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LIKELIHOOD RATIO STATISTICS FOR AUTOREGRESSIVE 
TIME SERIES WITH A UNIT ROOT 

BY DAVID A. DICKEY AND WAYNE A. FULLER 

Let the time series Y, satisfy Y, = a + pY,_ - + e,, where Y1 is fixed and the e, are 
normal independent (0, a2) random variables. The likelihood ratio test of the hypothesis 
that (a, p) = (0, 1) is investigated and a limit representation for the test statistic is pre- 
sented. Percentage points for the limiting distribution and for finite sample distributions 
are estimated. The distribution of the least squares estimator of a is also discussed. A 
similar investigation is conducted for the model containing a time trend. 

1. INTRODUCTION 

LET Y, SATISFY THE MODEL 

(1.1) Yt=a+pYt-I+et (t n), 

where Y, is fixed and { et} is a sequence of normal independent random variables 
with mean 0 and variance a2, [et,NI(0, a2)]. The maximum likelihood estimators 
of p and a, conditional on Y1, are the least squares estimators 

n -In 
(1.2) p, = (Y,_l I9(1))2 E(,Y0)Y,I-(1) 

% 
= Y(o) - pj(_ - ) 9 

where (i) = (n - lEnt2Y+ for i= -1,0. 
The statistic constructed by analogy to the regression "t statistic" for the 

estimated a is 
A IA 

a, a,i /L 

where 

Sa e14\ - 1)1 + '' (2 t-1 Ye,)} ) j, 
n 

An alternative model for Y 2 is 

(1.) t e ot +;(n-- n) + (- t- (t = , ,. , ) 

where Y1 is fixed and e, NI(0, 2). Let X denote the (n-1) x 3 matrix whose 
ith row is (1,i - In, Y,) and let Y' = (Y2, Y3, . .. , Yn). Then the least squares 
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1058 D. A. DICKEY AND W. A. FULLER 

estimator of 0 = (a, ,B, p)' is 

(1.4) as = (&x, I3s,,$s)' = (XX)- x Y. 

Let C, denote the ijth element of (X'X)'. Then the "regression t statistics" are 

(1.5) Ta( = ClSe) a, 

(1.6) TI7( = C22SeT) /39 

where 

(1.7) Se2T = (n-4)-1Y'[I-X(X'X)-IX']Y. 

We shall study the likelihood ratio test of the hypothesis that (a, p) = (0, 1) for 
model (1.2), the likelihood ratio test of the hypothesis that (a, 3, p) = (0,0, 1) for 
model (1.3), and the likelihood ratio test of the hypothesis that (a, A, p) = (a, 0, 1) 
for model (1.3). We also investigate the distributions of a,_,, Talk &a, 8, -,Tar, and T,,T 
under the null model. 

The likelihood ratio statistics are derived in Section 2 and the limiting 
distributions presented in Section 3. Percentage points for the distributions 
obtained by Monte Carlo methods are given in Section 4. In Section 5, it is 
shown that the limit distributions of the test statistics are unchanged when { et } in 
(1.1) and (1.3) is replaced by a stationary pth order autoregressive process whose 
coefficients must be estimated. In Section 6 the powers of the likelihood ratio 
tests (DI, 02 and 03 are compared to the powers of other test statistics. Section 7 
contains an illustration of the use of the test statistics. 

2. LIKELIHOOD RATIO STATISTICS 

We construct the likelihood ratio statistics for the null hypothesis that the true 
model is a random walk with zero drift. We consider first the test that (a, 3, p) 
= (0,0, 1) in model (1.3) against the alternative that the null is not true. The 
logarithm of the likelihood function for a sample of n observations from model 
(1.3), conditional on Y1, is 

log L = (n - l)log(27) - (n - l)log a 

n 

-(2a) E t Y- ,Bt -2 n)_ _-1 ]2. 
t=2 

Under the null hypothesis, Ho: (a, 3, p) = (0,0, 1), the likelihood is maximized 
with respect to a2 to obtain 

n 

aO2 = (n -l1)- Y-t_ 1)2. 
t=2 

Under the alternative hypothesis the maximum of the likelihood occurs at 
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( 0, '), where O, was defined in (1.4) and 62 = (n - 4)(n - 1)- 'S2. Therefore the 
likelihood ratio is 

(TO a] =I[ + 3(n -4) _'2]21 

where 

(2 = (3Se2 )'[(n - l)a -(n -4)Se,]. 

