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Abstract

The round-robin tournament format for N players is a scheme that matches players with one another
in all possible N(N − 1)/2 pairwise comparisons. A noisy round-robin tournament adds to the particular
matching scheme performance fluctuations of the participating players, or noise. With noise, upsets become
possible and hence the possibility that the ex ante best player is not the winner ex post. Thus, noise reduces
the predictive power of a tournament. In this article we study theoretically (analytically and by way of
computational simulations) the predictive power of a noisy round-robin tournament for three prominent
distributions of players’ abilities, as a function of the level of noise, and the number of players. At first
sight, some of our results (e.g., non-monotonicity as a function of the number of players N and the noise
level σ, which can make some ranges of N non-optimal) are quite counterintuitive but should be of help to
a tournament designer who tries to maximize, or maybe minimize, the probability of the best player winning.
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1 Introduction

Agents (individuals or teams) are usually rewarded based on their performance. Often it is the
relative performance that matters. As a means of assessing the relative performance of agents,
principals extensively use tournaments.

A tournament is a procedure that ranks a set of agents. Such a ranking can be done in various
ways. Prominent examples are ”contests”, round-robin tournaments, and elimination tournaments.
Contests are essentially one-shot all-pay auctions whose properties have been widely discussed in the
literature [e.g., theoretically by Lazear and Rosen (1981), Green and Stokey (1983), Taylor (1995),
Hvide (2002); empirically by Knoeber and Thurman (1994); experimentally by Schotter and Weigelt
(1992), Gneezy et al (2001); see also reviews by Lazear (1999) and Prendergast (1999)]. They can
be thought of as a complete set of pairwise comparisons where every agent performs, however,
only once. In contrast, round-robin tournaments and elimination tournaments are polar cases of
schemes that compare agents pairwise and sequentially in various degrees of completeness. Any
of these schemes allows agents to perform repeatedly, typically against a stream of ever changing
other agents, or competitors. A round-robin tournament is a complete sequential pairwise matching
scheme.

Sport provides us with a simple and useful language to describe tournaments. Competitors are
typically called players, and pairwise comparisons are called matches. In every match, there is a
winner and a loser, or there is a tie. Below we will use this terminology.

In the presence of environmental randomness (“noise”) which affects the performance of players
either positively or negatively, a tournament can be thought of as a probabilistic device whose
output - the ranking - is a statistic of sorts of the ”true” ordering of the set of players. Such an
ordering identifies who is the best player ex ante.

In the present paper, we analyze theoretically (analytically and by way of computational simu-
lations), the properties of round-robin tournaments as a function of noise level, number of players,
and distribution of players’ abilities. In later papers, we will analyze similarly elimination tour-
naments, and compare the properties of these two polar matching schemes, as well as variants
thereof.

The investigation of round-robin tournaments is an important step towards solving the problem
of optimal design [see Moldovanu and Sela (2002) for a theoretical study of ”contest architecture”;
see more generally Roth (2002), for a discussion of how simulations with artificial agents and
experiments with human subjects serve to extend simple theoretical models, which become too
complex in engineering-like situations].

In economics, round-robin tournaments have been discussed in the context of public choice
models such as voting schemes and decision rules in committees [see, e.g., Levin and Nalebuff
(1995), Ben-Yashir and Nitzan (1997), Esteban and Ray (2001)].

In mathematics, round-robin tournaments have been studied as complete directed graphs [see
Harary and Moser (1966) for a review; Moon and Pullman (1970) for a discussion of tournament
matrices]. Importantly, Rubinstein (1980) shows that the ranking that assigns 1 point to the winner
and 0 to the loser of a match, and then sums up every player’s points across all matches he or
she played, is a very ”good” ranking scheme in the sense that it satisfies certain natural axioms.
Rubinstein (1980) also shows that it is the only such scheme. Below we will make use of this result.

Our paper contributes to both literatures by analyzing theoretically the probabilistic properties
of a round-robin tournament and by studying these properties across what we consider the most
prominent distributions of player abilities.
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The present paper is organized as follows: In Section 2 we present the general setup. In Section
3 we discuss a model underlying the key ingredient of our model, winning probabilities. In Section
4 we calculate analytically the predictive power. In Section 5 we discuss the individual distribution
of scores which we use in the approximate calculation of the predictive power for large N for which
the theory developed in Section 4 becomes computationally too time consuming. In Section 6 we
present and discuss our results. We conclude in Section 7.

