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Abstract

Drawing on insights from psychology, we propose a way to ease the pain of understanding, and
teaching, Bayes’ Rule.
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Introduction

“One of the most famous and useful formulas in probability theory” (Aliprantis and Chakrabarti
2000, p. 91), Bayes’ Rule is a difficult concept both to understand and to teach. The apparent
lack of intuitive insight into Bayes’ Rule has been illustrated in a classic study by Eddy (1982).
He provided physicians with various pieces of probabilistic information – the prevalence of
breast cancer in a given age group (“base rate”), the sensitivity (the “hit rate” of the test) and
specificity (the “false alarm rate” of the test) of mammography tests – and then asked them what
the probability was that a randomly drawn woman from the given age group actually would have
breast cancer if her mammogram was positive. Inserting Eddy’s numbers into Bayes’ Rule
produces a value of .075. Yet, most of the physicians in Eddy’s study estimated the probability to
be between .7 and .8. Eddy concluded that the physicians had confused the sensitivity of the test
with the posterior probability of the woman having breast cancer.  More generally, he argued that
“physicians do not manage uncertainty very well, that many physicians make major errors in
probabilistic reasoning, and that these errors threaten the quality of medical care.” (1982, p. 249)

A similar lack of intuitive insight into Bayes’ Rule has been documented in other contexts such
as AIDS counselling (i.e., HIV tests, see Holt and Anderson, 1996; Gigerenzer, Hoffrage, and
Ebert, 1998) or legal decision making (e.g., Lindsey, Hertwig, and Gigerenzer 1999).  People’s
difficulties in understanding Bayes’ Rule have also increasingly been acknowledged in numerous
economic contexts.  In fact, the very problem has become a staple both in theorizing and
experimental tests of economic models (e.g., Camerer 1987; Binmore 1992; Gardner 1995; Holt
and Anderson 1996a). Acknowledging people’s difficulties, economists have also attempted to
find ways to ease the pain of understanding and teaching Bayes’ Rule (e.g., Salop 1987 and  Holt
and Anderson 1996).

In this paper, we present yet another way to facilitate the understanding and teaching of Bayes’
Rule. This way is informed by recent results from psychology that demonstrate the importance of
how statistical information is represented.

Bayes’ Rule and two examples of its application

Bayes’ Rule instructs us that in evaluating whether a hypothesis (H) is true relative to its
complement (¬H) one ought to incorporate both initial beliefs (“priors”) and sample information
(“data”, or D, from here on) to get updated beliefs (“posteriors”).  Formally,

  p(H|D)   p(D|H) p(H)
(1) ----------   =     -------------------

p(¬H|D) p(D|¬H) p(¬H)

where p(H) and p(¬H) denote the priors, p(H|D) and p(¬H|D) denote the posteriors, and
p(D|H)/p(D|¬H) denotes the so-called likelihood ratio. The likelihood ratio is the quotient of
what is called the hit rate in the numerator and the false alarm rate in the denominator.1  Note that
                                                       
1    D is sometimes called the individuating, or diagnostic information; the priors are
sometimes called the base rates. Unfortunately, although these terms often are used
synonymously, the individuating information may not be diagnostic, and priors may not reflect
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(1) is the ratio of two other frequently used versions of Bayes’ Rule:

  p(D|H) p(H) p(D|H) p(H)
(2) p(H|D)   =   ----------------    =  -----------------------------------------

        p(D) p(D|H) p(H) + p(D| ¬H) p(¬H)
 
where (2) is derived from p(D ∩ H) = p (D) p(H|D) and p(D ∩ H) = p (H) p(D|H) and involves
the conditional probability p(H|D) that one would attach to the event H (or, D) if one knew that
the event D had already occurred (Binmore 1992, p. 71). Likewise, p(D|H). Likewise, the
derivation of p(¬H|D).

In what follows, we give two examples of Bayesian calculations. These examples have been
proposed to illustrate the importance of Bayes’ Rule. However, casual empiricism based on our
own teaching experiences suggests that these examples are not easy to understand for the
untutored mind.  The reason, as we shall show presently, is that the examples are framed in
probabilities - a format that is not easily accessible to the human mind.

Example 1.  Holt and Anderson (1996, pp. 179/80) propose to motivate the importance of
Bayes’ Rule by way of the (true) story of a man who was told, following a first-stage test, that he
had the virus that caused AIDS, and who committed suicide before follow-up examinations.
Pointing out that “the low incidence of the virus in the male population (about 1 in 250 at that
time)” and the relatively high false alarm rate of 4 percent combine to a counterintuitive
posterior probability of having the virus of about � percent, Holt and Anderson (1996) relegate
the computation of that number by way of Bayes’ Rule to a footnote.