Thus, the likelihood ratio test rejects the null hypothesis for large values of 
02' where '2 iS the usual regression "F test" of the hypothesis HO: (a, /, p) = 
(0,0,1). 

In a similar manner, it can be shown that the likelihood ratio statistic for 
testing HO: (a, p) = (0, 1) against HA: Not HO, for the model (1.1) is 

[1 + 2(n 3)-'(DI 2 

where 

4?1 = (2S )'[(n - l)0- (n - 3)SJ.j 

The likelihood ratio test of the hypothesis HO: (a, /3, p) = (a, 0, 1) in model 
(1.3) is a monotone function of 

4> 2 Ser)[(-1 ) {2 
_ 

(y(o) _ y( _ 1))2)}(-)S2 

The statistics 02 and 0I3 are the common regression "F tests" one would 
construct for the hypotheses. The null hypothesis for test D3 iS that the time series 
is a random walk with drift a. It is easily demonstrated that the distribution of 
the test statistic 03 does not depend upon a. 

3. LIMITING DISTRIBUTIONS 

Under the null hypotheses, the statistics introduced in Sections 1 and 2 can be 
expressed as functions of a few sample statistics. Let 

n t-1 2 

(3.1) Fn = (n-1)-2 ej 

n 

Tn = (n- 1) 2 et= (n- 1)f(0), 

t=2 

t = 2 

n-1 

n-i 

Vn= (n - 51)/2 E (n -t)(t 
- 

I)e,. 
t= 1 
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Then, for example, 

(n -T)nTA = - (n-l)(5 -l)Wn 

and 

(n - 
l)(A, -1) = (In-W 2) 4 [(Tn + (n - 1)2e,) 

-(n-1 1 et2] -TnWn} 

-(rn- Wn2) {2(T2a2) TnWn} + OP(nA). 

Because Tn and Wn are odd functions of (el, ~2., en) = en and Fn is an 
even function of en, the distributions of a and TTa, are symmetric. Given that 
a2= 1, Dickey and Fuller [7] have shown that [F, Tn,Wn, V,n(p, - 1)] con- 
verges in distribution to (F, T, W, V, 8), where 

00 00 

r = yi2Zi2 T= 2 
i=l i=l 

00 00 

W= 22-yZ,Z, V= E (2?'7 - 2?y')Zi, 
i=l i=l 

(2i 2), - 

and {Z,}j is a sequence of normal independent (0, 1) random variables. 
Therefore, given that (a, p) = (0, 1), 

n 2a1- a,-- T- SW, 

and 

(3.3) Ta- (T- SW)(P - W2)2r-2, 

because Sell converges in probability to a . 
For model (1.3) with the assumption that 0' = (0,0, 1), we have 

1 0 (n- 1) Wn 

X'X = (n-1) 0 12-'n(n-2) 2(n-1)2Vn 

(n-1)2Wn I(n-1)3Vn (n-1)F 
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l3~~~~~ Letting D,, = diag[(n - 1)7, (n - 1), (n - 1)a], we obtain 

(3.4) Dn 'X'XDn' - A, 

(3.5) a-Dn1'(X'YX/XO ) f 

where 

1 0 W 

0 1 ! v A= ? 12 2 

w Iv r 
2 

and f' [T, IT- W, (T2 -1)]. The matrix A is invertible with probability 1 
and it is readily verified that 

Q + W 2 6VW -w 
(3.6) A-'=Q-[ 6VW 12Q + 36V2 -6Vj, 

-W -6V I 

where Q = -W2 -3 V2. Thus 

aDn(A-_ 0) -A f 

The third element of A -!f is the limit random variable for n ( - 1) given in 
Dickey and Fuller [7]. Using the fact that S2 converges in probability to a2, we 
obtain 