2 General setup

Let P = {1, . . . , N} be a set of N players. A round-robin tournament on the set P consists of all
M = N(N − 1)/2 possible pairwise matches (i, j), 1 ≤ i < j ≤ N , of the players.

Every match (i, j) has one of the two allowed outcomes: either i → j (player i defeated player
j) or j → i (player j defeated player i) 3. We introduce a variable pij such that

pij = 1 if i → j, pij = 0 otherwise (1)

Since the ordering of matches is not important (all matches are assumed to be statistically inde-
pendent) we will, for convenience, adopt the following (lexicographic) ordering m = 1, . . . , M :

(i, j) : (1, 2) . . . (1, N) (2, 3) . . . (2, N) . . . (N − 1, N)
↓ ↓ ↓ ↓ ↓ ↓

m(i, j) : 1 . . . N − 1 N . . . 2N − 2 . . . M,

which can be described by

m(i, j) = N(i− 1)− i(i + 1)
2

+ j. (2)

The outcome of the tournament can then be represented as an M -bit binary number b =
〈b1 . . . bM 〉, where bm(i,j) = pij . There are 2M possible tournament outcomes, ranging from 〈00 . . . 0〉
to 〈11 . . . 1〉.

The result of the tournament is an N -dimensional vector of scores s = (s1, . . . , sN ) where
every player’s score is the number of wins she has, i.e. players start with zero scores and get 1
point for each win. Since every player plays N − 1 matches and the total number of matches is M ,
for any score vector s ∑N

i=1
si = M, 0 ≤ si ≤ N − 1. (3)

If the outcome of the tournament b is known, then the score vector can be calculated directly, using
the function S : {0, 1}M → {0, . . . , N − 1}N from the set of all M -bit binary strings (outcomes)
into the set of possible score vectors:

Si(b) =
∑i−1

j=1
(1− bm(j,i)) +

∑N

j=i+1
bm(i,j), i = 1, . . . , N. (4)

The winners of the tournament are the players with maximal scores. There may be more than
one such player, and then an additional rule (perhaps another tournament) has to be applied if one

3Note that we ignore the possibility of ties, which admittedly is, compared to elimination tournaments, a somewhat
realistic occurence in round-robin schemes. We did so because the literature [e.g., Rubinstein (1980)] does not provide
us with a consistent point counting scheme. Introducing ties would have required us to build a different model. We
believe that such a model would not materially affect the results that we are interested in: the effect of noise and
distribution of players’ abilities.
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needs to determine the best among them. In the present paper, we do not adopt any additional
rules and consider all the players with a maximal score as winners.

Assume now that the outcomes of the matches are random, i.e. in a match (i, j) the result is
i → j with some probability wij and j → i with probability wji = 1−wij . Then every pij becomes
a Bernoulli random variable with the probability of success wij , and the tournament outcome b
becomes a multivariate Bernoulli vector with independent components. The probability of every
outcome is

P (b) =
∏N−1

i=1

∏N

j=i+1
w

bm(i,j)

ij (1− wij)1−bm(i,j) . (5)

Also, the score vector s becomes a random vector satisfying conditions (3). The distribution of
s is non-trivial since its components are not independent. The probability density function (pdf)
of s can be written as

π(s) =
∑

b∈{0,1}M

P (b)δ[s− S(b)]. (6)

Here the δ-function is M -dimensional; summation goes over all M -bit binary numbers; S(b) is
determined by Eq. (4); P (b) is given by Eq. (5).

We are interested in the probability ρ1 for a specific player (player 1, for concreteness) to
be among the winners of the tournament, i.e. to have a maximal score. We will calculate this
probability both analytically and using computational simulations. Along the way, some other
important quantities will be calculated.

