
NOTES: Generalized Method of Moments (GMM)

1 Introduction

To describe the GMM estimation methodology in some detail, I follow Hamilton (1994).

Let us define an (h× 1) vector of observables wt, an (a× 1) vector of coefficients θ with

the true value θ0, and an (r × 1) vector valued function h(θ, wt). h(.) can be viewed as a

residual from a model. Orthogonality conditions are defined as:

E[h(θ, wt)] = 0. (1)

The sample equivalent of the orthogonality conditions (1) is given by

g(θ, YT ) ≡ 1

T

T∑

t=1

h(θ, wt) (2)

where YT is an (Th × 1) vector [w1, ..., wT ]′. Note that g : Ra → Rr.. The idea behind

GMM is to choose θ so as to make the sample moment g(θ, YT ) as close as possible to the

population moment of 0.

Definition The GMM estimator θ̂T is the value of θ that minimizes the scalar

Q(θ, YT ) = [g(θ, YT )]′WT [g(θ, YT )] (3)

where {WT}∞T=1 is a sequence of positive definite weighting matrices. WT is in general a

function of the data YT .

For a = r, g(θ̂T , YT ) = 0. For r > a (i.e. the number of restrictions greater then the

number of parameters), g(θ̂T , YT ) 6= 0 in general. A variety of estimators can be viewed

as examples of GMM: OLS, instrumental variable estimator, 2SLS, estimators of dynamic

rational expectations models, etc.

2 Optimal weighting matrix

Under fairly general continuity and moment conditions, θ̂T minimizing (3) is a consistent

estimator of θ0. However, the variance of the GMM estimator can be minimized for a

proper choice of the weighting matrix.

Theorem, Hansen (1982):

S ≡
∞∑

ν=−∞
Γν where Γν = E[(h(θ0, wt)) (h(θ0, wt−ν))]

′.

The minimum asymptotic variance for the GMM estimator θ̂T is obtained when θ̂T is

chosen to minimize (3) with WT = S−1.
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It can be shown that S ≡ limT→∞ TE[(g(θ0, YT )) (g(θ0, YT ))]′ i.e. S is the asymptotic

variance of the sample mean of h(θ0, wt). In a single variate case, consider g =
∑

X/T

for some random variable X with variance σ2. V (g) = 1
T 2 V (

∑
X) = T

T 2 σ
2 = σ2

T
. V (g) is

our S/T and V (h) = TV (g).

i. No serial correlation: Γν = 0 for ν 6= 0. White(1980) shows that the heteroskedasiticity-

consistent estimator of s is S∗T = 1/T
∑T

t−1(h(θ0, wt)) (h(θ0, w))′.

ii. Serial correlation: Γν 6= 0 for ν 6= 0.

a. Kernel based (non-parametric) estimation.

Ŝ = Γ̂(0) +
T−1∑

j=1

k(j, q)(Γ̂(j) + Γ̂(j)′)

where k is the kernel set to weight the covariances so that Ŝ is positive semidefinite. q is

the bandwidth, it determines how the weights change with the lags of the S estimator.

Estimators differ by the choice of the number lags, by the kernel function and by the

bandwidth - see Newey and West (1987,1994), Andrews and Mohanan (1992) for examples

of kernel based, heteroskedasticity and autocorrelation consistent (HAC) estimation of S.

b. Parametric estimation. den Haan and Levin (1996) impose VAR structure on the

variance-covariance matrix of residuals, the result is a VARHAC estimator.

You can also choose if you want to use residuals filtered via an AR process. This

filtering is called prewhitening. You can also opt for iterative vs. non-iterative GMM

procedure. The non-iterative procedure is a two-step procedure when you get a GMM

estimator θ̂1
T using WT = I and then re-optimize using S(θ̂T ) and get θ̂2

T . If you re-optimize

again using θ̂2
T to get θ̂3

T and so on, you are using the iterative procedure. Convergence

is achieved according to some criteria related to the value of the objective function of the

gradient in the optimization problem. Overall, if your software allows it, choose iterative

VARHAC with prewhitening.

3 Asymptotic distribution of the GMM estimates

Let θ̂T is the argmin of (3) with WT = S−1. The first order conditions of this minimization

problem are: [
∂g(θ, YT )

∂θ′
|θ=θ̂T

]′
S−1

T [g(θ̂T , YT )] = 0 (4)

where the first part of the formula has dimensions (a×r), the second (r×r) and the third

(r × 1), respectively. Now define ht = h(θ0, wt), E[ht] = 0, V [ht] = S, and gT = 1
T

∑
t ht.

2



The Central limit theorem implies that

ZT =
gT − 0

S/
√

T
∼ N(0, 1).

This in turn implies that

√
Tg(θ0, YT ) → N(0, S).