A 2 
,< Q2- ( Q + W2)2 (1, 0, O)A-f, 

--r Q 1Q+3 V2) 2 (O, 1, O)A- , 

F1-* T2 + a2( W2)}, 

P2 9 tAI=-l[2+ 1(2TW)2 + 2 

?39 -2- 1(f'A -!f- T2 = 2-'[ 12(l T T-W) ] 

and 

A W2-3V2) 2[(2T-W)(T-6V)-1]. 

The limiting distributions hold for any fixed Y1 and for e, a sequence of 
independent identically distributed random variables. 
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TABLE I 

EMPIRICAL DISTRIBUTION OF 7;A FOR (a, p) = (0, 1) IN Yt = a + pYt-i + e,. 

(Symmetric Distribution) 

Sample Probability of a smaller value 
size 

n 0.90 0.95 0.975 0.99 

25 2.20 2.61 2.97 3.41 
50 2.18 2.56 2.89 3.28 

100 2.17 2.54 2.86 3.22 
250 2.16 2.53 2.84 3.19 
500 2.16 2.52 2.83 3.18 
00 2.16 2.52 2.83 3.18 

s.e. 0.003 0.004 0.006 0.008 

TABLE II 

EMPIRICAL DISTRIBUTION OF TaT FOR (a, fi, p) = (0, 0, 1) IN Yt = a + 8it + pYt-l + e,. 

(Symmetric Distribution) 

Sample Probability of a smaller value 
size 

n 0.90 0.95 0.975 0.99 

25 2.77 3.20 3.59 4.05 
50 2.75 3.14 3.47 3.87 

100 2.73 3.11 3.42 3.78 
250 2.73 3.09 3.39 3.74 
500 2.72 3.08 3.38 3.72 
00 2.72 3.08 3.38 3.71 

s.e. 0.004 0.005 0.007 0.008 

TABLE III 

EMPIRICAL DISTRIBUTION OF 7;6, FOR (a, /3, p) = (0, 0, 1) IN Yt = a + 8it + pYt-l + e, 

(Symmetric Distribution) 

Sample Probability of a smaller value 
size 

n 0.90 0.95 0.975 0.99 

25 2.39 2.85 3.25 3.74 
50 2.38 2.81 3.18 3.60 

100 2.38 2.79 3.14 3.53 
250 2.38 2.79 3.12 3.49 
500 2.38 2.78 3.11 3.48 
00 2.38 2.78 3.11 3.46 

s.e. 0.004 0.005 0.006 0.009 



LIKELIHOOD RATIO STATISTICS 1063 

TABLE IV 

EMPIRICAL DISTRIBUTION OF (DI FOR (a, p) = (0, 1) IN Yt = a + pY,_ 1 + et 

Sample Probability of a smaller value 
size 

n 0.01 0.025 0.05 0.10 0.90 0.95 0.975 0.99 

25 0.29 0.38 0.49 0.65 4.12 5.18 6.30 7.88 
50 0.29 0.39 0.50 0.66 3.94 4.86 5.80 7.06 

100 0.29 0.39 0.50 0.67 3.86 4.71 5.57 6.70 
250 0.30 0.39 0.51 0.67 3.81 4.63 5.45 6.52 
500 0.30 0.39 0.51 0.67 3.79 4.61 5.41 6.47 
00 0.30 0.40 0.51 0.67 3.78 4.59 5.38 6.43 

s.e. 0.002 0.002 0.002 0.002 0.01 0.02 0.03 0.05 

TABLE V 

EMPIRICAL DISTRIBUTION OF 02 FOR (a, /3, p) = (0, 0, 1) IN Yt = a + 8t + pY_ I+ et 

Sample Probability of a smaller value 
size 

n 0.01 0.025 0.05 0.10 0.90 0.95 0.975 0.99 

25 0.61 0.75 0.89 1.10 4.67 5.68 6.75 8.21 
50 0.62 0.77 0.91 1.12 4.31 5.13 5.94 7.02 