An additional remark on the winning probabilities wij should be made. They can be given
exogenously, through past statistics, rating data, or another tournament. Alternatively, we can
calculate the winning probabilities using a simple model in which it is assumed that every player
has a power level (or ability) which can be represented by a single real number. The power level is
assumed to be distributed in the population of players with some known pdf f(·). The randomness
is introduced through the assumption that in every match the power levels of players are distorted
by additive noise, whose pdf g(·) is known. It is then possible to calculate the average winning
probabilities wij , where the indices indicate the ordering of players by their power level.

For actual calculations, we have chosen three prominent distributions of players’ abilities, or
power levels: uniform, normal, and Pareto distributions. The uniform and normal distributions
are useful, and frequently used, benchmarks and need no further justification as such. Empirical
evidence [e.g., Reed (2001); see also Hertwig et al. (1999), or Harrison (2004)] suggests in addition
that the Pareto distribution is a widespread and pervasive phenomenon. In the next section we
present the general model that allows to calculate wij .

3 Winning probabilities

Let f(x) be the pdf of the power levels in the population of players. Suppose N players are drawn
from that population and ordered by their power levels x1, ..., xN so that x1 ≥ x2 ≥ ... ≥ xN .

Consider an arbitrary match (i, j). The performance levels of the players in this match will
be random numbers Yi = xi + εi and Yj = xj + εj , where ε’s represent the noise, which is i.i.d.
across players and across matches with pdf g(ε). Since (xi, xj) are fixed numbers at this point, the
Y ’s will be distributed with pdf’s hi(y|xi) = g(y − xi) and hj(y|xj) = g(y − xj). Therefore, the
probability for player i to be the winner in this match is

w̃(xi, xj) ≡ Pr{Yi − Yj ≥ 0|xi, xj} =
∫ ∞

0
dy

∫ ∞

−∞
dy′g(y + y′ − xi)g(y′ − xj). (7)
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Particularly, if g(ε) is normal with zero mean and variance σ2, one obtains

w̃(xi, xj) = Φ
(

xi − xj

σ
√

2

)
, (8)

where Φ(·) is the cumulative standard normal density.
Now we can average over all possible realizations of x1, ..., xN such that x1 ≥ x2 ≥ ... ≥ xN , to

get the average probability for player ranked i to win player ranked j:

wij = N !
∫ ∞

−∞
dx1f(x1)

∫ x1

−∞
dx2f(x2)...

∫ xN−1

−∞
dxNf(xN )w̃(xi, xj). (9)

Here (N !)−1 = Pr{x1 ≥ x2 ≥ ... ≥ xN} =
∫∞
−∞ dx1f(x1)

∫ x1
−∞ dx2f(x2)...

∫ xN−1
−∞ dxNf(xN ) is the

renormalization denominator, which arises because we fixed a specific permutation of x’s.
The N -dimensional integral in Eq. (9) can be reduced (see Appendix A) to give

wij =
N !

(i− 1)!(j − i− 1)!(N − j)!

∫ ∞

−∞
dxif(xi)

∫ xi

−∞
dxjf(xj)w̃(xi, xj)

×[1− F (xi)]i−1[F (xi)− F (xj)]j−i−1[F (xj)]N−j . (10)

4 The predictive power

Our main objective is to calculate the probability ρ1 for a specific player (player 1) to be among the
winners of the tournament, i.e. to have a maximal score. For a score vector s this can be expressed
as

ρ1 = Pr{(s1 ≥ s2)& . . .&(s1 ≥ sN )}. (11)

By introducing variables q1 = s1, q2 = s1− s2, ..., qN = s1− sN , we need to require that they all be
non-negative, i.e. ρ1 = Pr{q1 ≥ 0, ..., qN ≥ 0}. The transformation s ↔ q has a unitary Jacobian,
with the inverse transfromation being s1 = q1, s2 = q1−q2, ..., sN = q1−qN . Therefore the joint pdf
of q = (q1, ..., qN ) is just π(q1, q1 − q2, ..., q1 − qN ), and the probability that all qi are non-negative
is

ρ1 =
∫ ∞

0
dq1...

∫ ∞

0
dqNπ(q1, q1 − q2, ..., q1 − qN ), (12)

where function π is given by Eq. (6).
Then we write

ρ1 =
∑

b∈{0,1}M

P (b)
∫ ∞

0
dq1...