Let us now rewrite the FOCs (4) as

[
∂g(θ, YT )

∂θ′
|θ=θ0

]′
S−1

0 [g(θ̂T , YT )] = 0

Using a Taylor series expansion of
√

Tg(θT , YT ) around θ0 and implicitly defining deriva-

tives J0 results in:

J0S
−1
0 [
√

Tg(θ0, YT ) + J ′0
√

T (θ̂T − θ0)] = 0

Rearranging implies

√
T (θ̂T − θ0) = (J0S

−1
0 J ′0)

−1J0S
−1
0

√
Tg(θ0, YT ).

Note that the variance of
√

Tg(θ0, YT ) is S0 and therefore

√
T (θ̂T − θ0) = N(0, V0)

where V0 = (J0S
−1
0 J ′0) and can be estimated using consistent estimators. Finally, with

some abuse of notation, we can write

θ̂T ≈ N(θ0,
V̂T

T
).

Define

Q(θT , YT ) = [g(θ, YT )]′S−1
T [g(θ, YT )]. (5)

Hansen(1982) shows that TQ(θ̂T , YT ) → χ(r − a).This is the well-known test of over-

identyfying restrictions.

4 Application

Hansen and Singleton (1982) apply the GMM methodology to test restrictions implied by

the Lucas (1978) Consumption based Capital Asset Pricing Model (CCAPM) with the

power utility function characterizing consumer preferences. The model implied residuals

come from the first order conditions of the optimization problem maximizing the lifetime
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utility
∑∞

τ=0 Et[u(ct+τ )] with the constant relative risk aversion utility function u(ct) =
c1−γ
t

1−γ
. The first order conditions (the Euler equations) are given by

1 = βEt[(1 + ri,t+1)(
ct+1

ct

)−γ]

for where ri,t+1 is a rate of return on an asset and there are i = 1, ..., m assets. To get an

estimation counter part of the first order conditions, I take their unconditional expectation

and introduce vectors of instruments xi
t as 3× 1 vectors of [1, ct/ct−1, , ri,t]

′:

E[{1− β(1 + ri,t+1)(
ct+1

ct

)−γ}xt] = 0

The vector of parameters θ = [β, γ] where β is the discount factor and γ is the coefficient

of relative risk aversion. ri,t is either the value-weighted or equally-weighted rate of return

on the US stock market. c is the per-capita consumption of non-durables and services.

xi
t are a 5 × 1 vectors of instruments for the number of lagged instruments l = 1, for

which r = 2l + 1 and the number of over-identifying restrictions is r − a. So, for one lag

and a = 2, we have 3. This is for the number of lagged instruments l = 1, for which

r = 2l + 1 = 3 and the number of over-identyfying restrictions is r − a = 1. So, for

one lag and a = 2, we have 1 degree of freedom. Results are in Table 1 of Hansen and

Singleton (1982) (α = −γ, so the RRA coefficient is given by −α). There is no equity

premium puzzle here since there is no risk free rate. Other researchers have found the

equity premium puzzle when the restrictions using the risk-free rate were imposed. To

see if the puzzle still persists, I use the following error terms:

h(θ, wt) =

[
{1− β(1 + re,t+1)(ct+1/ct)

−γ}x1
t

{1− β(1 + rf,t+1)(ct+1/ct)
−γ}x2

t

]
. (6)

xi
t, i = 1, 2 are a 5 × 1 vectors of instruments [1, ct/ct−1, ct−1/ct−2, ret, re,t−1]

′ for the first

equation and [1, ct/ct−1, ct−1/ct−2, rft, rf,t−1]
′ for the second equation, respectively. wt ≡

[re,t+1, rf,t+1, ct+1/ct, x
′
t]].

Here I intend to confirm existence of the equity premium puzzle by estimating the

standard power utility model by GMM using an updated dataset. To test restrictions (6),

I use monthly US data from March 1967 to September 2008. For consumption, the data

is taken from the St. Louis FED web page and for returns from the European Central

Bank. The weighting matrix estimate S is robust to heteroskedasticty (White correction)

and autocorrelation (Barlett kernel). The parameter estimates are as follows:

Parameter Estimate Error t-statistic P-value

β .87 .262E-02 331.30 [.00]
γ -1.38 1.65 -.83 [.40]
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We can see that the risk aversion is negative though theory suggests it is positive. The

sign is not a problem however since it is insignificant. This seems to suggest that a highly

significant risk aversion coefficient is not needed anymore to match the data, especially

after a big drop in stock prices in October 2008. On the other hand, the Hansen J

statistic is 153.82.It has a chi-square distribution with 10-2=8 degrees of freedom. The

corresponding p-value for the test of over-identifying restrictions is then 0, which means

the the the model is still rejected. Therefor the equity premium puzzle is weaker the

before but it has not quite disappeared yet.
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