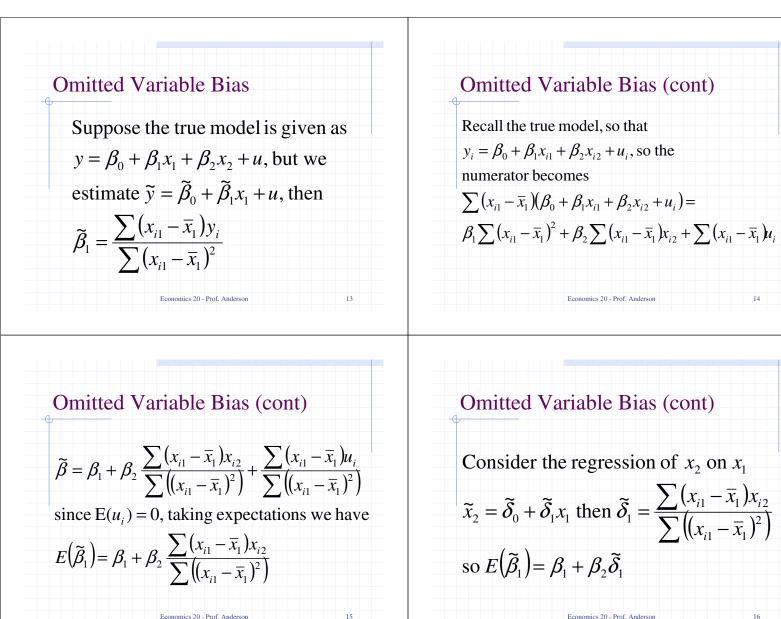
Assumptions for Unbiasedness
Population model is linear in parameters: y = β₀ + β₁x₁ + β₂x₂ +...+ β_kx_k + u
We can use a random sample of size n, {(x_{i1}, x_{i2},..., x_{ik}, y_i): i=1, 2, ..., n}, from the population model, so that the sample model is y_i = β₀ + β₁x_{i1} + β₂x_{i2} +...+ β_kx_{ik} + u_i
E(ulx₁, x₂,... x_k) = 0, implying that all of the explanatory variables are exogenous
None of the x's is constant, and there are no exact linear relationships among them

Economics 20 - Prof. Anderson

More about *R*-squared R^2 can never decrease when another

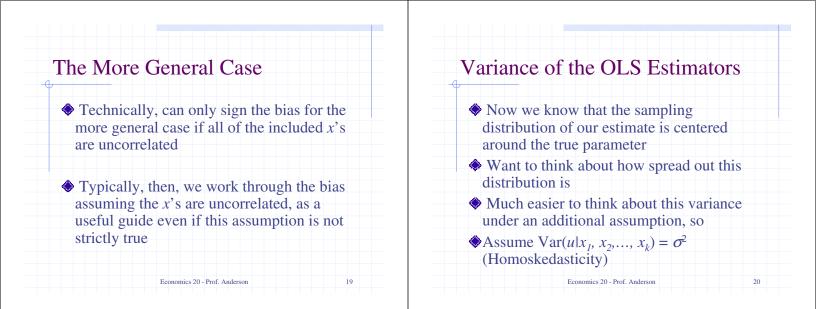
- independent variable is added to a regression, and usually will increase
- Because R² will usually increase with the number of independent variables, it is not a good way to compare models





	$\operatorname{Corr}(x_1, x_2) > 0$	$\operatorname{Corr}(x_1, x_2) < 0$
$\beta_2 > 0$	Positive bias	Negative bias
$\beta_2 < 0$	Negative bias	Positive bias

Omitted Variable Bias Summary Two cases where bias is equal to zero β₂ = 0, that is x₂ doesn't really belong in model x₁ and x₂ are uncorrelated in the sample If correlation between x₂, x₁ and x₂, y is the same direction, bias will be positive If correlation between x₂, x₁ and x₂, y is the opposite direction, bias will be negative



Variance of OLS (cont)

• Let \mathbf{x} stand for (x_1, x_2, \dots, x_k)

• Assuming that $Var(u|\mathbf{x}) = \sigma^2$ also implies that $Var(y|\mathbf{x}) = \sigma^2$

The 4 assumptions for unbiasedness, plus this homoskedasticity assumption are known as the Gauss-Markov assumptions

Economics 20 - Prof Anderson

Components of OLS Variances

The error variance: a larger σ² implies a larger variance for the OLS estimators
 The total sample variation: a larger SST_j implies a smaller variance for the estimators
 Linear relationships among the independent variables: a larger R_j² implies a larger variance for the estimators

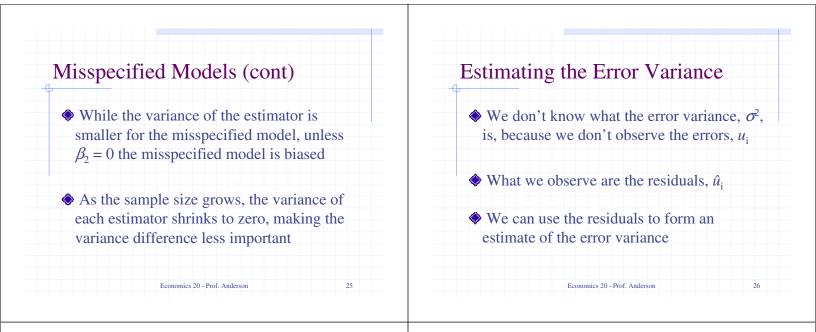
Economics 20 - Prof. Anderson

Variance of OLS (cont)

Given the Gauss - Markov Assumptions $Var(\hat{\beta}_j) = \frac{\sigma^2}{SST_j(1-R_j^2)}$, where $SST_j = \sum (x_{ij} - \bar{x}_j)^2$ and R_j^2 is the R^2 from regressing x_j on all other x's

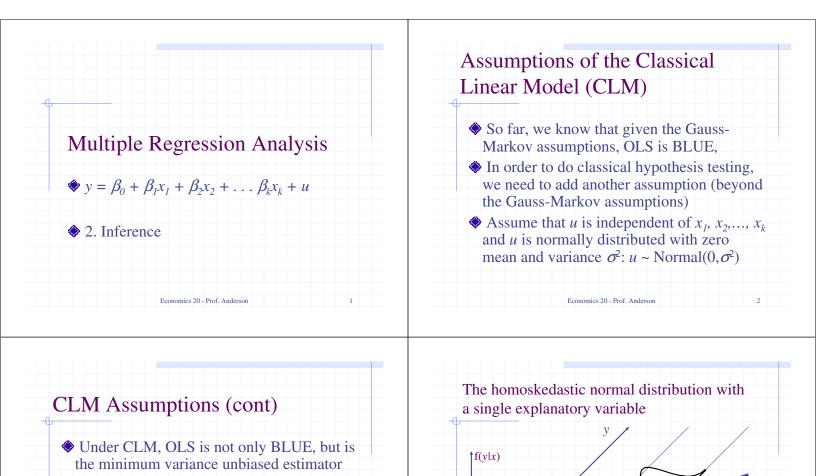
Misspecified Models

Consider again the misspecified model $\tilde{y} = \tilde{\beta}_0 + \tilde{\beta}_1 x_1$, so that $Var(\tilde{\beta}_1) = \frac{\sigma^2}{SST_1}$ Thus, $Var(\tilde{\beta}_1) < Var(\hat{\beta}_1)$ unless x_1 and x_2 are uncorrelated, then they're the same



Error Variance Estimate (cont))
$\hat{\sigma}^2 = \left(\sum \hat{u}_i^2\right) / (n-k-1) \equiv SSR/c$	lf
thus, $se(\hat{\beta}_j) = \hat{\sigma} / [SST_j(1-R_j^2)]^{\dagger}$	/2
df = n - (k + 1), or $df = n - k - 1$	
 <i>df</i> (i.e. degrees of freedom) is the (num of observations) – (number of estimate parameters) 	
Economics 20 - Prof. Anderson	27

🕨 Giv	ven our 5 Gauss-Markov Assumptions it
can	be shown that OLS is "BLUE"
Bes	st
🕨 Lin	ear
🕨 Un	biased
Est	imator
) Th	as, if the assumptions hold, use OLS



Normal Sampling Distributions Under the CLM assumptions, conditional on the sample values of the independent variables $\hat{\beta}_j \sim \text{Normal}[\beta_j, Var(\hat{\beta}_j)]$, so that $(\hat{\beta}_j - \beta_j) / (\hat{\beta}_j) \sim \text{Normal}(0,1)$ $\hat{\beta}_j$ is distributed normally because it is a linear combination of the errors Economics 20-Prof. Anderson 5

We can summarize the population assumptions of CLM as follows

clear that sometimes not the case

• $y|x \sim \text{Normal}(\beta_0 + \beta_1 x_1 + ... + \beta_k x_k, \sigma^2)$ • While for now we just assume normality,

Large samples will let us drop normality

Economics 20 - Prof Anderson

The t Test

 x_1

Under the CLM assumptions

Normal

 x_2

distributions

Economics 20 - Prof. Andersor

$$\frac{\left(\hat{\beta}_{j}-\beta_{j}\right)}{se\left(\hat{\beta}_{j}\right)^{-t_{n-k-1}}}$$

Note this is a *t* distribution (vs normal) because we have to estimate σ^2 by $\hat{\sigma}^2$ Note the degrees of freedom : n - k - 1

Economics 20 - Prof. Anderson

 $E(y|x) = \beta_0 + \beta_1 x$

The *t* Test (cont)

- Knowing the sampling distribution for the standardized estimator allows us to carry out hypothesis tests
- Start with a null hypothesis
- For example, $H_0: \beta_i=0$
- If accept null, then accept that x_j has no effect on y, controlling for other x's

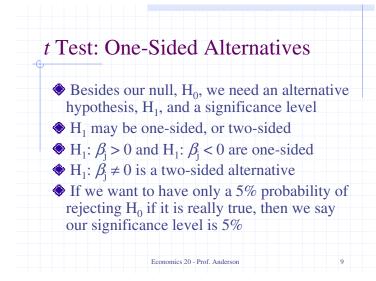
Economics 20 - Prof. Anderson

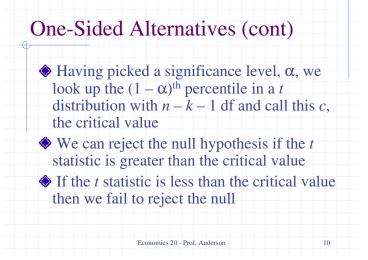
The *t* Test (cont)

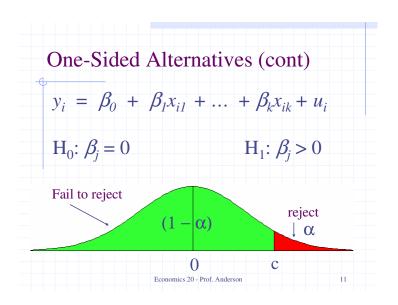
To perform our test we first need to form

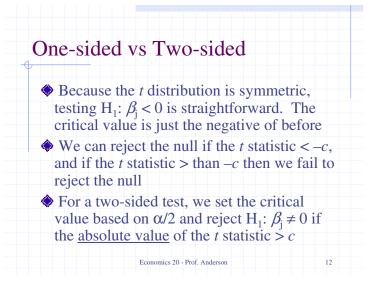
"the" t statistic for $\hat{\beta}_j : t_{\hat{\beta}_j} \equiv \frac{\hat{\beta}_j}{se(\hat{\beta}_j)}$

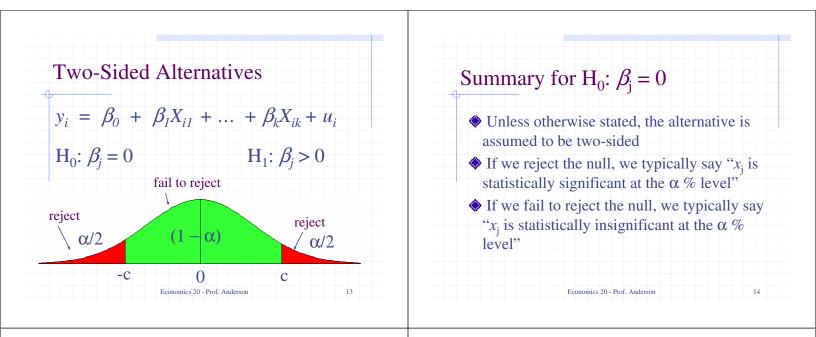
We will then use our *t* statistic along with a rejection rule to determine whether to accept the null hypothesis, H_0

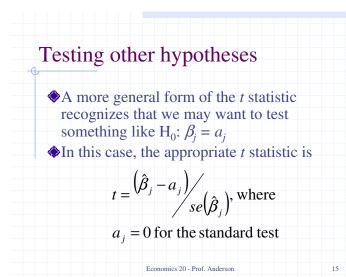


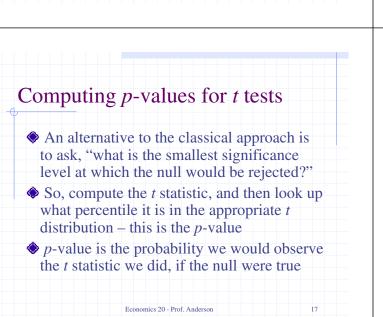




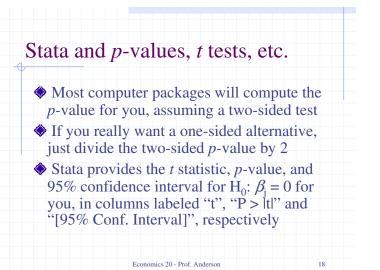


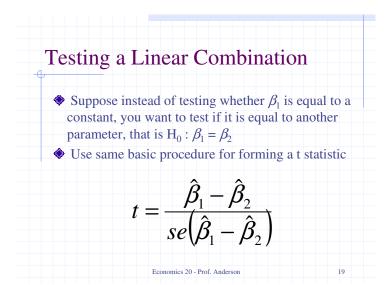






Another way	to use classical statistical testing is	s
to construct a	confidence interval using the same	2
critical value	as was used for a two-sided test	
♦ A (1 - α) %	confidence interval is defined as	
$\hat{\boldsymbol{\beta}}_{j} \pm c \bullet se(\hat{\boldsymbol{\beta}}_{j}$), where c is the $\left(1 - \frac{\alpha}{2}\right)$ percen	tile