∫ ∞

0
dqNδ[q1 − S1(b)]δ[q1 − q2 − S2(b)] . . . δ[q1 − qN − SN (b)]

=
∑

b∈{0,1}M

P (b)H[S1(b)− S2(b)] . . . H[S1(b)− SN (b)]. (13)

Here H(z) is the step function defined as 1 for z ≥ 0 and 0 for z < 0. The result is very intuitive:
we sum over all mutually exclusive tournament outcomes and add up the probabilities of those of
them for which the player 1’s score is maximal.

In Appendix C we describe computational simulations of the round-robin tournament and
demonstrate that they agree with the analytical result (13) for moderate N . For large N , Eq. (13)
becomes inapplicable practically, since its computational time grows as 2N(N−1)/2. In the following
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chapter we develop an asymptotic theory that allows to approximately calculate ρ1 much faster for
large N . We then compare the exact and asymptotic analytical results with the results of direct
simulations.

In the limit of σ →∞ (for a fixed number of players N) all the winning probabilities wij → 1
2

independent of the ability distribution f(·). The predictive power therefore has a limiting behavior
ρ1 → ρ∞1 (N), where

ρ∞1 (N) =
1

2M

∑

b∈{0,1}M

H[S1(b)− S2(b)] . . . H[S1(b)− SN (b)]. (14)

For example, ρ∞1 (2) = ρ∞1 (3) = 1
2 , ρ∞1 (4) = 13

32 .

5 Individual distribution of scores

The joint distribution of scores is given by Eq. (6). That equation implies a summation over all 2M

binary strings of length M , whose number grows as ∼ exp(N2/2) for large N . This circumstance
makes Eq. (6) practically inapplicable for N ∼ 10 and larger4. In this Section we develop an
asymptotic theory that is based on the fact that the correlation among scores si gets weaker as N
increases. Indeed, for arbitrary pair of scores si,sj

|Cov(si, sj)| = (wij − w2
ij) ¿ Var(si) =

∑
k 6=i

(wik − w2
ik), (15)

so that the correlation coefficient between them drops as ∼ 1/N . Of course, the fact that the
pairwise correlation is weak does not imply that the correlation among all scores is weak. Conditions
(3) ensure that the latter correlation stays finite for arbitrary N . However, we can hope (and the
calculations support this hope) that since the quantity of our interest, ρ1, only refers to one player,
it is influenced less and less by scores of players that are ranked low.

Thus, in our approximation, the scores of individual players are independent. This situation
can be thought of as a modified round-robin setting, in which every match is conducted twice,
but every player has a chance to score in only one of the two matches. For example, imagine a
round-robin soccer tournament, in which every team plays one home game with every other team,
but only the host team can score (i.e., if the host team wins it gets 1 point, but if it loses both
teams get 0).

We will now calculate the individual distribution of score for player i. This calculation is exact
regardless the assumption about score independence made above. We will use the independence as-
sumption later when the joint distribution of scores will be approximated by a product of individual
score distributions.

Throughout the tournament, every player i plays N − 1 matches with players P \ i. Every
match (i, j) is a Bernoulli trial with the probability of success wij . In case of success, player i gets 1
point. In a match (i, j), the number of points player i gets can be represented by a discrete random
variable pij [cf. Eq. (1)] with pdf φij(p) = wijδ(p− 1) + (1− wij)δ(p).

The total score player i will get is si =
∑

j 6=i pij . Let B−i
N denote a set of (N − 1)-bit binary

vectors b = (b1, ..., bi−1, bi+1, ..., bN ), whose every component is 0 or 1. The pdf of the total score
for player i can then be written as

πi(s) =
∑

b∈B−i
N

∏
j 6=i

[bjwij + (1− bj)(1− wij)] δ(s−
∑

j 6=i
bj). (16)

4In fact, we only used it for N up to 8.
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It is clear that actually the pdf for si has the form

πi(s) =
∑N−1

k=0
Ai

kδ(s− k), (17)

where Ai
k is the probability for player i to get k points. Eq. (16) allows to calculate those proba-

bilities.
Theorem 1. Let w−i = (wi1, ..., wi,i−1, wi,i+1, ..., wiN ) be a (N − 1)-dimensional vector of win-
ning probabilities for player i. Then the probability for player i to get k points in a round-robin
tournament of N players is

