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Cornell University 
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I. Introduction 

How MUCH TIME do individuals spend 
in unemployment? How does this 

change over the business cycle? How 
does the duration of unemployment vary 
across individuals? Answers to questions 
such as these are needed for several rea- 
sons. First, the welfare of the unem- 
ployed is surely more closely related to 
the time they spend without a job than 
to the fact of their being unemployed. 
In this sense, the unemployment rate, 
which involves both the incidence (or oc- 
currence) of unemployment spells and 
their durations, is a less useful statistic 
than is the average duration of unemploy- 
ment. Second, the length of unemploy- 
ment spells plays a critical role in eco- 
nomic theories of job search, where the 
distribution of the duration of unemploy- 
ment depends on the individual's reser- 
vation wage. Any careful evaluation of 
the theory, therefore, requires accurate 
information on the duration of unemploy- 
ment. 

The regularly available data or 
ration of unemployment collected by the 
Current Population Survey is subject to 
some serious shortcomings as a source 
of information on the distribution of dura- 
tions. In this survey, information on the 
length of unemployment is collected only 
on those individuals unemployed at the 
time of the survey. This means that time 
spent unemployed will not be computed 
for those individuals employed at the 
time of each adjacent monthly survey, 
but unemployed between surveys. For 
example, suppose in Figure 1 that A is 
the March survey date and B is the April 
survey date, and that t1 and t2 will not 
be seen. In general, short spells will be 
underrepresented in the sample, a prob- 
lem known as length-biased sampling. 
Another consequence of exclusively sam- 
pling the unemployed for information on 
unemployment duration is that these in- 
dividuals have not completed their un- 
employment spells; the survey interrupts 
spells still in progress. For example, spell 
t4 will be seen in the March survey, but 
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Figure 1. Duration Data 

only the duration from the inception of 
the spell to the survey date, A, will be 
recorded. Similarly, spell t3 will be seen 
in April, and the elapsed duration will 
be recorded. These observations on the 
duration of unemployment are right- 
censored. Thus, both because of right- 
censoring and of length-biased sampling, 
the Current Population Survey informa- 
tion of unemployment durations is sus- 
pect.' 

Of course, there are surveys that sam- 
ple individuals at some date and record 
their labor market experience until an 
ending date (A to B in Figure 1), or that 
sample individuals at some date (for ex- 
ample, B) and ask for information retro- 
spectively to date A. Though the 
accuracy of such data, particularly retro- 
spective data, is often in doubt, these 
sampling schemes do result in observa- 

tions on completed spells, such as t2 and 
t1, as well as observations on right-cen- 
sored spells such as t3. Spells such as t4 
may be recorded as a duration beginning 
at A and lasting until the completion of 
the spell, in which case the actual dura- 
tion is unknown because the time from 
the inception of the spell to the begin- 
ning of data collection (A) is unknown. 
In this case the spell is left-censored. Al- 
ternatively, the completed duration t4 
might be recorded. In either case an is- 
sue of length-biased sampling arises be- 
cause spells in progress at the inception 
of the study are more likely to be long 
spells than short spells. Moreover, even 
if the sample consisted exclusively of a 
random sample of completed spells, 
there are difficulties in using the informa- 
tion on the duration of unemployment 
as a dependent variable in a regression 
framework where the determinants of 
unemployment length are measured by 
a set of exogenous variables x. The prob- 
lem that arises in a regression context is 
how to measure those x's whose values 
change during the unemployment spell. 
Therefore, even without the censoring 
problem, duration data present concep- 
tual problems for economists used to 
thinking in terms of conventional regres- 
sion analysis. 

For these reasons, a literature has 
arisen in economics addressing the spe- 
cial problems associated with duration 
data. This literature has drawn heavily 
on statistical methods developed largely 
in industrial engineering where they are 
used to describe the useful lives of vari- 
ous machines and in the biomedical sci- 
ences to describe events such as the sur- 
vival times of heart transplant recipients. 
These methods have a natural application 
to many economic problems. Probably 
the most widely studied duration data 
in economics are data on lengths of spells 
of unemployment. The papers by Tony 
Lancaster (1979) and Stephen Nickell 