Testing Linear Combo (cont) Since $se(\hat{\beta}_1 - \hat{\beta}_2) = \sqrt{Var(\hat{\beta}_1 - \hat{\beta}_2)}$, then $Var(\hat{\beta}_1 - \hat{\beta}_2) = Var(\hat{\beta}_1) + Var(\hat{\beta}_2) - 2Cov(\hat{\beta}_1, \hat{\beta}_2)$

 $se(\hat{\beta}_1 - \hat{\beta}_2) = \left\{ se(\hat{\beta}_1)^2 + \left[se(\hat{\beta}_2)^2 - 2s_{12} \right]^{\frac{1}{2}} \right\}^{\frac{1}{2}}$

Economics 20 - Prof. Anderson

where s_{12} is an estimate of $Cov(\hat{\beta}_1, \hat{\beta}_2)$

Testing a Linear Combo (cont)
So, to use formula, need s₁₂, which standard output does not have
Many packages will have an option to get it, or will just perform the test for you
In Stata, after reg y x1 x2 ... xk you would type test x1 = x2 to get a *p*-value for the test
More generally, you can always restate the problem to get the test you want

Example:

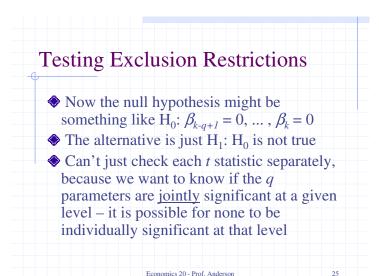
Example (cont):

This is the same model as originally, but now you get a standard error for β₁ − β₂ = θ₁ directly from the basic regression
Any linear combination of parameters could be tested in a similar manner
Other examples of hypotheses about a single linear combination of parameters:
β₁ = 1 + β₂; β₁ = 5β₂; β₁ = -1/2β₂; etc

Economics 20 - Prof. Anderson

Multiple Linear Restrictions

- Everything we've done so far has involved testing a single linear restriction, (e.g. $\beta_1 = 0$ or $\beta_1 = \beta_2$)
- However, we may want to jointly test multiple hypotheses about our parameters
- A typical example is testing "exclusion restrictions" – we want to know if a group of parameters are all equal to zero

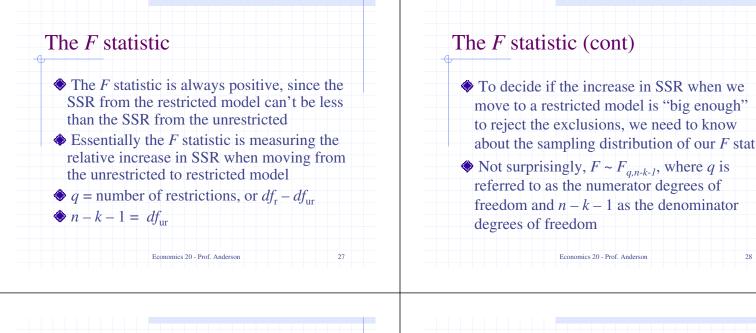


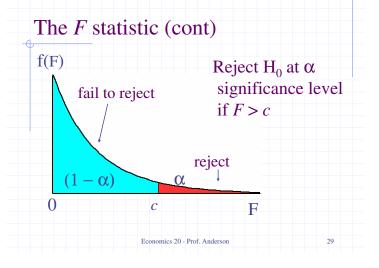
Exclusion Restrictions (cont)

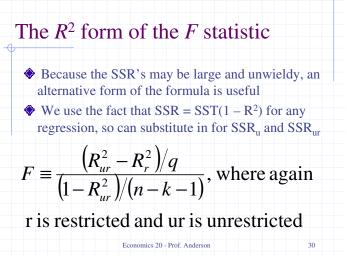
- To do the test we need to estimate the "restricted model" without $x_{k-q+1}, ..., x_k$ included, as well as the "unrestricted model" with all *x*'s included
- Intuitively, we want to know if the change in SSR is big enough to warrant inclusion of $x_{k-q+1}, ..., x_k$

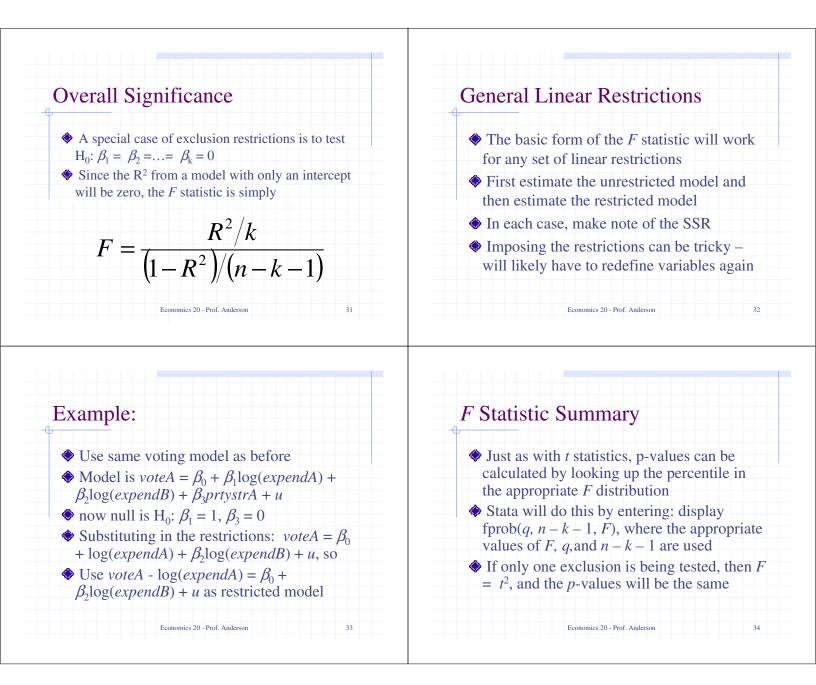
$$F \equiv \frac{(SSR_r - SSR_{ur})/q}{SSR_{ur}/(n-k-1)}, \text{ where }$$

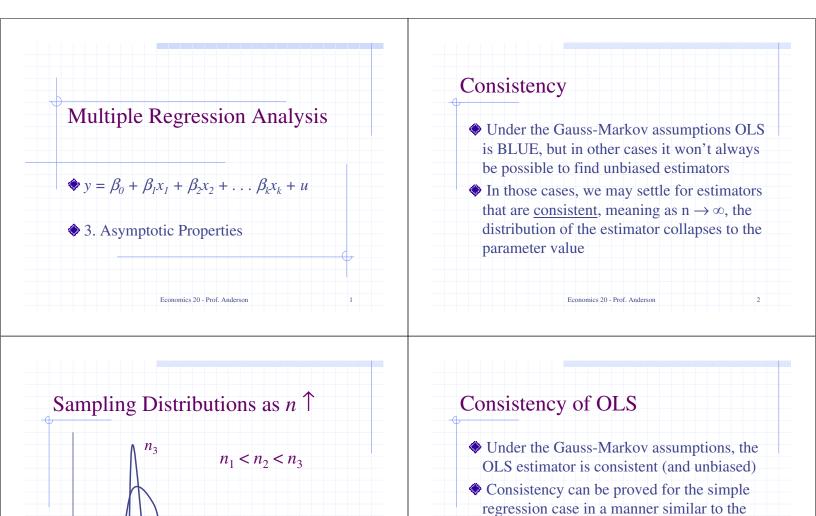
r is restricted and ur is unrestricted Economics 20 - Prof. Anderson











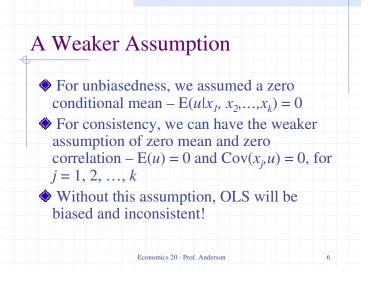


 n_2

Economics 20 - Prof. Anderson

 β_1

 n_1

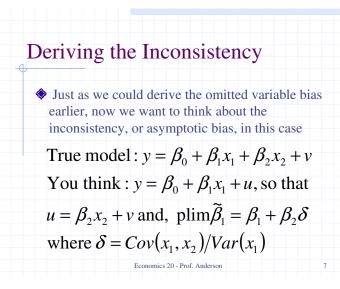


• Will need to take probability limit (plim) to

Economics 20 - Prof Anderson

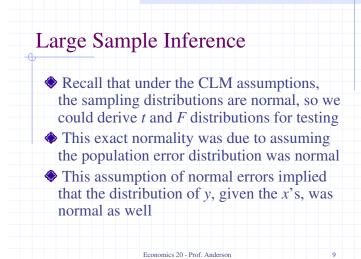
proof of unbiasedness

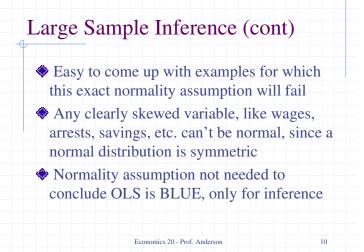
establish consistency

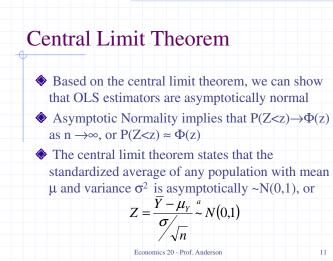


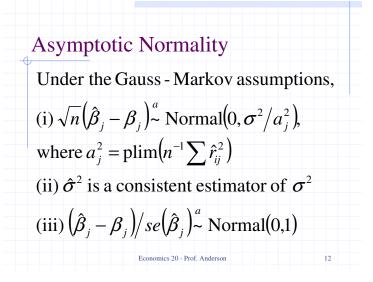
Asymptotic Bias (cont)

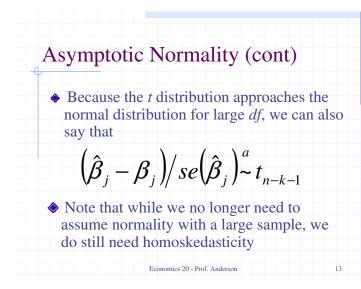
- So, thinking about the direction of the asymptotic bias is just like thinking about the direction of bias for an omitted variable
 Main difference is that asymptotic bias uses the population variance and covariance,
- while bias uses the sample counterparts
- Remember, inconsistency is a large sample problem – it doesn't go away as add data











Asymptotic Standard Errors • If *u* is not normally distributed, we sometimes will refer to the standard error as an asymptotic standard error, since $se(\hat{\beta}_j) = \sqrt{\frac{\hat{\sigma}^2}{SST_j(1-R_j^2)}},$ $se(\hat{\beta}_j) \approx c_j/\sqrt{n}$ • So, we can expect standard errors to shrink at a rate proportional to the inverse of \sqrt{n} Economics 20- Prof. Anderson

Lagrange Multiplier statistic Once we are using large samples and relying on asymptotic normality for inference, we can use more that *t* and *F* stats The Lagrange multiplier or *LM* statistic is an alternative for testing multiple exclusion restrictions Because the *LM* statistic uses an auxiliary regression it's sometimes called an *nR*² stat

Economics 20 - Prof Anderson

LM Statistic (cont)

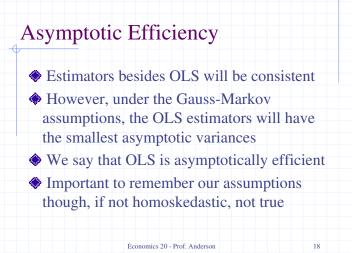
 $LM \sim^{a} \chi_{q}^{2}$, so can choose a critical value, c, from a χ_{q}^{2} distribution, or just calculate a p - value for χ_{q}^{2}

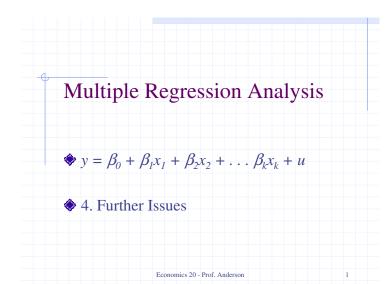
- With a large sample, the result from an *F* test and from an *LM* test should be similar
- Unlike the F test and t test for one exclusion, the LM test and F test will not be identical

Economics 20 - Prof. Anderson

LM Statistic (cont)

• Suppose we have a standard model, $y = \lambda$	$\beta_0 + \beta_1 x_1$
+ $\beta_2 x_2$ + $\beta_k x_k$ + <i>u</i> and our null hypothese	. 1 1
• $\mathbf{H}_{0}: \beta_{k-a+1} = 0, \dots, \beta_{k} = 0$	
• First, we just run the restricted model	
$y = \widetilde{\beta}_0 + \widetilde{\beta}_1 x_1 + \ldots + \widetilde{\beta}_{k-q} x_{k-q} + \widetilde{u}$	
Now take the residuals, \tilde{u} , and regress	
\tilde{u} on $x_1, x_2,, x_k$ (i.e. <i>all</i> the variables)	
$LM = nR_u^2$, where R_u^2 is from this reg	
Economics 20 - Prof. Anderson	16