Ai
k =

∑N−1

l=k
(−1)l−kCk

l Ql(w−i). (18)

The proof of the theorem, as well as the definition of polynomials Ql, is given in the Appendix B.
Using the probabilities Ai

k and the independence approximation discussed above, one can write
the joint distribution of scores approximately as

π̃(s) =
∏N

i=1
πi(si), (19)

where πi(·) is given by Eq. (17). Then using the same approach as in Secion 4 we obtain the
approximate expression for the predictive power,

ρ1 ≈
N−1∑

k1,...,kN=0

A1
k1

...AN
kN

H(k1 − k2)...H(k1 − kN ), (20)

which has a computational time much smaller than Eq. (13).

6 Results and discussion

We first present, and later discuss, the results for the uniform distribution, then those for the Pareto
distribution, and then those for the normal distribution because the Pareto distribution, at least
for our purposes here, can be thought of as the upper half of a normal distribution (albeit a slowly
falling one)

Figures 1 through 6 below illustrate the predictive power, ρ1, as a function of noise level, number
of players, and distribution of players’ abilities. Specifically, we analyzed by way of computational
simulations uniform, normal, and Pareto distributions of players’ abilities, with the variance of all
normalized to 1. Figures 1-3 illustrate predictive power as a function of noise level, for selected
numbers of players (N = 2, 4, 8, 16, 32 or 64, 256) and for the three distributions. Figures 4-6
illustrate predictive power as a function of number of players, for selected noise levels, and for the
three distributions. The computation of the Figures is detailed in Appendix C. [We restrict our
computational explorations to those noise and number parameters that can be observed in ”real
life” (e.g., we are not aware of elimination tournaments that involve more than 256 individuals or
teams).]

The following discussion of the key results draws on Figures 1-6:
1. For uniform distributions of abilities, predictive power is a monotonically decreasing function

of noise and number of players. See Figures 1 and 4. The intuition for this result is straightforward:
As the performance fluctuations of equally distanced (in terms of ability) players increase, the
probability for upsets increases uniformly for all players (except, of course, the top-ranked player).
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This result also implies, however, that the probability of beating a lower-ranked player decreases
(except, of course, the lowest-ranked player), possibly neutralizing the net effect on the expected
score. This neutralization will be complete only for the median player, and will happen partially
for other ”interior” players (i.e., players other than the top-ranked and lowest-ranked players). In
fact, interior players to the right of the median player will experience a negative effect because
relative to the median player there is more mass of the distribution to their left (and hence more
chances of being upset, and less chances of upsetting). Likewise, interior players to the left of the
median player will experience a positive effect because relative to the median player there is less
mass of the distribution to their left (and hence less chances of being upset, and more chances of
upsetting).

2. The previous result illustrates a fundamental principle: Noise is a redistributor of scores in
that it gives from the ”haves” to the ”havenots”. Obviously this distributional process is affected
by the shape of the distribution of players’ abilities.

3. Another observation which holds for all distributions is that for any given N the predictive
power converges to a constant which is a function of N only (and not the distributional specifica-
tion). In effect, this result is a straightforward application of combinatorics, as we demonstrated
in Section 4: Note that for both N = 2 and N = 3, the predictive power converges to 1/2 as the
noise goes to infinity. For N = 4, the predictive power converges to 13/32. This result sheds light
on the asymptotic properties of predictive power when noise goes to infinity. However, for noise
levels that are of relevance for practical purposes, these results are of lesser importance. The basic
intuition is worth mentioning though: As noise increases, ability becomes less and less important
in determing the outcome of a match, while chance becomes more and more important.

4. Our simulation suggests that the speed of convergence decreases in N .
5. For uniform distributions of abilities, competition at the top is higher than for normal

and Pareto distributions (as it will be for all distributions with falling upper tail) and therefore
the predictive power is lower. This is true for all noise levels, and increasingly true for increasing
number of competitors. See Figure 1, as well as Figures 2-6. The intuition is clear: Interior players
are symmetrically affected in that players indexed i and N − i + 1 have the same net effect in
expected scores (albeit with opposite signs).