1 For a detailed discussion of the problems of infer- 
ring duration distributions using Current Population 
Survey sampling techniques, see Nicholas M. Kiefer, 
Shelly Lundberg, and George R. Neumann (1985). 
David R. Cox and P. A. W. Lewis (1966, ch. 4) dis- 
cuss length-biased sampling. 
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(1979) propose and apply hazard function 
methods for studying unemployment du- 
rations. The models proposed can be re- 
garded as reduced forms resulting from 
behavioral models relying on job search 
arguments. Of course, other interpreta- 
tions are also possible. As usual, reduced- 
form results can serve to rule out some 
potential structural models, but cannot 
distinguish between others. Nicholas M. 
Kiefer and George R. Neumann (1979) 
and Wiji Narendranathan and Nickell 
(1985) are among the several papers that 
attempt to estimate behavioral models. 
There is an extensive additional litera- 
ture on unemployment durations; much 
of it is surveyed in Theresa J. Devine 
and Kiefer (1987). One focus of many 
studies is the effect of the "replacement 
ratio" in the unemployment insurance 
system-the ratio of benefits to the previ- 
ous wage-on unemployment durations. 
Lancaster (1979) remarks that "the final 
estimate of the elasticity of unemploy- 
ment duration with respect to the ratio 
of unemployment income to the last wage 
received is about 0.6 . . . and an elastic- 
ity of this order could now be regarded 
as established beyond reasonable doubt" 
(p. 956). As usual in economics, there is 
dissent; see Tony Atkinson and John 
Micklewright (1985). 

Other actual and potential areas of ap- 
plication are duration of marriages, spac- 
ing of births, time to adoption of new 
technologies, time between trades in fi- 
nancial markets, product durability, geo- 
graphic or occupational mobility (time 
between moves), lifetimes of firms, time 
to invention from research investment, 
payback periods for overseas loans, dura- 
tions of wars, time in office for congress- 
men and other elected officials, time 
from initiation to resolution of legal cases, 
spacing of purchases of durable goods (or 
replacement capital), time in rank, and 
length of stay in graduate school. 

The central concept in these statistical 

methods is occupied not by the uncondi- 
tional probability of an event taking place 
(e.g., the probability of an individual be- 
ing unemployed exactly 10 weeks), but 
of its conditional probability (e.g., the 
probability of an individual leaving un- 
employment in the tenth week given that 
he has been unemployed 9 weeks). To 
understand further the concept of condi- 
tional probabilities, consider forecasting 
the round in which your favorite team 
will be eliminated in a single-game elimi- 
nation tournament. A natural way to 
think about this problem is to consider 
the probability of losing the first game- 
the probability of first-round elimina- 
tion-then to consider the probability of 
losing the second game, conditional on 
making it into the second round. Reason- 
ing in terms of conditional probabilities 
requires only consideration of single 
games. Pursuing this strategy yields the 
sequence of conditional probabilities 
X(i) = Pr (lose in round i, given a win 
in previous rounds). An alternative ap- 
proach, more in keeping with usual 
econometric practice, is to specify the 
(unconditional) probability function 
f(i) = Pr (lose in round i) directly. This 
second approach seems much more com- 
plicated, as it involves simultaneous con- 
sideration of the possibilities of losing. 
Why not take advantage of the fact that 
the event we are considering, loss in 
round i, can be considered the outcome 
of a sequence of simpler events? Of 
course, conditional and unconditional 
probabilities are related, so the mathe- 
matical description of the process is the 
same in either case. It is the conceptual 
difference that is important in economic 
modeling of duration data. 

Suppose an unemployed worker 
spends some time every day looking for 
employment. We as economists are in- 
terested in describing the distribution 
across individuals of the duration of un- 
employment-here the number of days 
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unemployed. This information is useful, 
together with information on the inci- 
dence of unemployment, in understand- 
ing the unemployment rate. What is the 
probability that the worker will be unem- 
ployed exactly 10 days? This event can 
be described as the outcome of a se- 
quence of simpler, conditional events. 
We might specify a model, for example, 
in which every day the worker looks for 
a job he has the same probability, X, of 
finding one. That is, conditional on being 
unemployed through yesterday, the 
probability of finding employment today 
is X. Thus the sequence of conditional 
probabilities is constant. (The analogy in 
our tournament has games decided at 
random, so the probability of winning 
does not depend on the opponent.) The 
probability that the worker will be 
unemployed exactly 10 days is 
f(10) = X(1 - K)'. Now, the assumption 
that the probability of finding a job is 
the same every day is strong. It seems 
possible that this conditional probability 
varies as the length of the spell of unem- 
ployment increases, perhaps due to in- 
creased search intensity or to a change 
in the minimum wage acceptable to the 
individual. Note that the economics of 
the problem suggests that we reason in 
terms of the conditional probabilities X(i), 
not the unconditional probabilities f(i). 
Why not maintain a close link between 
our theoretical notions and the way we 
interpret data by doing the econometrics 
the same as the theory? 