100 0.63 0.77 0.92 1.12 4.16 4.88 5.59 6.50 
250 0.63 0.77 0.92 1.13 4.07 4.75 5.40 6.22 
500 0.63 0.77 0.92 1.13 4.05 4.71 5.35 6.15 
oo 0.63 0.77 0.92 1.13 4.03 4.68 5.31 6.09 

s.e. 0.003 0.003 0.003 0.003 0.01 0.02 0.03 0.05 

TABLE VI 

EMPIRICAL DISTRIBUTION OF (D3 FOR (a, /3, p) = (a, 0, 1) IN Yt = a + 8t + pY,_ I + et 

Sample Probability of a smaller value 
size -- 

n 0.01 0.025 0.05 0.10 0.90 0.95 0.975 0.99 

25 0.74 0.90 1.08 1.33 5.91 7.24 8.65 10.61 
50 0.76 0.93 1.11 1.37 5.61 6.73 7.81 9.31 

100 0.76 0.94 1.12 1.38 5.47 6.49 7.44 8.73 
250 0.76 0.94 1.13 1.39 5.39 6.34 7.25 8.43 
500 0.76 0.94 1.13 1.39 5.36 6.30 7.20 8.34 
00 0.77 0.94 1.13 1.39 5.34 6.25 7.16 8.27 

s.e. 0.004 0.004 0.003 0.004 0.015 0.020 0.032 0.058 
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4. SIMULATION 

Tables I-VI contain percentiles for the null distributions of the "regression t 
A A A 

statistics" (TaL, Ta,r,, iT,), and "regression F tests" ((D,, (21)03). The null model is 
given in each table. 

The empirical distributions of the statistics for finite samples were created 
from statistics for samples generated by the model with Y, = 0 and Y, = Y- l + 
e, t = 2,3, ... , n, for n = 25, 50, 100, 250, and 500. Three replicates of 50,000 
samples were generated for n = 25, two for n = 50, 100, and 250, and one for 
n = 500. The simulation of the limit case was conducted using the procedure 
given in Dickey [6]. Three replicates of 50,000 were generated for the limit case. 
For symmetric distributions, cells equidistant from zero were pooled to create a 
symmetric histogram. 

For each of the six estimators and for each sample size, the 0.01, 0.025, 0.05, 
0.10, 0.90, 0.95, 0.975, and 0.99 percentage points of the distributions were 
calculated. These empirical percentiles were then plotted against n. Based on the 
plots, regression functions of the form P = a + /8ny were fitted to the percentiles 
of the empirical distributions. Because several observations on each percentile 
were available for n = 25, 50, 100, 250, and for the limit case, regression F tests 
for lack of fit for the smoothing regressions were computed. Of the 36 lack of fit 
statistics computed, 7 were significant at the 0.25 level, 2 at the 0.05 level, and 
none at the 0.01 level. The regression smoothed percentiles are given in Tables I 
through VI. 

David [5, Section 2.5] gives a method for constructing distribution free 
confidence intervals for the percentiles of a distribution based on empirical 
percentiles. In Tables I through VI the number in the row labeled "s.e" is the 
largest of the two half lengths of the 68.26% confidence intervals constructed for 
n = 25 and for the limit case. These entries provide an upper bound for the 
estimated standard errors of the regression smoothed percentiles. 

The histogram 1TaI, for 50,000 samples with n = 25 is shown in Figure 1. Figure 
2 contains the histogram for i-, constructed from 50,000 samples of size n = 25 

F---- I I _ _ 
-6 -3 0 3 6 
FIGURE 1.-Histogram for 50,000 values of T. constructed with n = 25. 
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-6 ~~-3 0 6 
FIGURE 2.-Histogram for 50,000 values of q, constructed with n = 25. 

generated with 0' = (0,0, 1). The distributions are symmetric and the histograms 
were constructed to be symmetric. The distributions of the T statistics are 
distinctive in two respects; the distribution is bimodal and the "spread" of the 
distribution is much larger than that of Student's t distribution. 