6. For Pareto distributions, players are differentially affected by increasing noise. Specifically,
the probabilities of upsets will be lower for the top players for the simple reason that lower-ranked
players are bunched more tightly and hence have more chances to score upsets. Of course, again,
this good news is counterbalanced by the bad news of a decreased probability of beating a lower-
ranked player, possibly neutralizing the net effect on the expected score. However, now the net
effect of noise on the expected score is determined by the number of players in a more complicated
(but ultimately still intuitive) fashion. Specifically, we get qualitatively different behavior for small
N (such as 2, or 4) and large N (such as 256), with yet different behavior for intermediate N . In
fact, our computations suggest that the qualitatively different behaviors for small N and large N
are homotopic, with a critical N = Nc that defines the switching point between monotonic and
non-monotonic behavior. See Figure 2.

7. So, what intuition then drives the curious behavior of the predictive power for large N (such
as 256, and already to some extent 32) in Figure 2?

As N increases the long tail of the Pareto distribution implies that relative to the low-ability
players the top-ranked player moves away from the second-ranked player ever more. Therefore,
for sufficiently small noise, the predictive power drops less for larger N . This trend is countered
by a countervailing trend as noise increases. Let us distinguish the cases of small N and large
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N . Obviously, as noise increases, so does the probability of upsets. However, this increase in
probability is decreasing as we move up the ranking since the distance between players increases,
on average. When N is small the increase in the probability of upsets is the only effect. When N
is large then the top-ranked players score increases relatively to the lower-ranked players’ because
the lower-ranked a player is, the more ferocious competition that player faces. This result leads to
the surprising and initially unintuitive upward swing in the predictive power as a function of noise
for large N . In fact, the lowest-ranked player face the most ferocious competition because in that
player’s neighborhood of the ability distribution players are bunched the tightest.

8. For normal distributions, the intuition stemming from the Pareto distribution is a useful
point of departure. Note that, ignoring for the time being the difference in tails, the Pareto
distribution is in a sense the upper half of the normal distribution. Hence, we should expect
qualitatively somewhat similar behavior in Figure 3. And indeed, for low noise (roughly up to
σ = 1) we see very similar behavior. (Of course, the quantitative behavior differs somehow.) Now
look at the median player in the normal distribution. As the performance fluctuations of every
player increase, the probability for upsets increases (but not uniformly) for all players (except, of
course, the top-ranked player). But note that this result also implies that the probability of beating
a lower-ranked player decreases (except, of course, the lowest-ranked player), possibly neutralizing
the net effect on the expected score. This neutralization will be complete only for the median player,
and will happen partially for other ”interior” players (i.e., players other than the top-ranked and
lowest-ranked players). This, of course, is an argument similar to the one we made above for the
case of the uniform distribution. Qualitatively, the net effect of this balancing act is negative for
players to the right of the median player, and positive for players to the left of the median players,
for the same rationale laid out for the uniform distribution above. The difference in behavior
reflected in Figures 2 and 3 stems from the fundamental difference in the gestalt of the tails of the
distribution.

7 Conclusion

In the present paper, we analyzed analytically and by way of computational simulations, the prop-
erties of round-robin tournaments as a function of noise level, number of players, and distribution
of players’ abilities.

A planner who has decided to conduct a round-robin tournament might benefit from our insights
in a number of ways: If he or she knows, or at least has some inkling, about the distribution of
abilities, and if the distribution happens to be one of the three that we studied, then the planner
can estimate from the probabilities of upsets the noise level σ for our model. In fact, the planner
could infer the properties of a distribution from the probabilities of upsets which, in principle, are
oberservable. We note that these assumptions are not quite as far fetched as they seem. Certainly
most professional sports have ranking schemes. In fact, some of these schemes are based on the
statistics of upsets in various ways [e.g., in chess, table tennis, soccer, and American football)].