The functions X(i) are hazardfunctions 
for the random variables "rounds played" 
in the tournament example and "days un- 
employed" in the job-search example. 
Rounds played and days unemployed are 
examples of durations. 

The special methods of duration analy- 
sis are useful and convenient means of 
organizing, summarizing, and interpret- 
ing data for which a representation in 
terms of a sequence of conditional proba- 

bilities is theoretically or intuitively ap- 
pealing. Hazard function specification 
emphasizes the conditional probabilities, 
while specification in terms of a probabil- 
ity distribution emphasizes unconditional 
probabilities. For any specification in 
terms of a hazard function there is a 
mathematically equivalent specification 
in terms of a probability distribution. The 
two specifications involve the same pa- 
rameters and are simply two different 
ways of describing the same system of 
probabilities. Thus, the hazard function 
approach does not identify new parame- 
ters. As we will see, the likelihood func- 
tion can be written equivalently in terms 
of hazard functions or probability distri- 
butions, but it is the same likelihood 
function in either case. 

Why then learn about hazard functions 
when we already know about some famil- 
iar probability distributions-say the 
normal and lognormal? If our model sug- 
gests that conditional probabilities are of 
interest, why not specify the probability 
distribution, fit it, and calculate the im- 
plied conditional probabilities, X, later? 
This approach could be taken, but if we 
are thinking in terms of conditional prob- 
abilities, it makes sense to choose a pa- 
rametrization that allows the estimated 
sequence of conditional probabilities to 
behave as we think it should. The normal 
and lognormal distributions, for example, 
have complex hazard functions that do 
not admit the constant hazard as a special 
case. Because the constant hazard is in 
many cases a natural special case or null 
hypothesis, this is an unattractive feature 
of several probability distributions that 
are appealing in other applications. Con- 
sequently the duration literature relies 
heavily on other distributions, for exam- 
ple the exponential and Weibull. Some 
commonly used specifications are given 
in Section IIB. 

Defining a duration precisely requires 
a time origin (a beginning), a time scale, 
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and a precise definition of the event end- 
ing the duration. In a sample consisting 
of many individuals, different individuals 
will often have different time origins for 
the durations they experience. Unem- 
ployment spells, for example, could be- 
gin at any date; the beginning date is 
the time origin for the spell. The duration 
of a spell is its length. Typically, dura- 
tions, that is, spell lengths, are the de- 
pendent variables under study, but it 
should be kept in mind that these dura- 
tions are not spells in "real time" unless 
the time origin is the same for every 
spell. In practice one would like individ- 
uals in the sample to be as homogeneous 
as possible, after controlling for observ- 
able differences, at the time origin spe- 
cific to the individual. The time scale in 
economic applications is usually calendar 
time. The units depend on the applica- 
tion and the precision of measurement. 
For instance, it is* pointless to analyze 
data measured in months on an hours 
scale. 

A distinguishing feature of duration 
data is the possibility that some of the 
durations observed will be censored, as 
emphasized in the discussion of Figure 
1. Censoring is an event that occurs at 
some time, so our data consist of a mea- 
sured spell length together with the in- 
formation that the spell was censored (or 
not). Let T*, a random variable, be a 
spell length for an individual in the ab- 
sence of censoring, and let c be the cen- 
soring time measured from the time ori- 
gin for the spell. Then the random 
variable which will be observed is the 
smaller of T* and c, or T = min (T*, c). 
We also observe an indicator variable 
d = 1 if the observation is censored 
(T = c), d = 0 if uncensored (T = T*). 
Often the censoring times are known 
constants (given the time origin), for ex- 
ample, the end of a fixed-length panel 
survey. Another type of censoring is 
known as Type I censoring, in which c 

is a predetermined constant common 
across observations as when data mea- 
sured in weeks from 1 to 26 are followed 
by a category "more than 26 weeks." 
Rather general forms of random censor- 
ing can fit into the framework discussed 
here, though it is crucial to assume that 
individuals whose spells are censored at 
time c are representative of all the indi- 
viduals who have spell lengths at least 
equal to c, perhaps after allowance for 
explanatory variables. Thus, if we regard 
the censoring time c as a random vari- 
able, it must be independent of T*, after 
taking account of other factors. This is a 
maintained assumption in most applica- 
tions. 