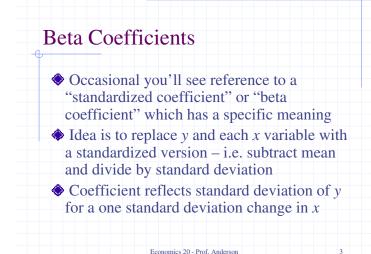


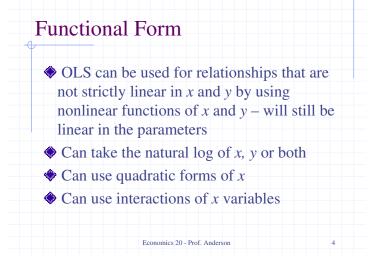


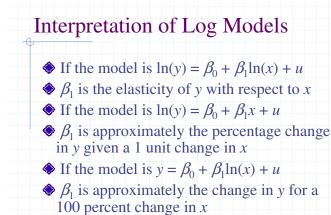
Redefining Variables

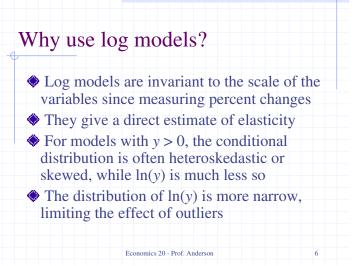
Changing the scale of the *y* variable will lead to a corresponding change in the scale of the coefficients and standard errors, so no change in the significance or interpretation
 Changing the scale of one *x* variable will lead to a change in the scale of that coefficient and standard error, so no change in the significance or interpretation

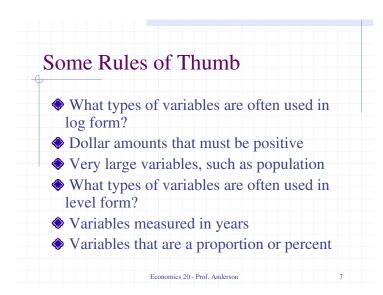
Economics 20 - Prof. Anderson











Quadratic Models

• For a model of the form $y = \beta_0 + \beta_1 x + \beta_2 x^2 + u$ we can't interpret β_1 alone as measuring the change in y with respect to x, we need to take into account β_2 as well, since

$$\Delta \hat{y} \approx \left(\hat{\beta}_1 + 2\hat{\beta}_2 x\right) \Delta x, \text{ so}$$
$$\frac{\Delta \hat{y}}{\Delta x} \approx \hat{\beta}_1 + 2\hat{\beta}_2 x$$

Economics 20 - Prof. Anderson

More on Quadratic Models Suppose that the coefficient on *x* is positive and the coefficient on x^2 is negative Then *y* is increasing in *x* at first, but will eventually turn around and be decreasing in *x* For $\hat{\beta}_1 > 0$ and $\hat{\beta}_2 < 0$ the turning point will be at $x^* = |\hat{\beta}_1/(2\hat{\beta}_2)|$ Economics 20-Prof. Anderson 9

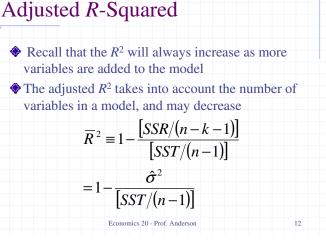
More on Quadratic Models Suppose that the coefficient on *x* is negative and the coefficient on x^2 is positive Then *y* is decreasing in *x* at first, but will eventually turn around and be increasing in *x* For $\hat{\beta}_1 < 0$ and $\hat{\beta}_2 > 0$ the turning point will be at $x^* = |\hat{\beta}_1/(2\hat{\beta}_2)|$, which is the same as when $\hat{\beta}_1 > 0$ and $\hat{\beta}_2 < 0$ Economics 20 - Prof. Anderson

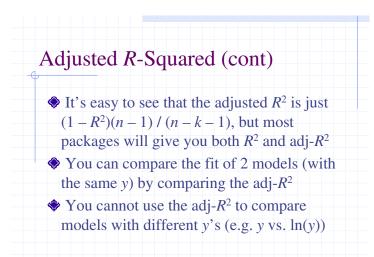
Interaction Terms

• For a model of the form $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2 + u$ we can't interpret β_1 alone as measuring the change in y with respect to x_1 , we need to take into account β_3 as well, since

 $\frac{\Delta y}{\Delta x_1} = \beta_1 + \beta_3 x_2$, so to summarize

the effect of x_1 on y we typically evaluate the above at \overline{x}_2



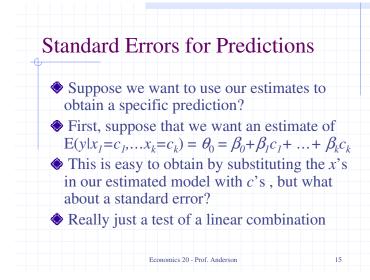


Economics 20 - Prof. Anderson

Goodness of Fit

Important not to fixate too much on adj-R² and lose sight of theory and common sense
 If economic theory clearly predicts a variable belongs, generally leave it in
 Don't want to include a variable that prohibits a sensible interpretation of the variable of interest – remember ceteris paribus interpretation of multiple regression

Economics 20 - Prof. Anderson

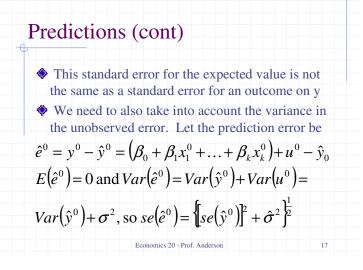


Predictions (cont)

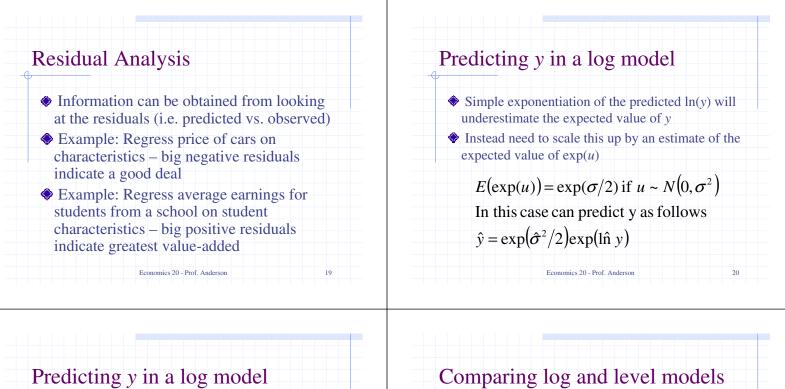
- Can rewrite as $\beta_0 = \theta_0 \beta_1 c_1 \dots \beta_k c_k$ • Substitute in to obtain $y = \theta_0 + \beta_1 (x_1 - c_1) + \dots + \beta_k (x_k - c_k) + u$ • So, if you regress y_i on $(x_{ii} - c_{ii})$ the
- So, if you regress y_i on $(x_{ij} c_{ij})$ the intercept will give the predicted value and its standard error

Economics 20 - Prof Anderson

Note that the standard error will be smallest when the *c*'s equal the means of the *x*'s



Prediction interval	
$\hat{e}^0/se(\hat{e}^0) \sim t_{n-k-1}$, so given that $\hat{e}^0 = y^0 - \hat{y}^0$	
we have a 95% prediction interval for y^0	
$\hat{y}^0 \pm t_{.025} \bullet se(\hat{e}^0)$	
Usually the estimate of s ² is much larger than the variance of the prediction, thus	
This prediction interval will be a lot wider than the simple confidence interval for the prediction	
Economics 20 - Prof. Anderson 18	

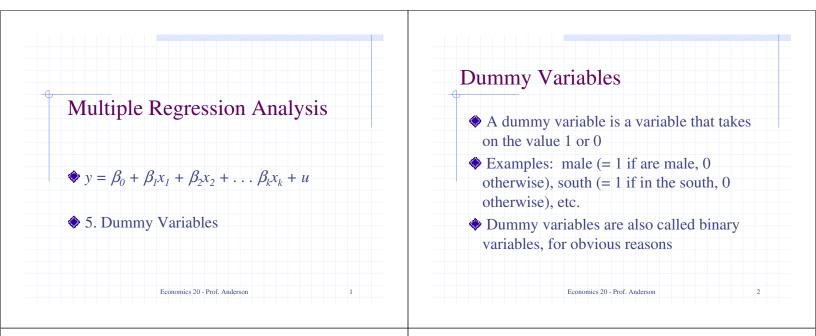


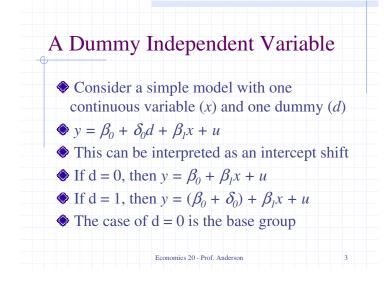
If u is not normal, E(exp(u)) must be estimated using an auxiliary regression
Create the exponentiation of the predicted ln(y), and regress y on it with no intercept
The coefficient on this variable is the estimate of E(exp(u)) that can be used to scale up the exponentiation of the predicted

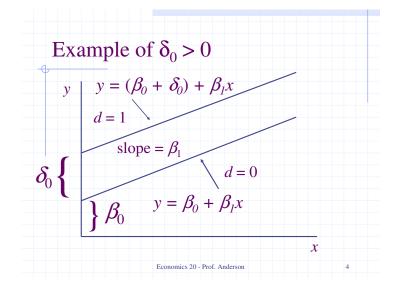
Economics 20 - Prof Anderson

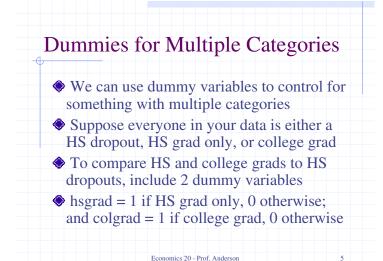
ln(y) to obtain the predicted y

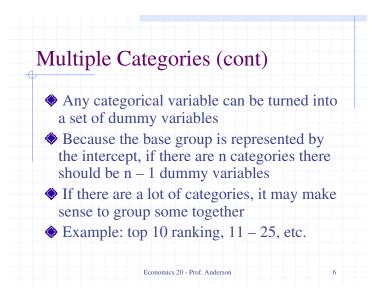
Comparing log and level models
 A by-product of the previous procedure is a method to compare a model in logs with one in levels.
 Take the fitted values from the auxiliary regression, and find the sample correlation between this and *y*.
 Compare the R² from the levels regression with this correlation squared