So what is �?  Let us summarize the information as given and then apply Bayes’ Rule.  The prior
p(H) is 0.4% (“about one in 250 at that time”),  the hit rate  p(D/H) is perfect (100%), and the
false alarm rate p(D/¬H) amounts to 4%.  If we insert the above values into Equation 2, the
probability of an HIV infection given a positive HIV test is

(2)                100% x 0.4%
p(H|D)   =   ----------------------------------- ≈9%

100% x 0.4% + 4% x 99.6%

The posterior probability is thus less than10 %. You knew that, didn’t you?

Example 2.  Gardner (1995) illustrates how a law firm that just hired a new lawyer might go
about assessing her potential.  The firm knows from experience that two kinds of lawyers survive
its screening process: “Stars” and “ordinary” ones. Star lawyers win 90% of their cases, ordinary
ones win 50% of their cases.  In addition, the firm knows from experience that only 10% of its
newly recruited lawyers turn out to be stars.  Preferably that’s the kind of lawyer that the firm
wants to give a long-term contract to.  So, how does the law firm figure out whether it wants to
keep a lawyer?  Or, in other words, what is the posterior probability of a lawyer being a “star” if
she has won her first trial?
                                                                                                                                                                                  
base rates. We won’t address this issue here but see Koehler (1996) for a good discussion.
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Once again, let us insert the numerical information -- the prior p(Star) is 10%, the hit rate
p(win/Star) is 90% (good but imperfect), and the false alarm rate p(win/ordinary) is 50% -- into
Equation 2:

      90% x 10%
p(H|D)   =   --------------------------------- ≈ 16.7 %

90% x 10% + 50% x 90%

The posterior probability that the new lawyer is a star given that she has won her first trial is --
while higher than before -- still relatively low.  You knew that too, didn’t you?

Present company excepted, it turns out that both undergraduates sitting through tests in
psychological laboratories (for a review of these studies see Koehler, 1996), economic
laboratories (e.g., Grether 1980, 1992) and experts in medicine (Eddy 1982; Gigerenzer and
Hoffrage 1995; Gigerenzer, Hoffrage, and Ebert 1998) and law (Lindsey, Hertwig, and
Gigerenzer 1999) have difficulties with Bayesian inference tasks.  We are confident that many
who tried to teach the Gardner example of the track record principle (a nice example, to be sure)
have had similar experiences.

Why is  Bayes’ Rule so difficult to understand and teach?

Psychologists have given various answers to why Bayes’ Rule is so difficult to understand.  We
consider the two most important ones. The first explanation was proposed in the early 1970's
when people became increasingly interested in how people reason about unknown or uncertain
aspects of real-world environments.  The research program that spurred this interest is the
heuristics-and-biases program initiated by Amos Tversky and Daniel Kahneman. This program’s
strategy has been to measure human decision making against various normative standards taken
from probability theory, statistics, and logic. Based on this strategy two major results about
people’s reasoning under uncertainty emerged: a collection of violations of the normative
standards (that in analogy to perceptual illusions are often called “cognitive illusions” or
“biases”), and explanations of these illusions in terms of a small number of cognitive heuristics.
According to Tversky and Kahneman (1974), people rely on a limited number of heuristics –
most prominently representativeness, availability, and anchoring-and-adjustment – that often
yield reasonable judgements but sometimes lead to severe and systematic biases.

Concerning Bayesian reasoning, Kahneman and Tversky (1973) proposed that people tend to
ignore base rates because they apply the representativeness heuristic. The application of this
heuristic asserts that people judge the probability of a sample by assessing “the degree of
correspondence [or similarity] between a sample and a population” (Tversky and Kahneman
1983, p. 295). This heuristic can lead to errors because similarity judgements are not always
affected by factors that should affect judgements of probability, such as a base rates. From a
flurry of laboratory studies that ensued, various researchers concluded that “many (possibly
most) subjects generally ignore base rates completely” (Pollard and Evans 1983, p. 124) and that
“it appears that people lack the correct programs for many important judgmental tasks” (Slovic,
Fischhoff, and Lichtenstein, 1976, p. 174).  If these conclusions were indeed correct, then there
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would not be much hope for improving our understanding of Bayes’ Rule. The problem then
would not be so much in training, but in our minds, which would lack the correct algorithms and
therefore use fallible heuristics. More recently, these conclusions have been challenged on
various grounds. In a review of Bayesian reasoning studies, Koehler (1996), for instance argued
that “these characteristics of the base rate literature ... are dreadfully misleading.” (p.  3), and that
“a thorough examination of the base rate literature ... does not support the conventional wisdom
that people routinely ignore base rates” (p. 1).  He also specified the conditions under which base
rates typically are ignored or neglected and the conditions under which they were factored in
correctly. His findings are closely linked to the second major reason that psychologists have
given to explain why Bayes’ Rule is so difficult to understand and teach.