5. DISTRIBUTIONS FOR HIGHER ORDER PROCESSES 

In this section we demonstrate that the test statistics investigated in the 
previous sections can be applied in higher order autoregressive processes. Con- 
sider data generated by the model 

(5.1) Y=0, 

Yt =Yt - I + Zt (t = 2, 39 . . . ), 

where 

Zt =lZt- I + 02-2 +*** + Z + et 

is a stationary autoregressive process and the et are NID(O, a2) random variables. 
The model can also be written 

p 

Yt = pYt-1 + E 0(Y-i-Y, I) + et, 

where p = I and Zt = Y--Y>_-. To simplify the presentation we assume, 
without loss of generality, a 2= 1. 

Consider the regression equation 

p 

Yt+p = a + /3[t - I(n -p + 1)] + pYt+p- + 9iZZ+p-i+ et+p 

t = 1, 2, ... , n-p. Let Hn denote the (p + 3) X (p + 3) sums of squares and 
products matrix needed to compute the regression, let Mn denote the square roots 
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of the diagonal elements of H1, let Y'n = (a, /8, P, 01, 2 ... 9 9)9 and let Yn denote 
the least squares estimator of 'yn. Then 

Mn(Yn-Y,) =[MYn HTOMMnnMMn 7- 1, 

where 
n-p 

gn t - ( Is[ - (n -p + 1) ] Y+_l Zt+-lS*** Zt )'et+P. 
t=1 

Fuller [8, p. 374] has demonstrated that n -2 Yt is converging to n- 2 

(l- X_l= )0 _ ej as t increases. By the results of Fuller, we have 
n 

n-1 YZt= Op(n-2), 
t=2 

n 

E yt2 I1= Op (n 2) 
t=2 

n 
n t - I t-(n +p - )] Zt+p-j= OP(n-2 2) 

t=- 

n 

1: Yt_ lZt-1= Op(n). 
t = 2 

Therefore 

plim Mn- 'HM-' = block diag(HI I, H22), 

[1 0 -2 
HI, 0 l rF-232 V 9 

,r-2w W -232 v I 

H22 is the p x p correlation matrix of the process Zt, and r, W, and V are as 
defined in (3.2). It follows that the limiting distribution of the vector composed of 
the first three elements of M A(, -yn) is the same as the limiting distribution of 

n 2an2 -t ( ( 1)] 

discussed in Section 3. Similar results are easily obtained for the regression that 
does not contain the time trend. 

6. EMPIRICAL POWER OF TESTS 

Tables VII-IX were constructed to give information on the power of the tests. 
In Table VII the power was computed for samples of size n = 100 generated for 
model (1.1) with p = 0.8, 0.9, 0.95, 1.00, 1.02, and 1.05 and a = 0.0, 0.5, and 1.0. 
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TABLE 

VII 

EMPIRICAL 

POWER 
OF 

Two 

SIDED 

SIZE 

0.05 

TESTS 

FOR 

SAMPLES 

OF 

SIZE 

100( 
YI 

FIXED) 

p 
= 
0.8 

p=0.9 

p 
= 

0.95 

p 
= 

0.99 

p= 
1.0 

p= 

1.02 

p= 

1.05 

a 

a 

a 

a 

a 

a 

a 

Statistic 

0.00 

0.50 

1.00 

0.00 

0.50 

1.00 

0.00 

0.50 

1.00 

0.00 

0.50 

1.00 

0.00 

0.50 

1.00 

0.00 

0.50 

1.00 

0.00 

0.50 

1.00 

41 

0.78 

0.83 

0.93 

0.22 

0.36 

0.73 

0.08 

0.21 

0.91 

0.04 

0.76 

1.00 

0.05 

0.98 

1.00 

0.43 

1.00 

1.00 

0.95 

1.00 

1.00 

42 

0.41 

0.47 

0.65 

0.09 

0.13 

0.39 

0.04 

0.09 

0.63 

0.03 

0.67 

1.00 

0.05 

0.97 

1.00 

0.45 

1.00 

1.00 

0.95 

1.00 

1.00 

4D3 

0.57 

0.57 

0.72 

0.15 

0.19 

0.43 

0.07 

0.11 

0.37 

0.05 

0.06 

0.13 

0.05 

0.05 

0.04 

0.08 

1.00 

1.00 

0.94 

1.00 

1.00 

n(- 

1) 