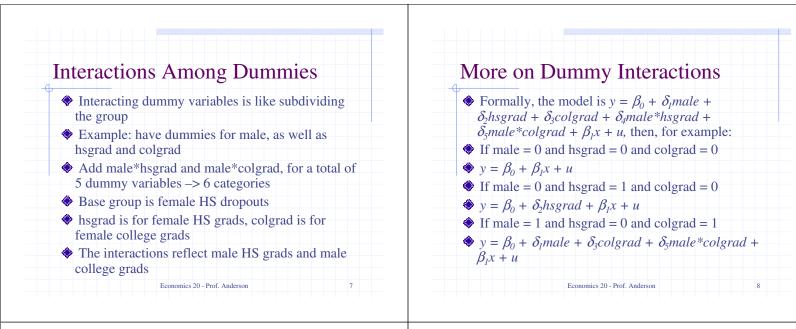


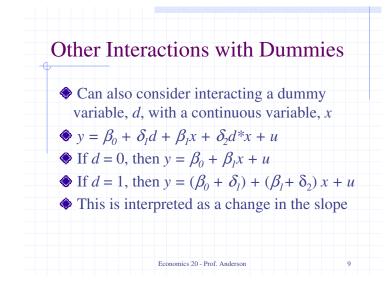


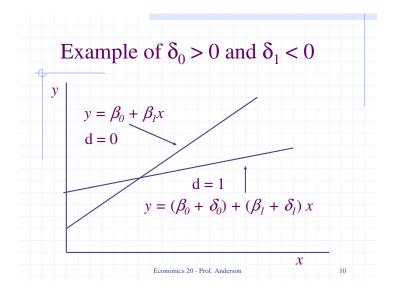


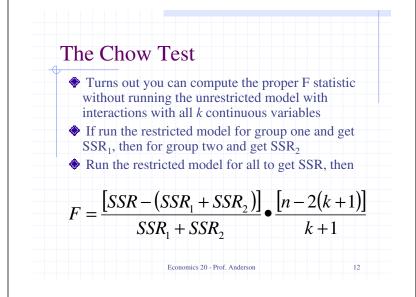






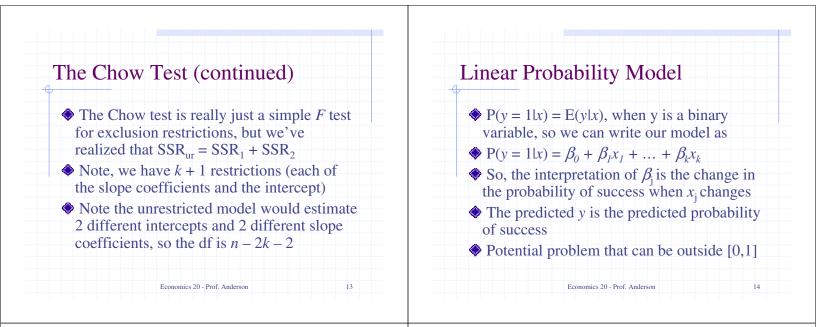


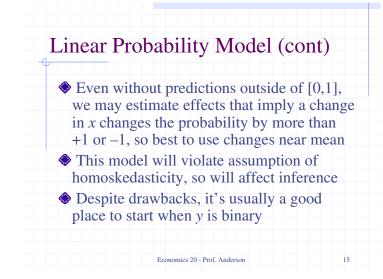


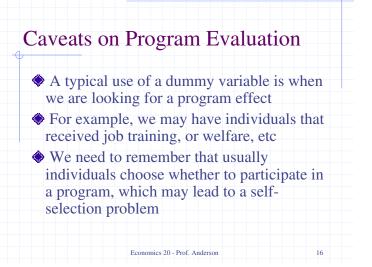


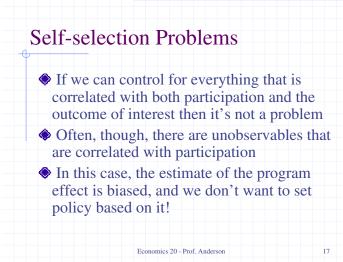
Testing for Differences Across Groups

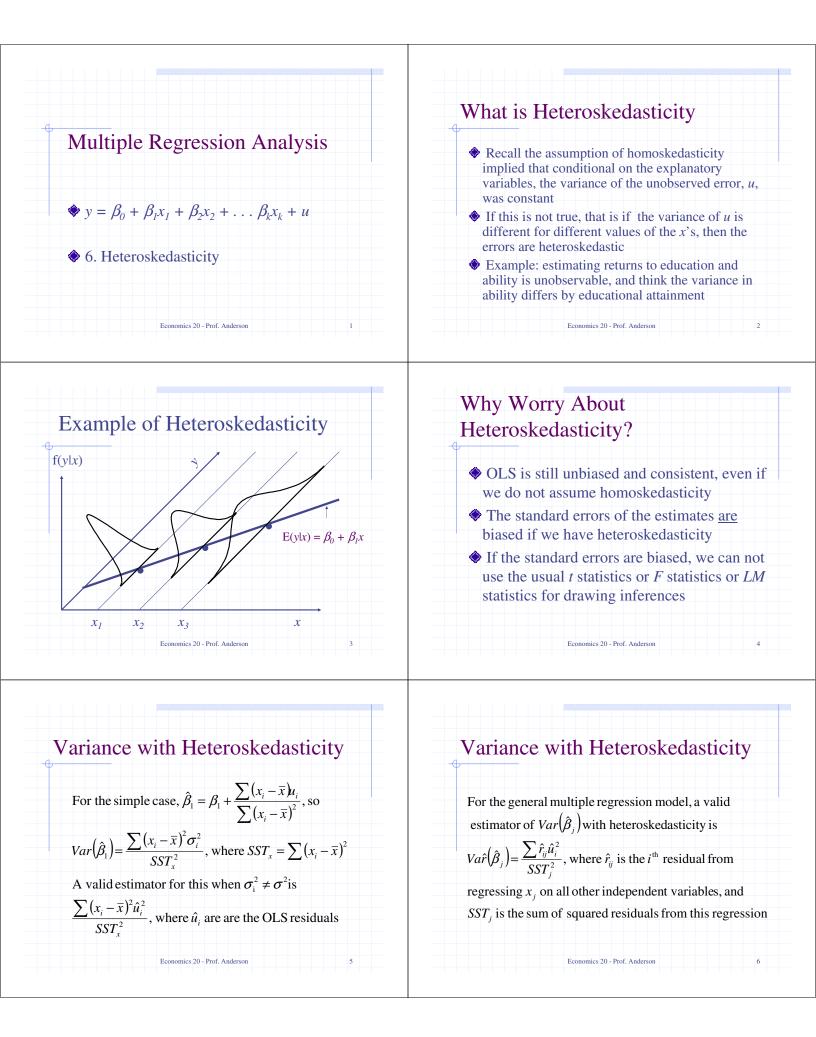
- Testing whether a regression function is different for one group versus another can be thought of as simply testing for the joint significance of the dummy and its interactions with all other x variables
- So, you can estimate the model with all the interactions and without and form an *F* statistic, but this could be unwieldy

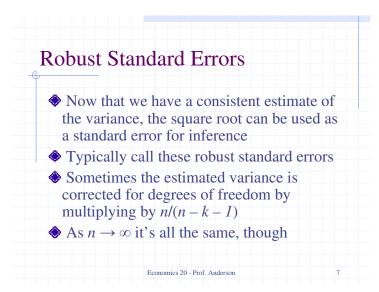












Robust Standard Errors (cont)

 Important to remember that these robust standard errors only have asymptotic justification – with small sample sizes t statistics formed with robust standard errors will not have a distribution close to the t, and inferences will not be correct

In Stata, robust standard errors are easily obtained using the robust option of reg

Economics 20 - Prof. Anderson

A Robust *LM* Statistic

- Run OLS on the restricted model and save the residuals \check{u}
- Regress each of the excluded variables on all of the included variables (q different regressions) and save each set of residuals ř₁, ř₂, ..., ř_q
- Regress a variable defined to be = 1 on $\check{r}_1 \check{u}$, $\check{r}_2 \check{u}$, ..., $\check{r}_q \check{u}$, with <u>no</u> intercept
- The LM statistic is $n SSR_1$, where SSR_1 is the sum of squared residuals from this final regression

Economics 20 - Prof Anderson

The Breusch-Pagan Test ♦ Don't observe the error, but can estimate it with the residuals from the OLS regression ♦ After regressing the residuals squared on all of the *x*'s, can use the *R*² to form an *F* or *LM* test ♦ The *F* statistic is just the reported *F* statistic for overall significance of the regression, *F* = [*R*²/*k*]/[(1 - *R*²)/(*n* - *k* - 1)], which is distributed *F*_{*k*, *n*-*k*-1} ♦ The *LM* statistic is *LM* = *nR*², which is distributed

Economics 20 - Prof. Anderson

 χ^2_k

Testing for Heteroskedasticity

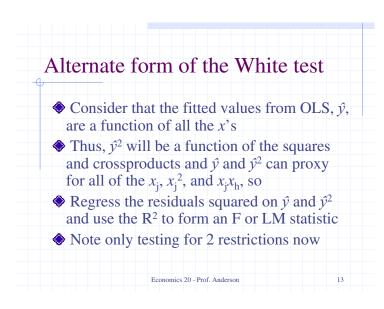
- Sestentially want to test H_0 : $Var(u|x_1, x_2,..., x_k) = \sigma^2$, which is equivalent to H_0 : $E(u^2|x_1, x_2,..., x_k) = E(u^2) = \sigma^2$
- If assume the relationship between u^2 and x_j will be linear, can test as a linear restriction

• So, for $u^2 = \delta_0 + \delta_1 x_1 + \ldots + \delta_k x_k + v$) this means testing H₀: $\delta_1 = \delta_2 = \ldots = \delta_k = 0$

Economics 20 - Prof Anderson

The White Test

- The Breusch-Pagan test will detect any linear forms of heteroskedasticity
 The White test allows for nonlinearities by using squares and crossproducts of all the *x*'s
 Still just using an F or LM to test whether all the x_j, x_j², and x_jx_h are jointly significant
- This can get to be unwieldy pretty quickly



Weighted Least Squares

- While it's always possible to estimate robust standard errors for OLS estimates, if we know something about the specific form of the heteroskedasticity, we can obtain more efficient estimates than OLS
- The basic idea is going to be to transform the model into one that has homoskedastic errors – called weighted least squares

Economics 20 - Prof. Anderson

Case of form being known up to a multiplicative constant

Suppose the heteroskedasticity can be modeled as Var(u|x) = σ²h(x), where the trick is to figure out what h(x) ≡ h_i looks like
 E(u_i/√h_i|x) = 0, because h_i is only a function of x, and Var(u_i/√h_i|x) = σ², because we know Var(u|x) = σ²h_i

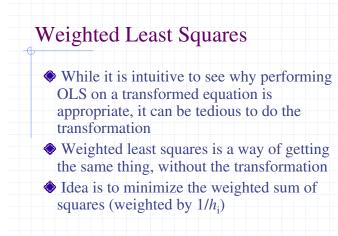
• So, if we divided our whole equation by $\sqrt{h_i}$ we would have a model where the error is homoskedastic

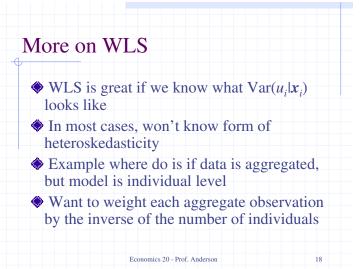
Economics 20 - Prof Anderson

Generalized Least Squares

- Estimating the transformed equation by OLS is an example of generalized least squares (GLS)
- GLS will be BLUE in this case
- GLS is a weighted least squares (WLS) procedure where each squared residual is weighted by the inverse of Var(u_i|x_i)

Economics 20 - Prof Anderson





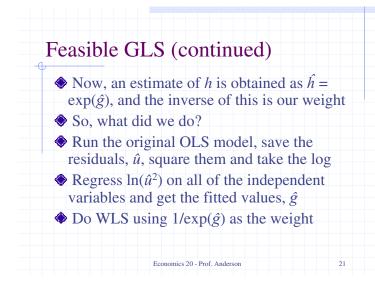
Feasible GLS

- More typical is the case where you don't know the form of the heteroskedasticity
- In this case, you need to estimate $h(x_i)$
- Typically, we start with the assumption of a fairly flexible model, such as
- $\operatorname{Var}(u|\mathbf{x}) = \sigma^2 \exp(\delta_0 + \delta_1 x_1 + \ldots + \delta_k x_k)$
- \clubsuit Since we don't know the δ , must estimate

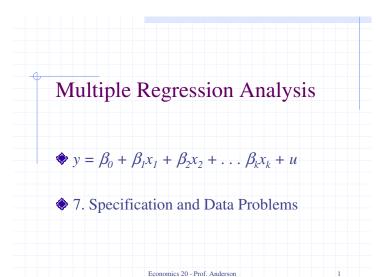
Economics 20 - Prof. Anderson

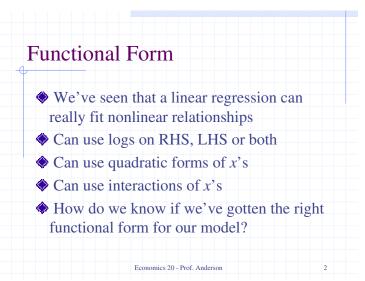
Feasible GLS (continued)

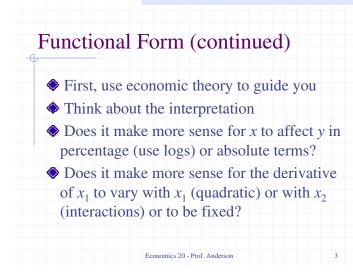
♦ Our assumption implies that u² = σ²exp(δ₀ + δ₁x₁ + ... + δ_kx_k)v
♦ Where E(v|x) = 1, then if E(v) = 1
♦ ln(u²) = α₀ + δ₁x₁ + ... + δ_kx_k + e
♦ Where E(e) = 1 and e is independent of x
♦ Now, we know that û is an estimate of u, so we can estimate this by OLS



WLS Wra	pup	
from the unro	F tests with WLS, form the estricted model and use thos he restricted model as well a nodel	e weights to
	ve are using WLS just for el inbiased & consistent	fficiency –
error, but if t	ill still be different due to sa hey are very different then i her Gauss-Markov assumption	t's likely







Functional Form (continued)

We already know how to test joint exclusion restrictions to see if higher order terms or interactions belong in the model
It can be tedious to add and test extra terms, plus may find a square term matters when really using logs would be even better
A test of functional form is Ramsey's regression specification error test (RESET)

Economics 20 - Prof Anderson

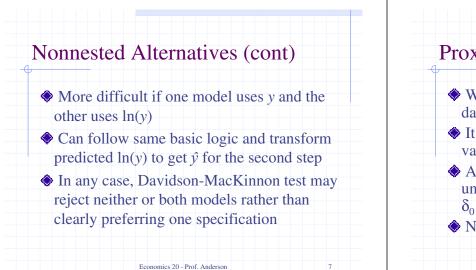
Ramsey's RESET

RESET relies on a trick similar to the
special form of the White test
Instead of adding functions of the x's
directly, we add and test functions of \hat{y}
So, estimate $y = \beta_0 + \beta_1 x_1 + \ldots + \beta_k x_k + \ldots$
$\delta_1 \hat{y}^2 + \delta_1 \hat{y}^3 + error$ and test
• $H_0: \delta_1 = 0, \delta_2 = 0$ using $F \sim F_{2.n-k-3}$ or $LM \sim \chi^2$
Economics 20 - Prof. Anderson 5

Nonnested Alternative Tests

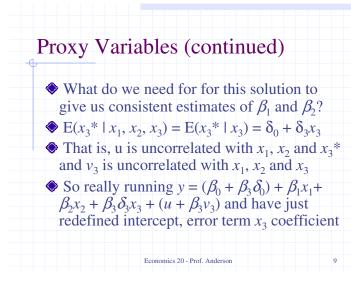
If the models have the same dependent variables, but nonnested x's could still just make a giant model with the x's from both and test joint exclusion restrictions that lead to one model or the other

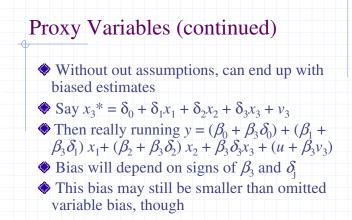
An alternative, the Davidson-MacKinnon test, uses ŷ from one model as regressor in the second model and tests for significance



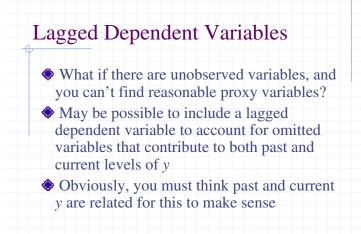
Proxy Variables What if model is misspecified because no data is available on an important *x* variable? It may be possible to avoid omitted variable bias by using a proxy variable A proxy variable must be related to the unobservable variable – for example: x₃* = δ₀ + δ₃x₃ + v₃, where * implies unobserved Now suppose we just substitute x₃ for x₃*