II. Distributions of Durations 

A. The Hazard Function 

The probability distribution of dura- 
tion can be specified by the distribution 
function 

F(t) = Pr(T < t) 

which specifies the probability that the 
random variable T is less than some value 
t. The corresponding density function is 
f(t) = dF(t)ldt. These are two equivalent 
ways of specifying a distribution, and the 
choice of specification depends on 
convenience.2 In studying duration data 
it is useful to define the survivor function 

S(t) = 1 - F(t) 
= Pr(T ' t) 

giving the upper tail area of the distribu- 
tion, that is, the probability that the ran- 
dom variable T will equal or exceed the 
value t. Of course, specifying S is merely 

2 The convention F(t) = Pr(T < t) as opposed to 
Pr(T ' t)) is often adopted when discussing duration 
data. See, for example, David R. Cox and David 
Oakes (1985) or John D. Kalbfleisch and Robert L. 
Prentice (1980). Certain formulas involving the haz- 
ard function are more cleanly written with this defini- 
tion. 
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Figure 2. Hazard and Other Functions 

an alternative method of specifying the 
distribution of T, and there are many 
other functions that could characterize a 
distribution. A particularly useful func- 
tion for duration analysis is the hazard 
function 

A(t) = _ft)/S(t). 

Roughly, A(t) is the rate at which spells 
will be completed at duration t, given 

that they last until t.3 This is a continu- 
ous-time version of the sequence of con- 
ditional probabilities illustrated in the 
tournament example. Figure 2 illustrates 

3A precise definition in terms of probabilities is 

X(t) = lim Pr(t s T < t + hIT 2 t)lh. 

Those familiar with the literature on the economet- 
rics of sample selection will recognize the hazard 
rate as the inverse of Mills' ratio. 
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F(t), fit), S(t), and A(t) for one particular 
distribution. According to the example 
in Figure 2, the probability of a spell 
lasting less than 3 "periods" is F*; equiva- 
lently, the probability of a spell lasting 
3 periods or more is S*. The probability 
that a spell ends between 3 and 3 + A 
periods is f*A, while the probability that 
a spell ends between 3 and 3 + A condi- 
tional on having lasted 3 periods is X*A. 
Given A = fiS = (dF/dt)/S = (-dS/dt)/S, 
we see that 

A(t) = -d ln S(t)ldt. 

The hazard function provides a conve- 
nient definition of duration dependence. 
Positive duration dependence exists at 
the point t* if dA(t)ldt > 0 at t = t*. 
The hazard graphed in Figure 2 has posi- 
tive duration dependence for all t. Posi- 
tive duration dependence means that the 
probability that a spell will end shortly 
increases as the spell increases in length. 
Negative duration dependence exists at 
t* if dA(t)/dt < 0 at t = t*. Negative 
duration dependence in the tournament 
example occurs when the team has "mo- 
mentum": At each round, the probability 
of losing falls. The rather more straight 
forward statistical terminology "increas- 
ing hazard" and "decreasing hazard" does 
not seem to have caught on in eco- 

*.4 nomeis.nh 
The integrated hazard 

Jt 

A(t) =fX(u)du 

is also a useful function in practice. It is 
the basic ingredient in a variety of specifi- 
cation checks. The integrated hazard 
does not have a convenient interpreta- 
tion, however. In particular, note that 
it is not a probability. The relation to 
the survivor function is 

S(t) = exp[-A(t)]. 

B. Some Distributions 

The exponential distribution is widely 
used as a model for duration data: The 
exponential is simple to work with and 
to interpret, and is often an adequate 
model for durations that do not exhibit 
much variation (in much the same way 
that the linear regression model is simple 
and adequate if the data do not vary 
enough to reveal important nonlineari- 
ties). For the exponential distribution 
with parameter y > 0, 

F(t) = 1 - exp(-,yt) 

S(t) = exp(-,yt) 

fit) = yexp(-,yt) 
X(t) = 'y 

A(t) = yt. 