According to this explanation, human cognitive algorithms are not adapted to the format of
statistical information that is typically presented in psychological studies.  In almost all of the
laboratory studies in the heuristics-and-biases tradition, information has been represented in
terms of probabilities or percentages –  representations of uncertainty that were devised only a
few hundred years ago (Gigerenzer et al., 1989).  According to psychologists such as Gigerenzer
and Hoffrage (1995) and Cosmides and Tooby (1996), people’s cognitive algorithms have not
caught up (yet). Rather, people remain “intuitive statisticians” that accumulate “natural
frequencies” of events, characteristics, etc. in the process of “natural sampling” (rather than
systematic sampling).2   Note that natural frequencies – in contrast to probabilities and
percentages that normalize them out – carry information about base rates. If information is
presented in normalized values, one has to multiply these by the base rates in order to bring the
base rates “back in.” Natural frequencies need not be multiplied in this way and they thus make
Bayesian computations simpler.

A Bayesian algorithm for computing the posterior probability p(H|D) based on natural
frequencies requires solving the following equation:

      d & h
(3) p(H|D)   =   ------------------- ,

 d & h + d & ¬h

where d&h (data and hypothesis) is the number of naturally sampled cases with symptom and
disease (e.g., positive HIV test and HIV infection), and d&¬h is the number of cases having the
symptom but lacking the disease (e.g., positive HIV text and no HIV infection).  Note that

                                                       
2   There are two ways to arrive at frequencies that are not natural frequencies. The first is
through systematic sampling, in which the base rates (e.g., 1,000 women with and 1,000 women
without breast cancer are tested) are fixed before any observations are made.  Thus, these
frequencies do not contain information about the base rates of women with and without cancer.
A second way to arrive at frequencies that are not natural frequencies is by normalizing natural
frequencies with respect to the base rates, that is, by setting the base rates to the same value, such
as 1,000.  Normalized natural frequencies, like absolute frequencies obtained through systematic
sampling, thus have the base-rate information filtered out of them.
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Equations (2) and (3) are mathematically equivalent formulations of Bayes’ rule.  Yet, Equation
(3) is computationally simpler, that is, it requires fewer operations (multiplication, addition, or
division) to be performed, and the operations can be performed on natural numbers (absolute
frequencies) rather than fractions (such as percentages).

While the natural sampling argument stretches credulity for lay people who have to assess the
outcome of a first-stage AIDS test, natural sampling may well be a strategy that doctors apply in
evaluating uncertain evidence. It is also a plausible procedure that most of us apply in the
majority of situations we face daily such as trying to decide whether one of our students’ or
associates’ dismal performance was more than just an aberration. Contrary to the widely
accepted statement of the heuristics-and-biases-program that “[i]n his evaluation of evidence,
man ... is no Bayesian at all” (Kahneman and Tversky 1972, p. 45), the evidence suggests that
“natural sampling” allows us to be good Bayesians if we translate the data in the appropriate
format/representation.

Do Frequency Formats Indeed Improve Bayesian Reasoning?  Whatever one thinks of the
argument that our cognitive algorithms are the baggage of our evolutionary past, psychologists
have convincingly demonstrated that translating probabilities (as they are used in the traditional
applications of Bayes’ Rule) into natural frequencies strongly improves people’s insight into
Bayesian inference problems (see Koehler 1996 for a comprehensive review).  For example,
Gigerenzer and Hoffrage (1995) found that with frequency representations, subjects arrived at
the numerically exact estimate using a Bayesian algorithm (including pictorial equivalents and
shortcuts) in about 50% of the cases.  Similarly, Gigerenzer and Hoffrage (1995) found that a
frequency format increased the proportion of Bayesian responses in various medical diagnostic
tasks from 10% (probability format) to 46%, and Lindsey, Hertwig and Gigerenzer (2000)
demonstrated that in legal contexts involving DNA evidence about 40 to 50 percent of a law
student sample and 70 to 75 percent of a jurist sample spontaneously derived the correct
Bayesian answers using natural frequencies.

In addition,  Sedlmeier and Gigerenzer (1999) report several studies that compare learning
success for different treatments, including one condition in which the Bayes’ Rule in terms of
Equation 1 was taught and another condition in which the ability to translate the problem into a
frequency representation (rather than a specific rule) was taught.  They find that the immediate
generalization effect for the representation training was about twice as high as that for rule
training. Maybe more importantly, this effect remained stable over follow-up tests (one week,
five weeks) whereas performance in the rule-training group showed the typical forgetting curve.
Last but not least,  Cosmides and Tooby (1996), pushed performance on a Bayesian problem
involving medical diagnosis from 36% to 64% (by changing the format of the final question
from “What is the chance that a person who tests positive for the disease will actually have it?”
to “How many people who test positive for the disease will actually have it?”) to 76% (by
presenting other elements of the problem description as frequencies) to 92% (by asking subjects
to construct a visual representation of the relevant frequencies).