0.86 

0.87 

0.88 

0.29 

0.25 

0.13 

0.11 

0.02 

0.00 

0.05 

0.03 

0.00 

0.05 

0.14 

0.07 

0.47 

1.00 

1.00 

0.97 

1.00 

1.00 

T 

0.71 

0.77 

0.89 

0.18 

0.27 

0.56 

0.06 

0.12 

0.53 

0.04 

0.07 

0.14 

0.06 

0.26 

0.35 

0.49 

1.00 

1.00 

0.97 

1.00 

1.00 

n(T- 

1) 

0.57 

0.55 

0.53 

0.14 

0.10 

0.05 

0.06 

0.04 

0.01 

0.05 

0.07 

0.12 

0.05 

0.05 

0.05 

0.18 

0.99 

1.00 

0.96 

1.00 

1.00 

Ti 

0.46 

0.50 

0.62 

0.10 

0.12 

0.22 

0.04 

0.05 

0.09 

0.05 

0.06 

0.11 

0.05 

0.05 

0.05 

0.17 

0.97 

1.00 

0.96 

1.00 

1.00 

For 
a 

0 

power 
is 

computed 

from 

10,000 

samples. 

For 
a 

=0 

power 
is 

computed 

from 

3000 

samples. 
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TABLE VIII 

EMPIRICAL POWER OF Two SIDED SIZE 0.05 TESTS AGAINST THE STATIONARY ALTERNATIVE 

FOR SAMPLES OF n = 50, 100, AND 250 (20,000 SAMPLES) 

p = 0.8 p = 0.9 p=0.95 p=0.99 p= 1.0 

n n n n n 

Statistic 50 100 250 50 100 250 50 100 250 50 100 250 50 100 250 

>1 0.25 0.80 1.0 0.09 0.24 0.94 0.05 0.09 0.37 0.05 0.05 0.05 0.05 0.05 0.05 
>2 0.09 0.44 1.0 0.04 0.10 0.64 0.04 0.04 0.15 0.04 0.04 0.04 0.05 0.05 0.05 

4>3 0.17 0.59 1.0 0.08 0.16 0.78 0.06 0.07 0.23 0.06 0.05 0.06 0.05 0.05 0.05 
n(p - 1) 0.30 0.87 1.0 0.10 0.29 0.97 0.05 0.09 0.43 0.05 0.04 0.05 0.05 0.05 0.05 

T9 0.20 0.74 1.0 0.07 0.19 0.91 0.04 0.06 0.31 0.04 0.04 0.04 0.05 0.05 0.05 
n(pA- 1) 0.14 0.57 1.0 0.06 0.14 0.78 0.05 0.05 0.21 0.05 0.04 0.04 0.05 0.05 0.05 

iT 0.11 0.48 1.0 0.05 0.11 0.69 0.04 0.05 0.16 0.05 0.04 0.04 0.05 0.05 0.05 

TABLE IX 

EMPIRICAL POWER OF ONE SIDED SIZE 0.05 TESTS FOR SAMPLES OF SIZE 100( YI FIXED) 

p=0.8 p=0.9 p = 0.95 p=0.99 p= 1.00 

a a a a a 

Statistic 0.00 0.50 1.00 0.00 0.50 1.00 0.00 0.50 1.00 0.00 0.50 1.00 0.00 0.50 1.00 

d 0.97 0.95 0.89 0.53 0.31 0.03 0.23 0.01 0.00 0.08 0.00 0.00 0.05 0.00 0.00 
n(pA- 1) 0.95 0.95 0.96 0.46 0.42 0.29 0.19 0.06 0.00 0.07 0.00 0.00 0.05 0.00 0.00 