If the planner knows distribution and noise, then he can identify the optimal number of players.
This decision, obviously, requires the definition of an objective function such as to maximize, or
minimize, the probability of the best team wining. But once that decision has been made, our
results suggest interesting choices. For the maximization case, as regards the Pareto distribution at
σ = 3 and moderate N , it makes sense to decrease the number of participants. For the minimization
case, with the same distribution but σ = 1, the number of players again should be decreased. The
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planner also wants to keep in mind that for large N (∼32 or more) and non-uniform distributions,
the predictive power depends non-monotonically on σ.

In later papers, we will analyze similarly elimination tournaments, and compare the properties
of these two polar matching schemes, as well as variants thereof. We will also analyze the robustness
of the present results to different (asymmetric, heteroscedastic) specifications of the noise. We
conjecture that such modification will have quantitative effects but will not change the results
reported here in any fundamental manner.

Appendix

A Winning probabilities

In this section of the Appendix we show how the expression (10) is obtained. The variables in the
ordered integral in Eq. (9) are assumed to change in the following ranges:

x1 ∈ (−∞,∞), x2 ∈ (−∞, x1), ..., xN ∈ (−∞, xN−1).
However, they can be rearranged so that

xi ∈ (−∞,∞), xj ∈ (−∞, xi),
x1 ∈ (xi,∞), x2 ∈ (xi, x1), ..., xi−1 ∈ (xi, xi−2),
xi+1 ∈ (xj , xi), xi+2 ∈ (xj , xi+1), ..., xj−2 ∈ (xj , xj−1),
xj+1 ∈ (−∞, xj), xj+2 ∈ (−∞, xx+1), ..., xN ∈ (−∞, xN−1).

This reordering corresponds to the following integral:

wij = N !
∫ ∞

−∞
dxif(xi)

∫ xi

−∞
dxjf(xj)w̃(xi, xj)

×
∫ ∞

xi

dx1f(x1)
∫ x1

xi

dx2f(x2) . . .

∫ xi−2

xi

dxi−1f(xi−1)

×
∫ xi

xj

dxi+1f(xi+1)
∫ xi+1

xj

dxi+2f(xi+2) . . .

∫ xj−2

xj

dxj−1f(xj−1)

×
∫ xj

−∞
dxj+1f(xj+1)

∫ xj+1

−∞
dxj+2f(xj+2) . . .

∫ xN−1

−∞
dxNf(xN ).

In the last three lines, the integrals are easily calculated, and we obtain Eq. (10).

B Individual distribution of scores

In this section of the Appendix we obtain Eq. (18) for the probability of player i to get k points.
Let u = (u1, ..., un) be a vector of n real numbers, and

Qn
0 (u) = 1,

Qn
1 (u) = u1 + ... + un,

Qn
2 (u) = u1u2 + u1u3 + ... + u1un + u2u3 + ... + u2un + ... + un−1un,

...

Qn
k(u) =

∑

j1<...<jk

uj1uj2 ...ujk
,

...

Qn
n(u) = u1u2...un. (21)
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Then we can formulate the following theorem.
Theorem 1. Let w−i = (wi1, ..., wi,i−1, wi,i+1, ..., wiN ) ∈ [0, 1]N−1 be a vector of winning

probabilities for player of ex ante rank i. Then the probability for player i to get j points in a
round-robin tournament of N players is

Ai
j(N) =

N−1∑

k=j

(−1)k−jCj
kQ

N−1
k (w−i). (22)

Proof. The only place i enters the right-hand side of Eq. (22) is through QN−1
k (w−i), but

the polynomials Qn
k are completely symmetric with respect to permutations of their arguments,

therefore we only need to prove the theorem for any particular i, for example i = 1. We prove
by induction over number of players N . The induction base, N = 2, is obvious [it can be directly
calculated using Eq. (16)]. Now assume that Eq. (22) holds for N players. Suppose we add one
more player, N + 1 (again, using the symmetricity of Qn

k , we can always assume that the added
player occupies the last ranking position), with the winning probability for player 1 over her being
w1,N+1. Then A1

j (N + 1) can be expressed as follows:

A1
j (N + 1) = A1

j (N)(1− w1,N+1) + A1
j−1(N)w1,N+1. (23)

Indeed, there are the only two mutually exclusive ways to get j points: to get j points playing with
the former N − 1 players and to lose to the new player (first term), and to get j− 1 points and win
the new player (second term), respectively.
Note that the polynomials Qn

k have the following property:

Qn+1
k (u1, ..., un, un+1) = Qn

k(u1, ..., un) + un+1Q
n
k−1(u1, ..., un), (24)

if we set Qn
n+1 = Qn−1 = 0.