To summarize, psychologists have proposed two major explanations for why people seem to
have little insight into Bayesian reasoning.  The first is that people lack the cognitive algorithms
for dealing with uncertain information, and thus have to rely on heuristics that typically lead to
systematic errors.  The second explanation suggests that it is the typical representation of
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uncertainty as probabilities and percentages that causes both lay people and experts to fail at
Bayesian inference tasks.  The available evidence convincingly demonstrates that when
information is presented  in terms of frequencies rather than probabilities or percentages, the
Bayesian reasoning of both lay people and experts improves significantly.  This result has
immediate implications for the question of how Bayes’ Rule can be taught.

Reframing our running examples in frequencies

As we have seen earlier, the two running examples that we introduced at the beginning, are not
easy to compute if one employs probabilities. Following the insights from psychology laid out
above, let’s see how frequencies help our understanding of the structure of the problem.

Example 1 can be easily translated into natural frequencies.  As a matter of fact, Holt and
Anderson (1996) did much of the work when they suggested that to explain this point [the low
likelihood of having contracted AIDS, not withstanding the first-stage test result] in class, it can
be useful to begin with a hypothetical representative group of 1,000 people and ask how likely is
it that a person with a positive test actually carries the virus, given an infection rate of one in 250
for the relevant population. On average, only four out of the 1,000 actually have the disease, and
the test locates all four of these true positives. However, among the 996 who do not have the
disease, the test will falsely identify 4 percent as having it, which is about 40 men (.04 x 996 =
39.84). Hence the test identifies 44 of the 1,000 men as carriers of the virus, four correctly and
40 incorrectly, which means that a positive first-stage actually produces a less-than-10 percent
chance of a true positive.
Note that the last sentence is a verbal description of equation (3).  Plugging the numbers into this
equation yields 4/ (4 + ~40) = 9.  Thus, the first-stage indeed produces a less-than-10 percent
chance of a true positive. The logic of the Bayesian computation becomes even clearer when
information gets translated into a pictorial representation. Figure 1 represents the natural
frequencies in terms of a tree. Note that a person does not need to keep track of the whole tree
but only of the two pieces of information contained in the bold circles -- these are the hits and
false alarms:

[Insert Figure 1 about here]

Example 2, likewise, can also be easily translated into natural frequencies. Recall that we
assumed that the firm knows from historical experience that 10 out of 100 lawyers who apply for
a job are star lawyers. The firm also knows that 9 out of 10 star lawyers will win their first case
while only 45 out of every 90 ordinary lawyers will win their first case.  In a new representative
sample of lawyers who won the first case, how many of these lawyers can the firm expect to be
star lawyers?  Plugging the numbers in (2) yields � = 9/ (9 + 45) ≈ 16.6.  Note that, again, � =
p(H/D) = f /(f + g) = hits/(hits + false alarms).

The solution to the problem, again, becomes clearer when the frequency interpretation gets
translated into a pictorial equivalent.

[Insert Figure 2 about here]
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We can see that the likelihood that the new lawyer is a star has increased dramatically after the
probationary period.  What’s reflected in this increase from the prior probability of 10% to the
posterior probability of 16.7% is that the binomial distributions over the number of wins evolve
differently, with that for ordinarys remaining symmetric and centered on 5 and that for the star
becoming skewed and centered roughly on 9 (see Gardner 1995, p. 264).

Conclusion

Understanding and teaching Bayes’ Rule is widely acknowledged as a dreaded task by both
students and teachers. This is deplorable because understanding the powerful logic of how data
can be used to update probabilities is an important skill of the modern citizen. While people such
as Kahneman & Tversky have suggested that there may be little hope for people to ever become
capable Bayesians, recent results from psychology suggest that this may have been a premature
verdict. Rather, it now seems fair to argue that people’s cognitive algorithms are not suited for
some information formats.  If one switches to, or teaches subjects to translate a Bayesian
problem into, other information formats – namely, frequency formats - then subjects are
Bayesians after all and quite capable to solve the kind of problems that motivated this note.
Teaching subjects how to translate a Bayesian problem into a representation that is more suited
to her or his cognitive algorithms, has the added bonus that it leads to a skill that is not easily
forgotten.

Our proposal to teach subjects representations instead of recipes is not necessarily meant to be a
substitute for other approaches.  Rather, we see it as a complementary, introductory step to a
deeper understanding of Bayes’ Rule.
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