i 0.86 0.90 0.95 0.30 0.43 0.73 0.12 0.21 0.66 0.06 0.06 0.20 0.05 0.00 0.00 
n(pA- 1) 0.73 0.72 0.72 0.24 0.20 0.12 0.10 0.06 0.01 0.05 0.04 0.02 0.05 0.05 0.06 

iT 0.64 0.67 0.78 0.18 0.22 0.34 0.08 0.09 0.15 0.05 0.04 0.03 0.05 0.05 0.05 

For a = 0 power is computed from 10,000 samples. 

For a #0 power is computed from 3000 samples. 

The statistic (DI is the likelihood ratio test of (a, p) = (0, 1) against the alterna- 
tive (a, p) 7P (0, 1) for model (1.1). The statistic )2 iS the likelihood ratio test of 
(a, 3, p) = (0,0, 1) against the general alternative of model (1.3). Note that in 
models (1.1) and (1.3) the initial value Y1 is fixed. Because the alternative is 
broader for 02, 02 displays smaller power than J, in Table VII where the 
parameter /3 = 0 for all examples of the table. Both 01l and 02 display bias, 
having power less than the size for p = 0.99. The power of both tests increases as 
a increases. 

The statistic I3 is the likelihood ratio test of (a, /, p) = (a, 0, 1) against the 
general alternative of model (1.3). In Table VII the power of I3 is between those 
of (D, and (2 for p <.99. At p = 1.02 and a = 0, the power of I3 is considerably 
less than the powers of (D and (2. No bias is evident in A3. 

We have included in Table VII the statistics A, ,, A-n, and T discussed by 
Fuller [8, Section 8.5]. The null distributions of the statistics A and T are 
computed under model (1.1) with the assumption that (a, p) = (0, 1). The distri- 
butions of the statistics for (a, 1), a 7 0 differ from those with a = 0. The null 
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distributions of the statistics 3 pT, and T are independent of a and therefore 
they maintain their size for p = I and a #0 O. The tests used for Table VII were 
constructed from p,,, 

p,,T, 
and T b'y removing equal areas from the two tails of 

the distribution. The tests T,, and T, are generally less powerful than the corre- 
sponding tests P1 and (D2 when p < 1. 

Table VIII contains the estimated power for the test statistics against the 
stationary first order autoregressive time series. The tests are the two sided tests 
of Table VII. The observations for p 1 for the samples of Table VIII were 
generated using the model 

Y, = pYt-I + et (t = 23, * ... ,n), 

Y = -p2)-2e (t=1), 

where the et are NID(0, 1) random variables. The power was computed for 
20,000 samples of each of the three sample sizes. Generally speaking pL is the 
most powerful of the tests considered. The test I3 is the most powerful of the 
tests that permit the null model to contain drift. 

Table IX contains the power for one sided tests when the true model is (1.1) 
with p < 1. Included in this table is the von Neumann ratio 

n -1n 
d = n[E Y-n] ( Yt-t l)29 

t=l ~~t=2 

where 
n 

Yn=n-l . 
t= 1 

Sargan [15] gives percentiles for d when Yt is generated by model (1.1) with 
(a, p) = (0, 1). For sample sizes 50 and 100 and significance level 0.05 we use the 
percentiles from Sargan's paper. The jth percentile of the limit distribution for d 
is the reciprocal of the (100-j)th percentile in the table of Anderson and 
Darling [2, p. 203]. For finite sample sizes not considered by Sargan, we use the 
asymptotic percentiles as critical values for the power calculations of Table IX. 
Fuller [9] has constructed modifications of the statistic d that are applicable to 
higher order autoregressive processes and to model (1.3). The methods used to 
generate the samples of Table IX are those used to generate the samples of Table 
VII with p < 1. The statistic d is an appropriate test when the alternative is that 
Y, is a stationary first order autoregressive time series. It displays good power for 
this alternative (that is, when a = 0 and p < 1). The statistic n(p - 1) is only 
slightly less powerful than d for a = 0 and maintains somewhat better power for 
a & 0. For p < 1 and a # 0 the estimator P is closer to one on the average than 
the corresponding estimator associated with a = 0. Therefore, the tests A 

andT, 
display poor power for values of p close to one and a #0 O. Because the estimator 

p, converges to p for p < 1, there is some sample size for any p < 1 for which the 
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TABLE X 