The survivor and hazard functions corre- 
sponding to y = 1 are shown in Figures 
3 and 4. The exponential distribution is 
sometimes termed memoryless, because 
the hazard function is constant and so 
reflects no duration dependence. Be- 
cause the hazard function uniquely char- 
acterizes the distribution, the exponen- 
tial is the only distribution with this 
property. It is easy to check that the dis- 
tribution of the exponential random vari- 
able T, conditional on its taking a value 
at least c, is the same as the unconditional 
distribution of T. The exponential distri- 
bution arises as a prediction from simple 
stochastic models, as shown below. The 

4 It may be useful to review the discrete versions 
of the functions we have considered above for contin- 
uous random variables. Here the values taken by 
the random variable T are tl, t2, t3, . The func- 
tions are: 

fItk) = Pr(T = tk) 

S(tk) = EJ (tj) 
j2k 

X(tk) = fltk)/S(tk). 

The last expression is easily recognized as the proba- 
bility a duration ends at tk, given that it lasts until 
tk. The discrete integrated hazard is 

k 
A(tk) = E X(t1). 

i=O 
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Figure 3. Survivor Functions 

fact that the distribution depends only 
on one parameter, -y, is the drawback 
in applications because the family of dis- 
tributions obtained by varying y is not 
very flexible. To illustrate, note that 
E(T) = 1/y and var (T) = 1/y so that the 
mean and variance cannot be adjusted 
separately. Thus, the exponential is un- 
likely to be an adequate description of 

the data if the sample contains both very 
long and short durations. 

The Weibull distribution is a two pa- 
rameter (y > 0 and ot > 0) family with 
hazard function 

X(t) = yatt . 

This is a simple generalization of the ex- 
ponential distribution, which is obtained 
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Figure 4. Hazard Functions 

by setting ot = 1. Using our integration 
formulas leads to expressions for the dis- 
tribution, survivor, density, and inte- 
grated hazard functions 

F(t) = 1 - exp(-yta) 

S(t) = exp(-yta) 
f(t) = 'yOtta-lexp(-ytO) 

A(t) = yt . 

See Figures 3 and 4, where in one case 
at = 3/2 and y = .86 and in the other 
at = 1/2 and y = 1.4. It is easy to check 
that ta has an exponential distribution 
with parameter y. In this sense, the Wei- 
bull can be thought of as an exponential 
distribution on a rescaled time axis. The 
"trick" of finding a transformation of du- 
ration so that the transformed durations 
are exponentially distributed is quite 
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useful in interpreting models and in de- 
veloping specification diagnostics. In 
practice, the parameter y can depend on 
explanatory variables. The hazard func- 
tion is increasing in duration if ot > 1, 
decreasing if ot < 1, and constant if 
ot = 1, which is exactly the exponential 
case. Duration dependence does not de- 
pend on the value of y. 

Finally, we consider an example of a 
duration distribution with a nonmono- 
tonic hazard, the log-logistic distribution, 
with parameters y > 0 and ot > 0 and 
hazard function 

A(t) = yctOl/(1 + tay). 

Applying our formulas we find 

F(t) = 1 - [1/(1 + tay)] 
s(t) = 1/(1 + tay). 

fit) = yotta-l/(1 + tay)2 

A(t) = ln(I + yta). 

For ot > 1 the hazard first increases with 
duration, then decreases. If 0 < ot ' 1 
the hazard function decreases with dura- 
tion. See Figures 3 and 4 where the log- 
logistic survivor and hazard functions are 
plotted for ot = 2.7 and y = 1.9.5 

A research strategy analogous to using 
'everything and its square" in regression 
specification search is to specify and fit 
a quite general nonnegative function for 
the hazard, for example 

A(t) = exp[g(t,O)] 

where 0 is a vector of parameters and 
g(-) is a parametric function, perhaps a 
polynomial, in duration and any other 
variables that might be thought impor- 
tant. This approach can be informative 

in some cases. Alternative approaches to 
fitting hazard functions of unknown form 
are discussed below. 