Economics 20 - Prof. Anderson





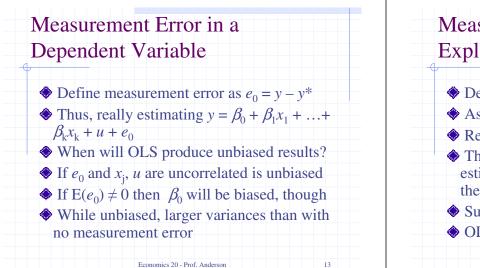
Economics 20 - Prof Anderson

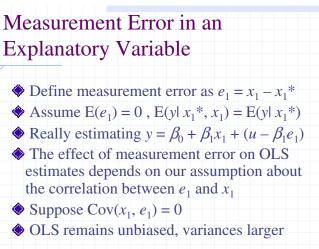


Economics 20 - Prof. Anderson

Measurement Error

- Sometimes we have the variable we want, but we think it is measured with error
- Examples: A survey asks how many hours did you work over the last year, or how many weeks you used child care when your child was young
- Measurement error in y different from measurement error in x



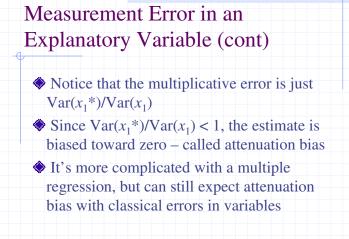


Economics 20 - Prof. Anderson

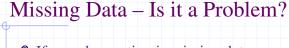
Measurement Error in an Explanatory Variable (cont)

Suppose Cov(x₁*, e₁) = 0, known as the classical errors-in-variables assumption, then
Cov(x₁, e₁) = E(x₁e₁) = E(x₁*e₁) + E(e₁²) = 0 + σ_e²
x₁ is correlated with the error so estimate is biased $plim(\hat{\beta}_{1}) = \beta_{1} + \frac{Cov(x_{1}, u - \beta_{1}e_{1})}{Var(x_{1})} = \beta_{1} - \frac{\beta_{1}\sigma_{e}^{2}}{\sigma_{x^{*}}^{2} + \sigma_{e}^{2}}$ $= \beta_{1} \left(1 - \frac{\sigma_{e}^{2}}{\sigma_{x^{*}}^{2} + \sigma_{e}^{2}}\right) = \beta_{1} \left(\frac{\sigma_{x^{*}}^{2}}{\sigma_{x^{*}}^{2} + \sigma_{e}^{2}}\right)$

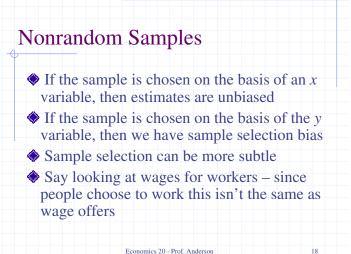
Economics 20 - Prof. Anderson

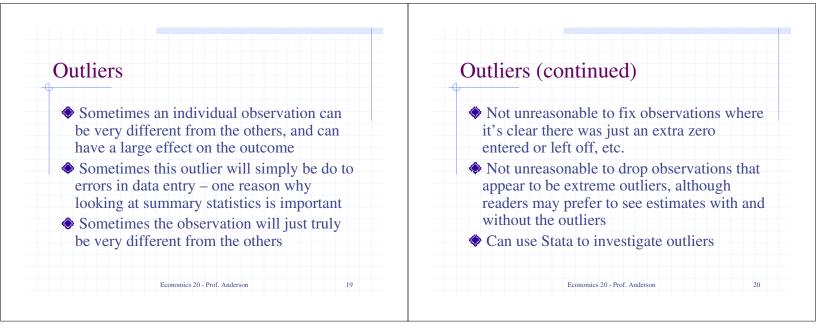


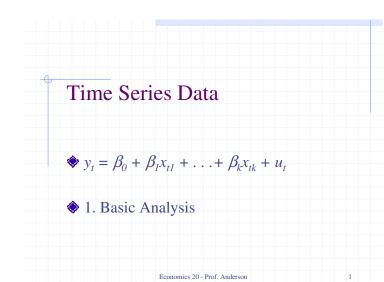
Economics 20 - Prof Anderson



- If any observation is missing data on one of the variables in the model, it can't be used
 If data is missing at random, using a
- sample restricted to observations with no missing values will be fine
- A problem can arise if the data is missing systematically – say high income individuals refuse to provide income data







Time Series vs. Cross Sectional Time series data has a temporal ordering, unlike cross-section data Will need to alter some of our assumptions to take into account that we no longer have a random sample of individuals Instead, we have one realization of a stochastic (i.e. random) process

Economics 20 - Prof. Andersor

Examples of Time Series Models

A static model relates contemporaneous variables: y_t = β₀ + β₁z_t + u_t
A finite distributed lag (FDL) model allows one or more variables to affect y with a lag: y_t = α₀ + δ₀z_t + δ₁z_{t-1} + δ₂z_{t-2} + u_t
More generally, a finite distributed lag model of order q will include q lags of z

Economics 20 - Prof Anderson

Finite Distributed Lag Models

We can call δ₀ the impact propensity – it reflects the immediate change in y
For a temporary, 1-period change, y returns to its original level in period q+1
We can call δ₀ + δ₁ +...+ δ_q the long-run propensity (LRP) – it reflects the long-run change in y after a permanent change

Economics 20 - Prof Anderson

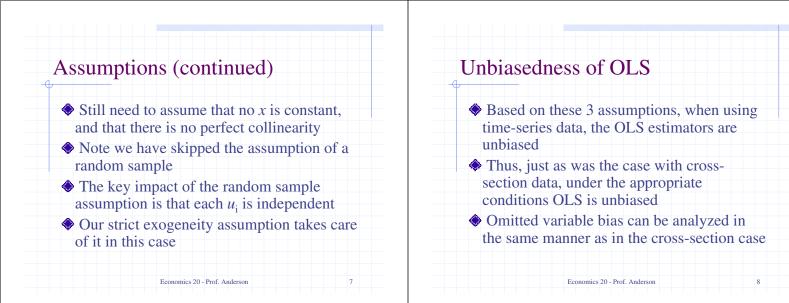
Assumptions for Unbiasedness

Still assume a model that is linear in parameters: y_t = β₀ + β₁x_{t1} + ... + β_kx_{tk} + u_t
Still need to make a zero conditional mean assumption: E(u_t|X) = 0, t = 1, 2, ..., n
Note that this implies the error term in any given period is uncorrelated with the explanatory variables in all time periods

Economics 20 - Prof. Anderson

Assumptions (continued)

This zero conditional mean assumption implies the x's are strictly exogenous
 An alternative assumption, more parallel to the cross-sectional case, is E(u_i|x_i) = 0
 This assumption would imply the x's are contemporaneously exogenous
 Contemporaneous exogeneity will only be sufficient in large samples





OLS Variances (continued)

	ler these 5 assumptions, the OLS model of the second secon
	e as in the cross-section case. Also,
🔷 The	estimator of σ^2 is the same
OLS	S remains BLUE
	h the additional assumption of normal rs, inference is the same

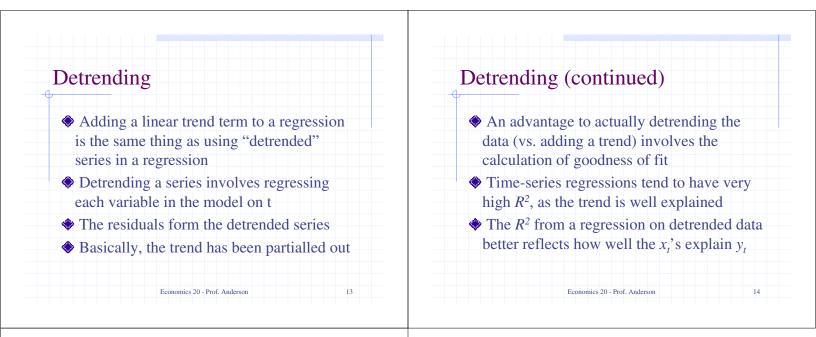
Economics 20 - Prof. Andersor

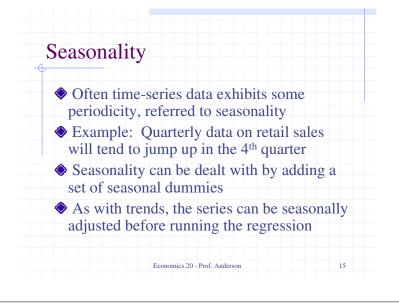
Trending Time Series Economic time series often have a trend Just because 2 series are trending together, we can't assume that the relation is causal Often, both will be trending because of other unobserved factors Even if those factors are unobserved, we can control for them by directly controlling for the trend

Economics 20 - Prof. Anderson

Trends (continued)

♦ One possibility is a linear trend, which can be modeled as y_t = α₀ + α₁t + e_t, t = 1, 2, ...
♦ Another possibility is an exponential trend, which can be modeled as log(y_t) = α₀ + α₁t + e_t, t = 1, 2, ...
♦ Another possibility is a quadratic trend, which can be modeled as y_t = α₀ + α₁t + α₂t² + e_t, t = 1, 2, ...





Stationary Stochastic Process A stochastic process is stationary if for every collection of time indices 1 ≤ t₁ < ... < t_m the joint distribution of (x₁₁, ..., x_{tm}) is the same as that of (x_{11+h}, ... x_{tm+h}) for h ≥ 1 Thus, stationarity implies that the x_i's are

P Thus, stationarity implies that the x_t 's are identically distributed and that the nature of any correlation between adjacent terms is the same across all periods

Economics 20 - Prof. Anderson

Covariance Stationary Process

- ♦ A stochastic process is covariance stationary if $E(x_t)$ is constant, $Var(x_t)$ is constant and for any $t, h \ge 1$, $Cov(x_t, x_{t+h})$ depends only on h and not on t
- Thus, this weaker form of stationarity requires only that the mean and variance are constant across time, and the covariance just depends on the distance across time

Economics 20 - Prof. Anderson

Weakly Dependent Time Series A stationary time series is weakly dependent if x₁ and x₁+h are "almost independent" as h increases If for a covariance stationary process Corr(x₁, x₁+h) → 0 as h → ∞, we'll say this covariance stationary process is weakly dependent Want to still use law of large numbers

An MA(1) Process

A moving average process of order one [MA(1)] can be characterized as one where x_t = e_t + α_le_{t-l}, t = 1, 2, ... with e_t being an iid sequence with mean 0 and variance σ²_e
This is a stationary, weakly dependent sequence as variables 1 period apart are correlated, but 2 periods apart they are not

Economics 20 - Prof Anderson

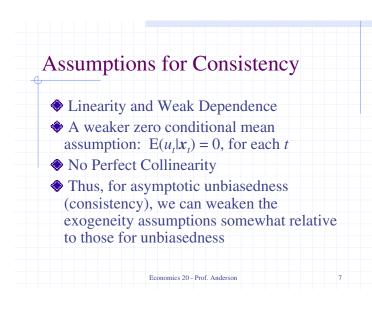
An AR(1) Process

An autoregressive process of order one [AR(1)] can be characterized as one where y_t = ρy_{t-1} + e_t, t = 1, 2,... with e_t being an iid sequence with mean 0 and variance σ_e²
For this process to be weakly dependent, it must be the case that |ρ| < 1

• Corr $(y_t, y_{t+h}) =$ Cov $(y_t, y_{t+h})/(\sigma_y \sigma_y) = \rho_I^h$ which becomes small as *h* increases

Economics 20 - Prof. Anderson

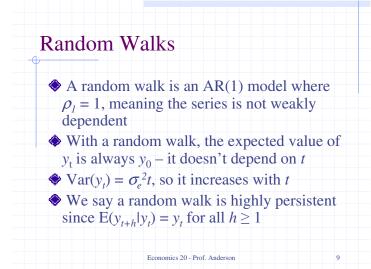
Trends Revisited A trending series cannot be stationary, since the mean is changing over time A trending series can be weakly dependent If a series is weakly dependent and is stationary about its trend, we will call it a trend-stationary process As long as a trend is included, all is well



Large-Sample Inference

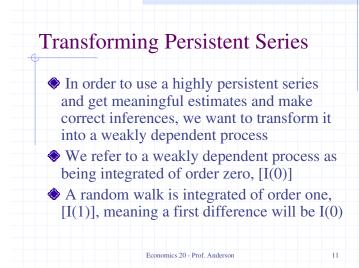
- Weaker assumption of homoskedasticity: Var $(u_t | \mathbf{x}_t) = \sigma^2$, for each *t*
- Weaker assumption of no serial correlation: $E(u_t u_s | \mathbf{x}_t, \mathbf{x}_s) = 0$ for $t \neq s$
- With these assumptions, we have asymptotic normality and the usual standard errors, *t* statistics, *F* statistics and *LM* statistics are valid

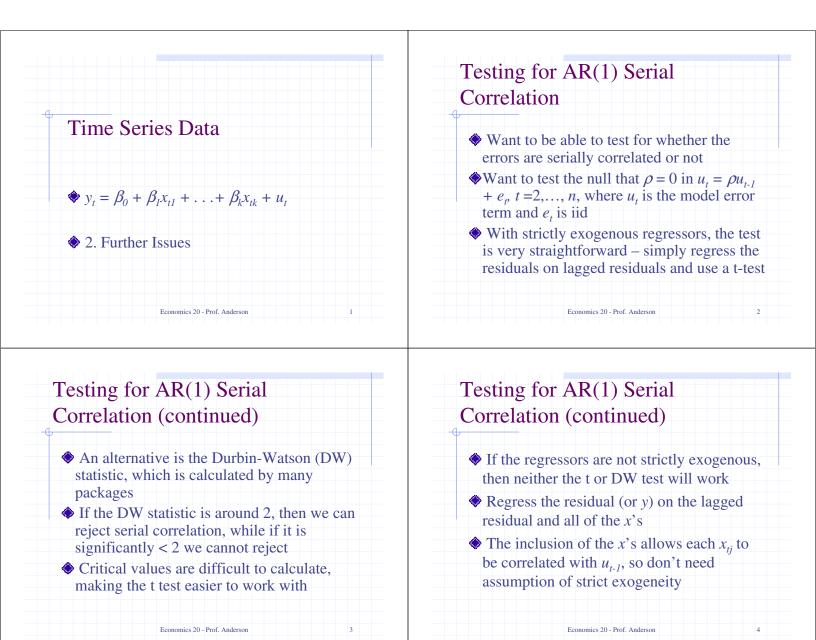
Economics 20 - Prof. Anderson



Random Walks (continued)

	A random walk is a special case of what's known as a unit root process
¢	Note that trending and persistence are
	different things – a series can be trending
	but weakly dependent, or a series can be
	highly persistent without any trend
¢	A random walk with drift is an example of
	a highly persistent series that is trending





Testing for Higher Order S.C.