MODELS AND TEST STATISTICS 

Test 
Null Model Alternative Model Statistic 

Yt= YA_I+e, Yt =i+pYtAI+e, (1 

Yt = Yt- I + et Yt = ai + At + pYt- I + et (D2 
Yt=a+ Yt-5+et Y,=a+8t+pYt-I+et 4'3 

Y= 
+pYt- I 

+e 

Yt = a +,_t + pY,I+e, A A 

Yt = c + Yt- I t Y + e, PY 1 t " PTas 

Yt = Yt - I + et Yt = a + pYt- I + et d 
P < I 

aPoor power for Y, not stationary, a =, 0, small n, and p less than, but close to one. 

statistics will have power greater than the size. Because the null distributions are 
derived under the assumption that (a, p) = (0, 1), there is no sample size for 
which the tests d, p, and are appropriate if the alternative includes a :# 0 and 
p= 1. 

The test statistics discussed in this section and the hypotheses for which they 
are appropriate are summarized in Table X. 

7. EXAMPLE 

To illustrate the use of the tables we study the logarithm of the quarterly 
Federal Reserve Board Production Index 1950-1 through 1977-4. We assume 
that the time series is adequately represented by the model 

(7.1) Yt =,Bo + Pi1t + aI Y>-1 + a2(YA I- Yt2) + ev, 

where e, are independent identically distributed (0, a2) random variables. The 
ordinary least squares estimates are 

Yt- Yt- = 0.52 + 0.00120t - 0.119 Yt -+ 0.498 Yt_I- Yt-2) 

(0.15) (0.00034) (0.033) (0.081) 

R.S.S. = 0.056448, 

Y-Y,-I= 0.0054 + 0.447 (Yt - I Yt -2), R.S.S. = 0.063211, 
(0.0025) (0.083) 

Yt -Yt-i= 0.511 (Yt_, -Yt2), R.S.S.=0.065966, 
(0.079) 

where R.S.S. denotes the residual sum of squares. The numbers in parentheses 
are the quantities output as "standard errors" by the regression program. 

To test the hypothesis that 80 = /31 = 0 and al = 1 against the general alterna- 
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tive (7.1) we compute 

- 
= 0.065966 - 0.056448 = 5-95 3(0.000533) 

where 0.000533 = 0.056448/106 is the residual mean square for the full model 
regression. As there are 110 observations in the regression the 97.5 per cent point 
of the distribution of (12, as given in Table V, is 5.59. Therefore the hypothesis 
Po= ,B = 0 and a1 = 1 is rejected at the 2.5 per cent level. 

To test the hypothesis that f,3 = 0 and a1 = 1 against the general alternative 
(7.1) we compute 

(, = 0.063211 - 0.056448 = 6.34. 
3 2(0.000533) 

The 95 per cent point of the distribution is given in Table VI as 6.49 and the 
90 per cent point as 5.47. Therefore at the 5 per cent level one could accept the 
hypothesis that the second order autoregressive process has a unit root with 
possible drift under the maintained hypothesis that the process is second order. 
The null hypothesis would be rejected at the 10 per cent level. We note that on 
the basis of Table 8.5.2 of Fuller [8] the statistic 

;.-0.119. 6 
TT= 0? 9- 3.61 

0.033 

would lead to rejection of the hypothesis of a unit root at the 10 per cent level if 
a two sided test is performed. If the alternative is that both roots are less than 
one in absolute value the hypothesis of a unit root is rejected at the 5 per cent 
level. 

North Carolina State University 
and 

Iowa State University 

Manuscript received June, 1978; final revision received April, 1980. 
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