From Eq. (22) (that holds for N by the induction assumption) we have
A1

j−1(N)−A1
j (N) =

∑N−1
k=j−1(−1)k−j+1Cj−1

k QN−1
k (w−1)−∑N−1

k=j (−1)k−jCj
kQ

N−1
k (w−1) =

=
∑N−1

k=j (−1)k−j [−Cj−1
k − Cj

k]Q
N−1
k (w−1) + QN−1

j−1 (w−1) =
=

∑N−1
k=j (−1)k−j+1Cj

k+1Q
N−1
k (w−1) + QN−1

j−1 (w−1) =
=

∑N−1
k=j−1(−1)k−j+1Cj

k+1Q
N−1
k (w−1).

Therefore, using Eqs. (22), (23) and (24), one obtains
A1

j (N + 1) = A1
j (N) + w1,N+1[A1

j−1(N)−A1
j (N)] =

=
∑N−1

k=j (−1)k−jCj
kQ

N−1
k (w−1) + w1,N+1

∑N−1
k=j−1(−1)k−j+1Cj

k+1Q
N−1
k (w−1) =

=
∑N

k=j(−1)k−jCj
kQ

N
k (w−1, w1,N+1),

which completes the proof of the induction iteration. Q.E.D.

C Simulations

In this section of the Appendix we describe how the simulations were done. The whole procedure
consisted of two stages: (i) simulating the winning probabilities wij ; (ii) simulating the predictive
power ρ1.

Winning probabilities. The algorithm for this simulation was the following:

11



1) Populate the matrix Zij with zeros;
2) Independently draw N numbers x1, . . . , xN from the distribution f(·) and order them so that
x1 > x2 > . . . > xN ;
3) Populate the matrix pij for all 1 ≤ i < j ≤ N according to the following rule: take xi and xj

such that i < j, draw independently two noise terms εi and εj , let yi = xi + εi and yj = xj + εj ,
and set pij = 1 if yi > yj and pij = 0 if yi < yj ;
4) Add the matrix pij from step 3 to Zij ;
5) Go to step 2.
The whole procedure is to be repeated a large number of times, T , and the average over realizations
matrix pij will be the matrix of winning probabilies:

wij = 〈pij〉 =
Zij

T
. (25)

Predictive power. The algorithm for this simulation was the following:
1) Set a counter c = 0;
2) Populate the matrix pij for all 1 ≤ i < j ≤ N according to the following rule: take i < j, draw
a uniform random number r from interval (0, 1); set pij = 1 if r > wij and pij = 0 if r < wij ;
3) Calculate the scores of players as si =

∑
j 6=i pij ;

4) If player 1 has a maximal score, i.e. s1 ≥ si for all 1 < i ≤ N , then increment c by 1;
5) Go to step 2.
The whole procedure is to be repeated a large number of times, T , and then the share of times
when the counter was incremented gives the predictive power:

ρ1 =
c

T
. (26)

The winning probabilities and the predictive power (the latter only for moderate N) were also
calculated analytically using Eqs. (10) and (13). The results perfectly agree with those of the
simulations.
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Figure 1: The predictive power ρ1 as a function of noise intensity σ for various N , for a uniform
distribution of players’ abilities.
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Figure 2: The predictive power ρ1 as a function of noise intensity σ for various N , for a Pareto
distribution of players’ abilities.
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Figure 3: The predictive power ρ1 as a function of noise intensity σ for various N , for a normal
distribution of players’ abilities.
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Figure 4: The predictive power ρ1 as a function of number of players N for various σ, for a uniform
distribution of players’ ability.
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Figure 5: The predictive power ρ1 as a function of number of players N for various σ, for a Pareto
distribution of players’ ability.
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Figure 6: The predictive power ρ1 as a function of number of players N for various σ, for a normal
distribution of players’ ability.
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