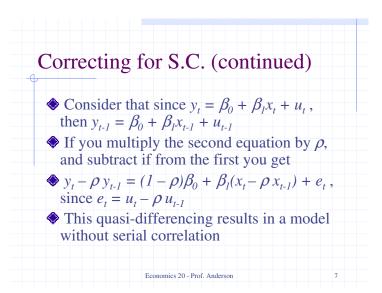
- Can test for AR(q) serial correlation in the same basic manner as AR(1)
- Just include q lags of the residuals in the regression and test for joint significance
- Can use F test or LM test, where the LM version is called a Breusch-Godfrey test and is (n-q)R² using R² from residual regression

Economics 20 - Prof. Anderson

Can also test for seasonal forms

Correcting for Serial Correlation





Feasible GLS Estimation

Problem with this method is that we don't know ρ, so we need to get an estimate first
 Can just use the estimate obtained from regressing residuals on lagged residuals
 Depending on how we deal with the first observation, this is either called Cochrane-Orcutt or Prais-Winsten estimation

Economics 20 - Prof. Anderson

Feasible GLS (continued)

- Often both Cochrane-Orcutt and Prais-Winsten are implemented iteratively
- This basic method can be extended to allow for higher order serial correlation, AR(q)
- Most statistical packages will automatically allow for estimation of AR models without having to do the quasi-differencing by hand

Economics 20 - Prof Anderson

Serial Correlation-Robust Standard Errors (continued)

• Estimate normal OLS to get residuals, root MSE • Run the auxiliary regression of x_{t1} on x_{t2} , ..., x_{tk} • Form \hat{a}_t by multiplying these residuals with \hat{u}_t • Choose g – say 1 to 3 for annual data, then

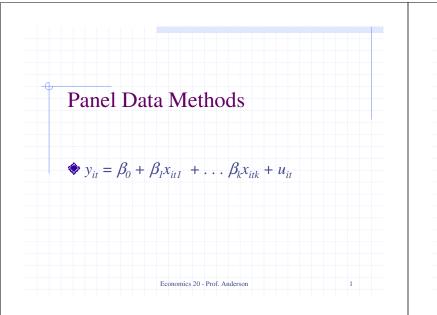
$$\hat{v} = \sum_{t=1}^{n} \hat{a}_{t}^{2} + 2\sum_{h=1}^{g} \left[1 - h / (g+1) \right] \left(\sum_{t=h+1}^{n} \hat{a}_{t} \hat{a}_{t-h} \right)$$

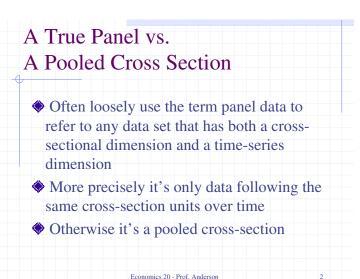
and $se(\hat{\beta}_1) = [SE / \hat{\sigma}]^2 \sqrt{\hat{v}}$, where SE is the usual OLS standard error of $\hat{\beta}_j$

Economics 20 - Prof. Anderson

Serial Correlation-Robust Standard Errors What happens if we don't think the regressors are all strictly exogenous? It's possible to calculate serial correlation-

- robust standard errors, along the same lines as heteroskedasticity robust standard errors
- Idea is that want to scale the OLS standard errors to take into account serial correlation





Pooled Cross Sections We may want to pool cross sections just to get bigger sample sizes We may want to pool cross sections to investigate the effect of time We may want to pool cross sections to investigate whether relationships have changed over time

Difference-in-Differences

	Say random assignment to treatment and control groups, like in a medical experiment
٢	• One can then simply compare the change in outcomes across the treatment and control groups to estimate the treatment effect
۲	For time 1,2, groups A, B $(y_{2,B} - y_{2,A}) - (y_{1,B} - y_{1,A})$, or equivalently $(y_{2,B} - y_{1,B}) - (y_{2,A} - y_{1,A})$, is the difference-in-differences

Difference-in-Differences (cont)

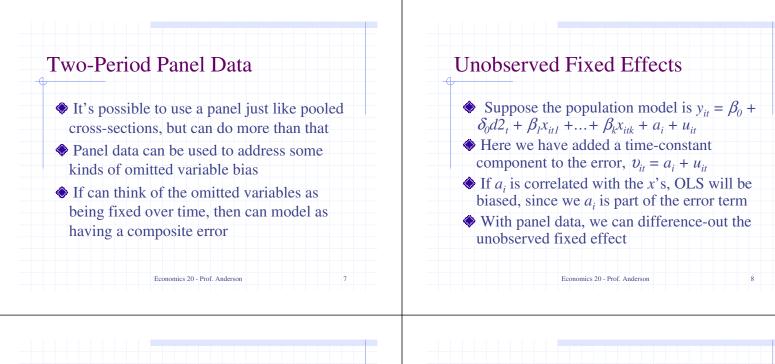
- A regression framework using time and treatment dummy variables can calculate this difference-in-difference as well
- Consider the model: $y_{it} = \beta_0 + \beta_1 treatment_{it} + \beta_2 after_{it} + \beta_3 treatment_{it} * after_{it} + u_{it}$
- The estimated β_3 will be the difference-indifferences in the group means

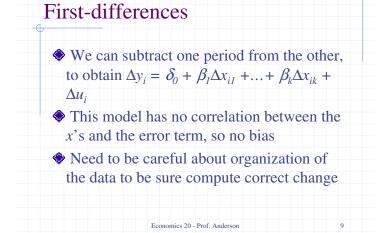
Economics 20 - Prof. Anderson

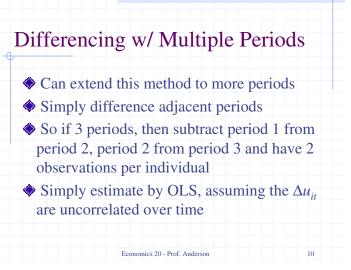
Difference-in-Differences (cont)

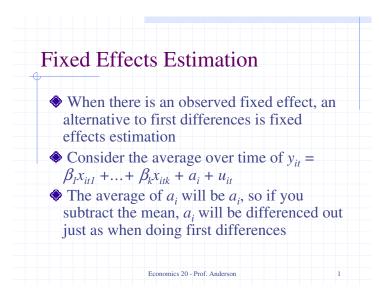
Economics 20 - Prof Anderson

- When don't truly have random assignment, the regression form becomes very useful
 Additional *x*'s can be added to the regression to control for differences across
- the treatment and control groups
 Sometimes referred to as a "natural experiment" especially when a policy change is being analyzed







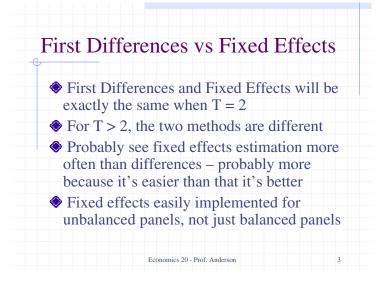


Fixed Effects Estimation (cont)

- If we were to do this estimation by hand, we'd need to be careful because we'd think that df = NT - k, but really is N(T - 1) - kbecause we used up dfs calculating means
- Luckily, Stata (and most other packages) will do fixed effects estimation for you

Economics 20 - Prof. Anderson

This method is also identical to including a separate intercept or every individual



Random Effects

- ♦ Start with the same basic model with a composite error, y_{it} = β₀ + β₁x_{it1} + ... β_kx_{itk} + a_i + u_{it}
 ♦ Previously we've assumed that a_i was
- correlated with the x's, but what if it's not?
 OLS would be consistent in that case, but
 - composite error will be serially correlated

Economics 20 - Prof Anderson

Random Effects (continued)

- Need to transform the model and do GLS to solve the problem and make correct inferences
- Idea is to do quasi-differencing with the

Economics 20 - Prof. Anderson

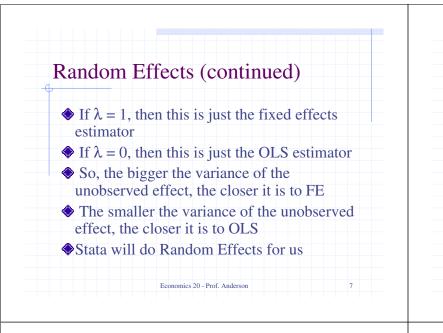
Random Effects (continued)

 $\lambda = 1 - \left[\sigma_u^2 / \left(\sigma_u^2 + T\sigma_a^2\right)\right]^{1/2}$

 $+\beta_k(x_{itk}-\overline{x}_{ik})+(v_{it}-\overline{v}_i)$

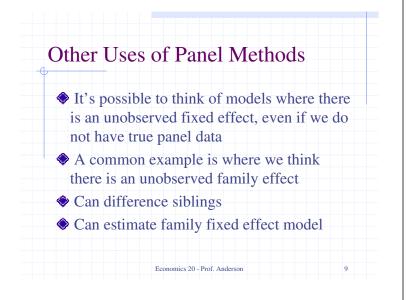
- Need to transform the model and do GLS to solve the problem and make correct inferences
 End up with a cort of weighted research OLS.
- End up with a sort of weighted average of OLS and Fixed Effects – use quasi-demeaned data

 $y_{it} - \lambda \overline{y}_i = \beta_0 (1 - \lambda) + \beta_1 (x_{it1} - \lambda \overline{x}_{i1}) + \dots$

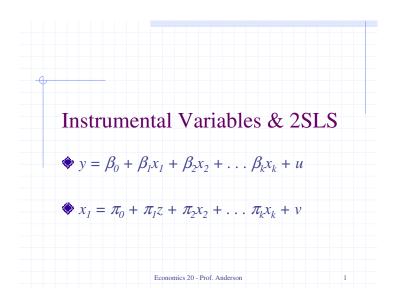


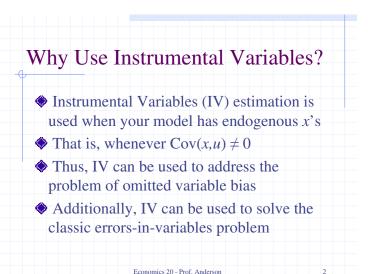
Fixed Effects or Random?

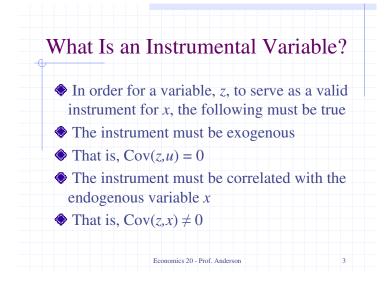
- More usual to think need fixed effects, since think the problem is that something unobserved is correlated with the *x*'s
 If truly need rendom effects, the only
- If truly need random effects, the only problem is the standard errors
- Can just adjust the standard errors for correlation within group

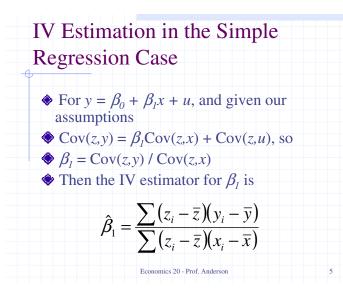


• •	long of the things we already tracy about
	Any of the things we already know about
bo	oth cross section and time series data can-
be	e applied with panel data
	Can test and correct for serial correlation in
	e errors
> C	Can test and correct for heteroskedasticity
) (Can estimate standard errors robust to both

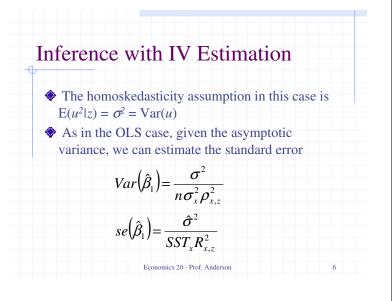


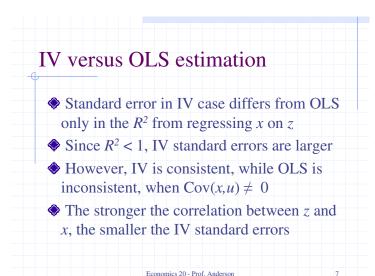






Лс	ore on Valid Instruments
	We have to use common sense and
e	economic theory to decide if it makes sense
t	o assume $Cov(z,u) = 0$
١	We can test if $Cov(z, x) \neq 0$
۲	Just testing H ₀ : $\pi_I = 0$ in $x = \pi_0 + \pi_I z + v$
۲	Sometimes refer to this regression as the
f	irst-stage regression
	Economics 20 - Prof. Anderson 4





The Effect of Poor Instruments

What if our assumption that Cov(z,u) = 0 is false?
The IV estimator will be inconsistent, too
Can compare asymptotic bias in OLS and IV
Prefer IV if Corr(z,u)/Corr(z,x) < Corr(x,u)

IV :
$$\operatorname{plim}\hat{\beta}_{1} = \beta_{1} + \frac{\operatorname{Corr}(z, u)}{\operatorname{Corr}(z, x)} \bullet \frac{\sigma_{u}}{\sigma_{x}}$$

OLS : $\operatorname{plim}\tilde{\beta}_{1} = \beta_{1} + \operatorname{Corr}(x, u) \bullet \frac{\sigma_{u}}{\sigma_{x}}$
Economics 20 - Prof. Anderson

IV Estimation in the Multiple Regression Case

- IV estimation can be extended to the multiple regression case
- Call the model we are interested in estimating the structural model
- Our problem is that one or more of the variables are endogenous

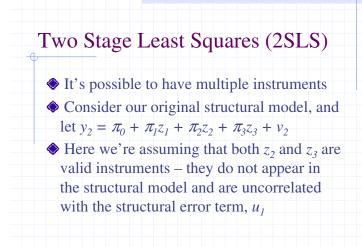
Economics 20 - Prof Anderson

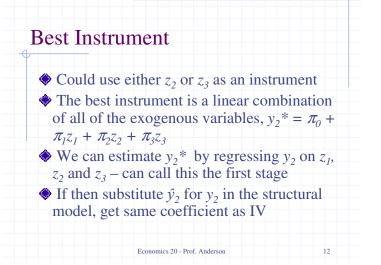
We need an instrument for each endogenous variable

Multiple Regression IV (cont) Write the structural model as $y_1 = \beta_0 + \beta_1 y_2 + \beta_2 z_1 + u_1$, where y_2 is endogenous and z_1 is exogenous Let z_2 be the instrument, so $Cov(z_2, u_1) = 0$

and $v_2 = \pi_0 + \pi_1 z_1 + \pi_2 z_2 + v_2$, where $\pi_2 \neq 0$ This reduced form equation regresses the endogenous variable on all exogenous ones

Economics 20 - Prof Anderson





More on 2SLS

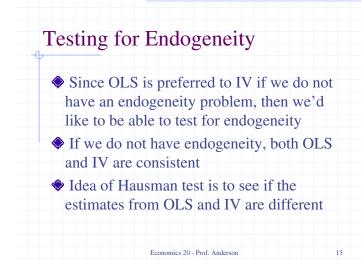
- While the coefficients are the same, the standard errors from doing 2SLS by hand are incorrect, so let Stata do it for you
- Method extends to multiple endogenous variables – need to be sure that we have at least as many excluded exogenous variables (instruments) as there are endogenous variables in the structural equation

Economics 20 - Prof. Anderson

Addressing Errors-in-Variables with IV Estimation

- Remember the classical errors-in-variables problem where we observe x₁ instead of x₁*
 Where x₁ = x₁* + e₁, and e₁ is uncorrelated with x₁* and x₂
 If there is a z, such that Corr(z,u) = 0 and
 - $\operatorname{Corr}(z, x_1) \neq 0$, then
 - IV will remove the attenuation bias

Economics 20 - Prof. Anderson



Testing for Endogeneity (cont)

- Save the residuals from the first stage
 Include the residual in the structural equation (which of course has y₂ in it)
- If the coefficient on the residual is statistically different from zero, reject the null of exogeneity
- If multiple endogenous variables, jointly test the residuals from each first stage

Economics 20 - Prof. Anderson

Testing for Endogeneity (cont)

- While it's a good idea to see if IV and OLS have different implications, it's easier to use a regression test for endogeneity
 If y₂ is endogenous, then v₂ (from the
- reduced form equation) and u_1 from the structural model will be correlated

Economics 20 - Prof Anderson

 \blacklozenge The test is based on this observation

Testing Overidentifying Restrictions

- If there is just one instrument for our endogenous variable, we can't test whether the instrument is uncorrelated with the error
- We say the model is just identified
- If we have multiple instruments, it is possible to test the overidentifying restrictions – to see if some of the instruments are correlated with the error

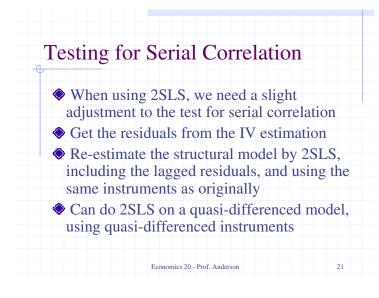
The OverID Test

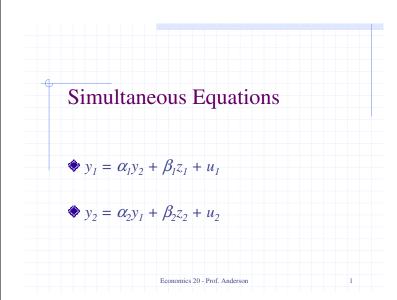
- Estimate the structural model using IV and obtain the residuals
- Regress the residuals on all the exogenous variables and obtain the R^2 to form nR^2
- Under the null that all instruments are uncorrelated with the error, $LM \sim \chi_q^2$ where *q* is the number of extra instruments

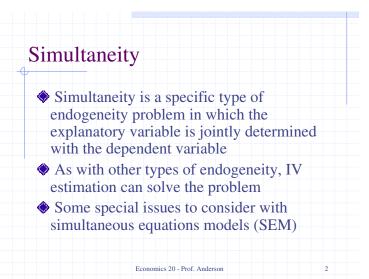
Economics 20 - Prof. Anderson

Testing for Heteroskedasticity

When using 2SLS, we need a slight adjustment to the Breusch-Pagan test
Get the residuals from the IV estimation
Regress these residuals squared on all of the exogenous variables in the model (including the instruments)
Test for the joint significance



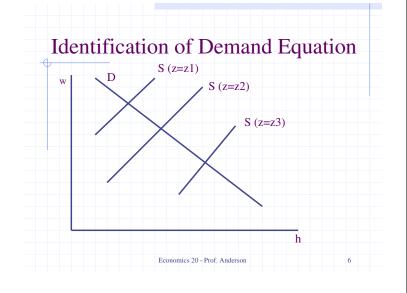


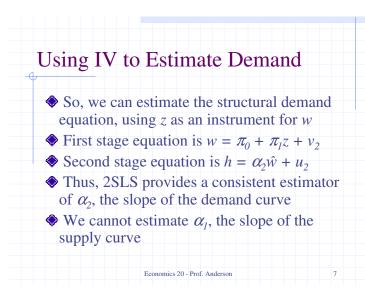


Supply and Demand Example Start with an equation you'd like to estimate, say a labor supply function h_s = α₁w + β₁z + u₁, where w is the wage and z is a supply shifter Call this a structural equation – it's derived from economic theory and has a causal interpretation where w directly affects h_s

Example (cont) Problem that can't just regress observed hours on wage, since observed hours are determined by the equilibrium of supply and demand Consider a second structural equation, in this case the labor demand function *h_d* = α₂*w* + *u*₂ So hours are determined by a SEM

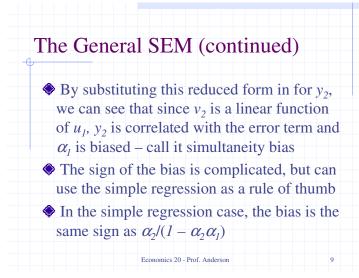
Example (cont) Both *h* and *w* are endogenous because they are both determined by the equilibrium of supply and demand *z* is exogenous, and it's the availability of this exogenous supply shifter that allows us to identify the structural demand equation With no observed demand shifters, supply is not identified and cannot be estimated





The General SEM

	n: $y_1 = \alpha_1 y_2 + \beta_1 z_1 + u_1$	
where,	$y_2 = \alpha_2 y_1 + \beta_2 z_2 + u_2$	
🔷 Thus, y	$y_2 = \alpha_2(\alpha_1 y_2 + \beta_1 z_1 + u_1) + \beta_2 z_1 + \alpha_2 z_2 + \beta_2 z_1 + \alpha_2 z_2 + \beta_2 z_2$	$\beta_2 z_2 + u_2$
	$-\alpha_2 \alpha_1 y_2 = \alpha_2 \beta_1 z_1 + \beta_2 z_2$ ch can be rewritten as	+ $\alpha_2 u_1$ +
$\langle y_2 = \pi_1$	$z_1 + \pi_2 z_2 + v_2$	



Identification of General SEM

• Let z_1 be all the exogenous variable first equation, and z_2 be all the exog variables in the second equation	
 It's okay for there to be overlap in To identify equation 1, there must variables in z₂ that are not in z₁ 	1 2
To identify equation 2, there must ly variables in z_1 that are not in z_2	be some
Economics 20 - Prof. Anderson	10

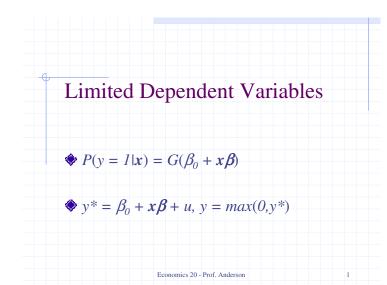
Rank and Order Conditions We refer to this as the rank condition

- Note that the exogenous variable excluded from the first equation must have a non-zero coefficient in the second equation for the rank condition to hold
- Note that the order condition clearly holds if the rank condition does – there will be an exogenous variable for the endogenous one

Economics 20 - Prof. Anderson

Estimation of the General SEM Estimation of SEM is straightforward The instruments for 2SLS are the exogenous variables from both equations Can extend the idea to systems with more than 2 equations For a given identified equation, the instruments of the exogeneration

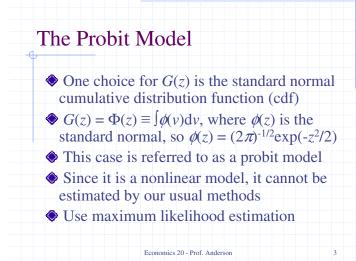
instruments are all of the exogenous variables in the whole system



Binary Dependent Variables

- Recall the linear probability model, which can be written as P(y = 1|x) = β₀ + xβ
 A drawback to the linear probability model is that predicted values are not constrained to be between 0 and 1
 An alternative is to model the probability
 - as a function, $G(\beta_0 + \mathbf{x}\boldsymbol{\beta})$, where 0 < G(z) < 1

Economics 20 - Prof. Anderson



The Logit Model

10	Another common choice for G(z) is the ogistic function, which is the cdf for a candard logistic random variable
($G(z) = \exp(z)/[1 + \exp(z)] = \Lambda(z)$
	This case is referred to as a logit model, or ometimes as a logistic regression
	Both functions have similar shapes – they re increasing in <i>z</i> , most quickly around 0

Economics 20 - Prof. Andersor

Probits and Logits Both the probit and logit are nonlinear and require maximum likelihood estimation No real reason to prefer one over the other Traditionally saw more of the logit, mainly

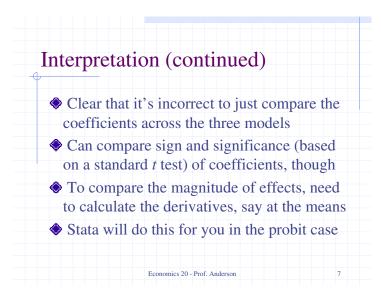
because the logistic function leads to a more easily computed model

Economics 20 - Prof. Anderson

Today, probit is easy to compute with standard packages, so more popular

Interpretation of Probits and Logits (in particular vs LPM)

- In general we care about the effect of x on P(y = 1|x), that is, we care about $\partial p / \partial x$
- For the linear case, this is easily computed as the coefficient on x
- For the nonlinear probit and logit models, it's more complicated:
- $\partial p/\partial x_j = g(\beta_0 + x\beta)\beta_j$, where g(z) is dG/dz



The Likelihood Ratio Test

- \clubsuit Unlike the LPM, where we can compute *F* statistics or *LM* statistics to test exclusion restrictions, we need a new type of test
- Maximum likelihood estimation (MLE), will always produce a log-likelihood, L
- ♦ Just as in an F test, you estimate the restricted and unrestricted model, then form

Economics 20 - Prof. Andersor

Goodness of Fit • Unlike the LPM, where we can compute an R^2 to judge goodness of fit, we need new measures of goodness of fit • One possibility is a pseudo R² based on the log likelihood and defined as $1 - L_{\mu}/L_{r}$ Can also look at the percent correctly predicted – if predict a probability >.5 then that matches y = 1 and vice versa

Economics 20 - Prof Anderson

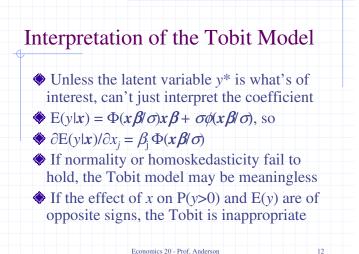
Latent Variables

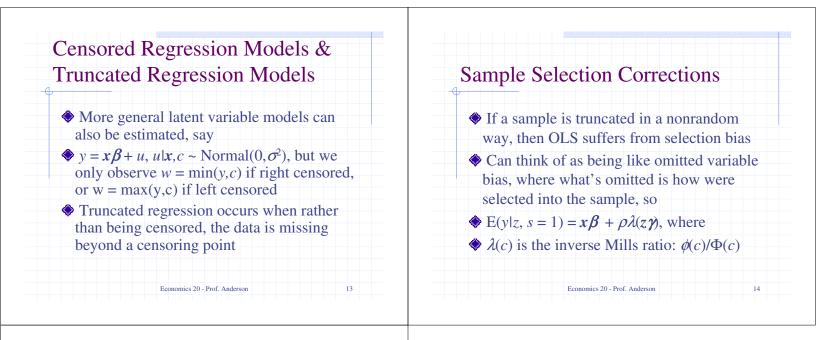
 $large LR = 2(L_{ur} - L_r) \sim \chi^2_a$

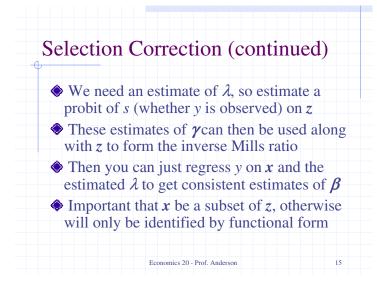
variables m	motivated through a latent odel	
	that there is an underlying , that can be modeled as	
• $y^* = \beta_0 + x$	$\beta + e$, but we only observe	
♦ <i>y</i> = 1, if <i>y</i> *	> 0, and <i>y</i> =0 if $y^* \le 0$,	

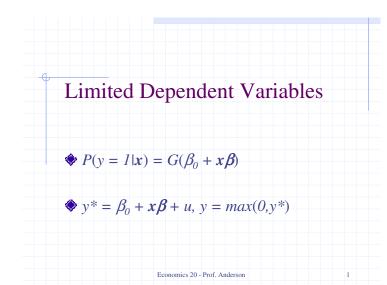
The Tobit Model Can also have latent variable models that don't involve binary dependent variables • Say $y^* = x\beta + u$, $u|x \sim \text{Normal}(0, \sigma^2)$ • But we only observe $y = \max(0, y^*)$ The Tobit model uses MLE to estimate both $\boldsymbol{\beta}$ and $\boldsymbol{\sigma}$ for this model

• Important to realize that β estimates the effect of x on y^* , the latent variable, not y





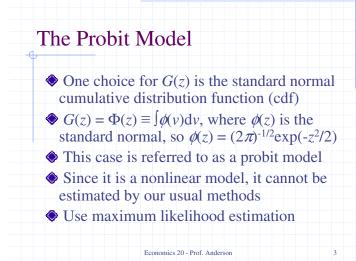




Binary Dependent Variables

- Recall the linear probability model, which can be written as P(y = 1|x) = β₀ + xβ
 A drawback to the linear probability model is that predicted values are not constrained to be between 0 and 1
 An alternative is to model the probability
 - as a function, $G(\beta_0 + \mathbf{x}\boldsymbol{\beta})$, where 0 < G(z) < 1

Economics 20 - Prof. Anderson



The Logit Model

10	Another common choice for G(z) is the ogistic function, which is the cdf for a candard logistic random variable
($G(z) = \exp(z)/[1 + \exp(z)] = \Lambda(z)$
	This case is referred to as a logit model, or ometimes as a logistic regression
	Both functions have similar shapes – they re increasing in <i>z</i> , most quickly around 0

Economics 20 - Prof. Andersor

Probits and Logits Both the probit and logit are nonlinear and require maximum likelihood estimation No real reason to prefer one over the other Traditionally saw more of the logit, mainly

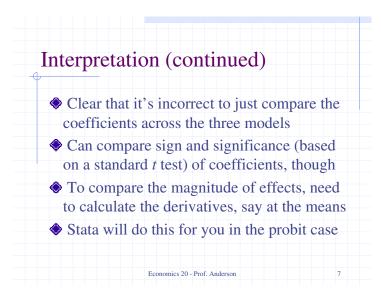
because the logistic function leads to a more easily computed model

Economics 20 - Prof. Anderson

Today, probit is easy to compute with standard packages, so more popular

Interpretation of Probits and Logits (in particular vs LPM)

- In general we care about the effect of x on P(y = 1|x), that is, we care about $\partial p / \partial x$
- For the linear case, this is easily computed as the coefficient on x
- For the nonlinear probit and logit models, it's more complicated:
- $\partial p/\partial x_j = g(\beta_0 + x\beta)\beta_j$, where g(z) is dG/dz



The Likelihood Ratio Test

- \clubsuit Unlike the LPM, where we can compute *F* statistics or *LM* statistics to test exclusion restrictions, we need a new type of test
- Maximum likelihood estimation (MLE), will always produce a log-likelihood, L
- ♦ Just as in an F test, you estimate the restricted and unrestricted model, then form

Economics 20 - Prof. Andersor

Goodness of Fit • Unlike the LPM, where we can compute an R^2 to judge goodness of fit, we need new measures of goodness of fit • One possibility is a pseudo R² based on the log likelihood and defined as $1 - L_{\mu}/L_{r}$ Can also look at the percent correctly predicted – if predict a probability >.5 then that matches y = 1 and vice versa

Economics 20 - Prof Anderson

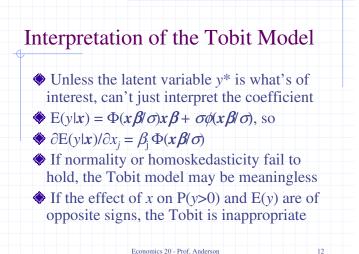
Latent Variables

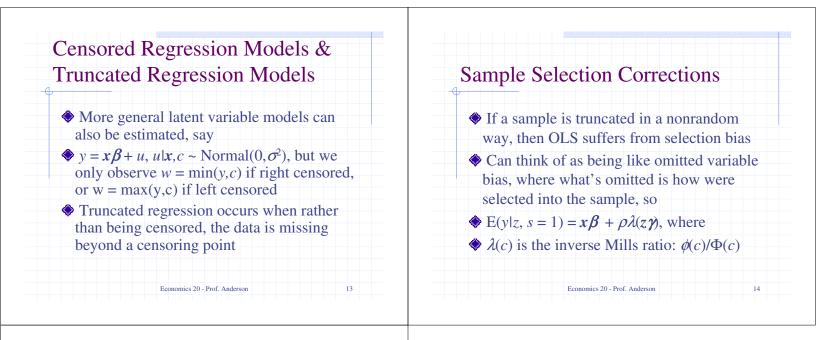
 $large LR = 2(L_{ur} - L_r) \sim \chi^2_a$

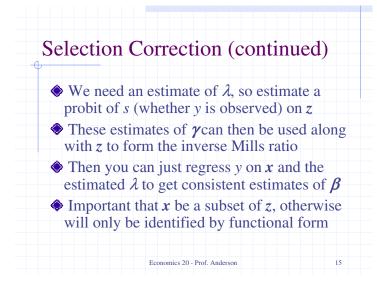
variables m	motivated through a latent odel	
	that there is an underlying , that can be modeled as	
• $y^* = \beta_0 + x$	$\beta + e$, but we only observe	
♦ <i>y</i> = 1, if <i>y</i> *	> 0, and <i>y</i> =0 if $y^* \le 0$,	

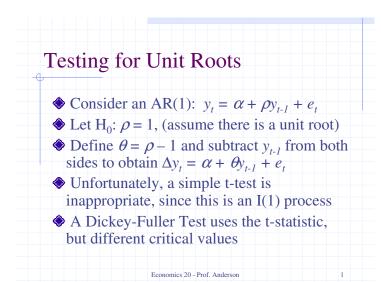
The Tobit Model Can also have latent variable models that don't involve binary dependent variables • Say $y^* = x\beta + u$, $u|x \sim \text{Normal}(0, \sigma^2)$ • But we only observe $y = \max(0, y^*)$ The Tobit model uses MLE to estimate both $\boldsymbol{\beta}$ and $\boldsymbol{\sigma}$ for this model

• Important to realize that β estimates the effect of x on y^* , the latent variable, not y





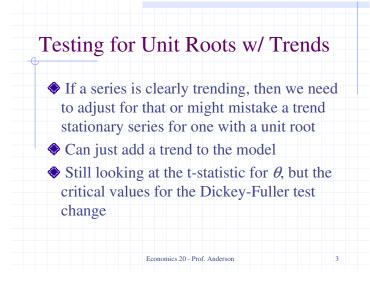




Testing for Unit Roots (cont)

- We can add p lags of Δy_t to allow for more dynamics in the process
- \clubsuit Still want to calculate the t-statistic for θ
- Now it's called an augmented Dickey-Fuller test, but still the same critical values
- The lags are intended to clear up any serial correlation, if too few, test won't be right

Economics 20 - Prof. Anderson



Spurious Regression

- Consider running a simple regression of y_t on x_t where y_t and x_t are independent I(1) series
- The usual OLS t-statistic will often be statistically significant, indicating a relationship where there is none
- Called the spurious regression problem

Economics 20 - Prof Anderson

Cointegration

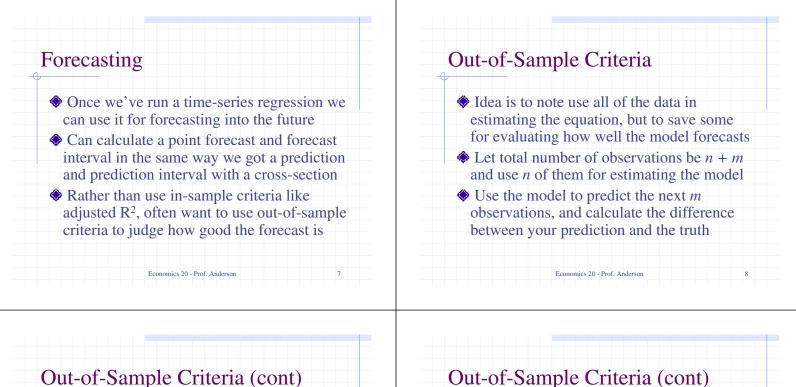
- Say for two I(1) processes, y_t and x_t, there is a β such that y_t βx_t is an I(0) process
 If so, we say that y and x are cointegrated, and call β the cointegration parameter
- If we know β , testing for cointegration is straightforward if we define $s_t = y_t - \beta x_t$

Economics 20 - Prof. Anderson

Do Dickey-Fuller test and if we reject a unit root, then they are cointegrated

Cointegration (continued) If β is unknown, then we first have to estimate β, which adds a complication After estimating β we run a regression of Δû_t on û_{t-1} and compare t-statistic on û_{t-1} with the special critical values If there are trends, need to add it to the initial wave run a regression of a distribute run and the special critical values

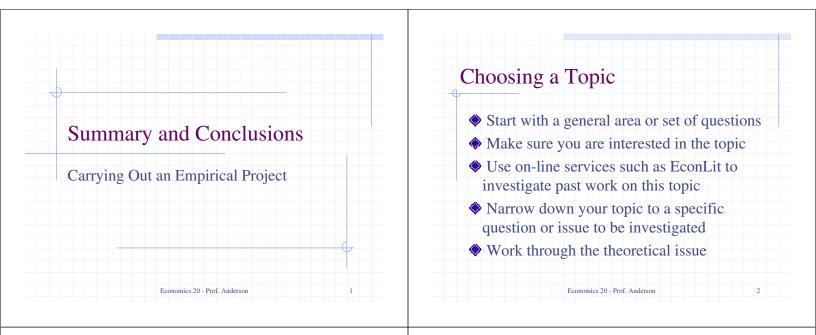
initial regression that estimates β and use different critical values for t-statistic on \hat{u}_{t-1}

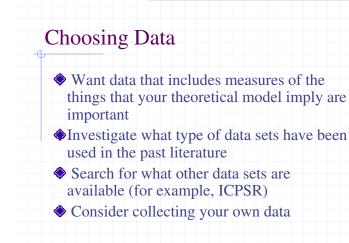


♦ Call this difference the forecast error, which is ê_{n+h+1} for h = 0, 1, ..., m
♦ Calculate the root mean square error (RMSE)

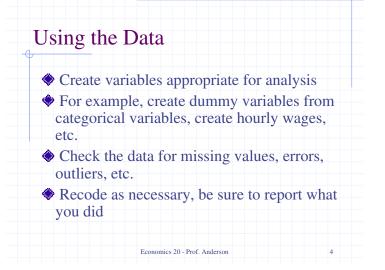
Economics 20 - Prof. Anderson

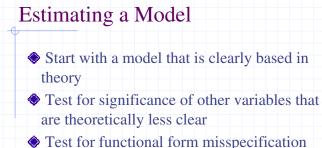
Out-of-Sample Criteria (cont) Call this difference the forecast error, which is \hat{e}_{n+h+1} for h = 0, 1, ..., mCalculate the root mean square error and see which model has the smallest, where $RMSE = \left(m^{-1}\sum_{h=0}^{m-1} \hat{e}_{n+h+1}^{2}\right)^{1/2}$





Economics 20 - Prof Anderson





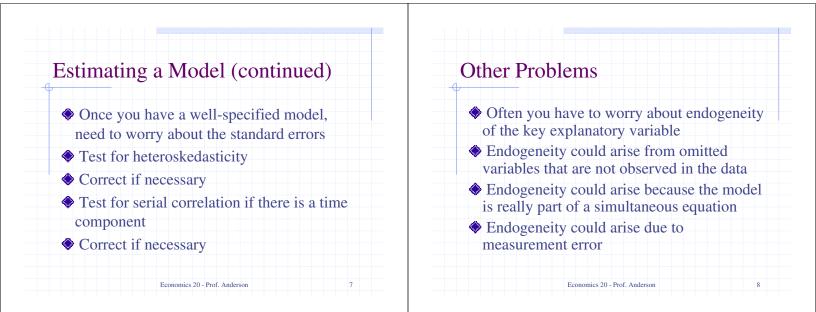
 Consider reasonable interactions, quadratics, logs, etc.

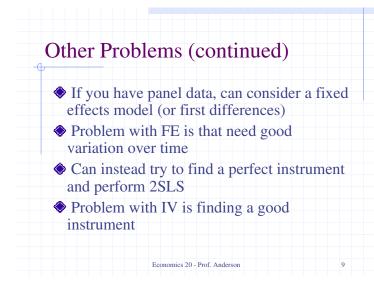
Economics 20 - Prof. Anderson

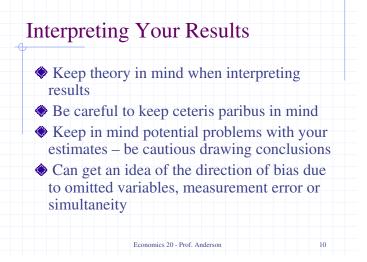
Estimating a Model (continued)

Don't lose sight of theory and the *ceteris* paribus interpretation – you need to be careful about including variables that greatly alter the interpretation
 For example, effect of bedrooms conditional on square footage

Be careful about putting functions of y on the right hand side – affects interpretation







- Solve with available data
 May be able to approach the problem in several ways, but something wrong with
- each one
 Provide enough information for a reader to decide whether they find your results convincing or not

Economics 20 - Prof. Anderson

Further Issues (continued)

- Don't worry if you don't "prove" your theory
- With unexpected results, you want to be careful in thinking through potential biases
- But, ff you have carefully specified your model and feel confident you have unbiased estimates, then that's just the way things are