The distributions considered here and 
in most applied work are continuous. 
Continuous-time models seem appropri- 
ate for economic settings because there 
is typically no natural period in which 
economic decisions are taken (or eco- 
nomic surprises arrive). With a continu- 
ous-time model, parameters are defined 
and can be interpreted independently of 
the period of the measure of data. In 
some settings, however, a discrete time 
approach is natural: The relevant defini- 
tions of the hazard and other related 
functions are given in Footnote 4. 

C. Economic Theory and Duration 
Distributions 

This section provides brief examples 
illustrating that economic theory can be 
used to obtain implications for duration 
distributions in particular settings. We 
begin with a highly stylized job-search 
model leading to an exponential distribu- 
tion for durations of spells of unem- 
ployment.6 It is sufficient for our purpose 
to consider a model where individuals 
are assumed to occupy only two states, 
employment and unemployment, be- 
cause we will focus attention on only one 
transition. For concreteness, we concen- 
trate on the transition from unemploy- 
ment to employment. State e is employ- 
ment and u is unemployment. The formal 
structure we will use allows the worker 
to change states at any time t. 

The unemployed draw wage offers w 
from the distribution p(w). Unemployed 
workers receive offers at constant rate 
'r, that is, the probability that the worker 
will get an offer in any short interval with 
length A is -qA. Offers are drawn inde- 

5See Cox and Oakes (1985), Kalbfleisch and Pren- 
tice (1980), J. F. Lawless (1982), Rupert G. Miller, 
Jr. (1981), or Elandt-Johnson (1980). There are many 
other candidates for duration distributions that might 
be useful in specific circumstances. These include 
the log-normal, Gompertz, inverse Gaussian, gener- 
alized F, and Gamma distributions, as well as mix- 
tures of any of these. 

6 A detailed and insightful recent discussion of the 
theory of search is given by Dale Mortensen (1986). 
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pendently from the density p(w). Indi- 
viduals know the offer distribution p(w) 
but do not know the location of each firm 
on that distribution. Assume that vu, the 
instantaneous utility associated with be- 
ing unemployed, does not depend on ei- 
ther the outstanding wage offer w or the 
offer distribution p(w), and is constant 
over the duration of the spell of unem- 
ployment. We are abstracting, for pur- 
poses of illustration, from many impor- 
tant empirical considerations. Assume 
that the utility associated with being em- 
ployed is a function of the wage paid, 
Ve = Ve(W), but not of the offer distribu- 
tion. It seems reasonable to assume that 
dveldw > 0; higher wages are preferred 
to lower. The worker receives offers at 
random intervals and decides, when an 
offer is received, whether to accept the 
offer or to continue searching. It is clear 
that an unemployed worker will accept 
or decline a job immediately upon receiv- 
ing a draw; that is, if an offer is accept- 
able, it is acceptable as soon as it arrives. 

Under these assumptions the worker's 
optimal behavior is described by a reser- 
vation wage policy; that is, there is a 
wage w* such that offers greater than or 
equal to w* will be accepted and lower 
offers will be declined. This follows be- 
cause the expected discounted utility of 
being employed is an increasing function 
of the wage received, while the utility 
of being unemployed does not depend 
on the outstanding wage offer. If a worker 
prefers employment at wage w to unem- 
ployment, he will prefer employment at 
higher wages as well. The reservation 
wage w* is the wage at which the worker 
is indifferent between accepting the offer 
w* and declining the offer. The probabil- 
ity that an offer is acceptable is given 
by the probability of a wage offer equal- 
ing or exceeding w*, namely 

r0 
IT = p(w)dw. 

W* 

The transition rate from unemploy- 
ment to employment is then given by 
the product of the offer arrival rate and 
the probability that an offer is acceptable; 
this transition rate is the probability of 
leaving unemployment at any moment 
given that the individual is still unem- 
ployed up to that moment. In other 
words, it is the hazard function for the 
distribution of unemployment durations 

X = ?1I. 

Observe that the duration of unemploy- 
ment does not appear in this expression 
for the hazard rate. Consequently the im- 
plied distribution of durations of spells 
of unemployment is exponential 

f(t) = Xexp(-Xt). 

The model has several interesting fea- 
tures. First, it is possible to use the opti- 
mality equations to develop restrictions 
on the effects of interindividual variations 
in offer distributions p(w) on the reserva- 
tion wage w* and therefore on the hazard 
X. For example, individuals with higher 
mean offers can be expected to have 
higher acceptance probabilities per 
draw, other things being equal. This kind 
of prediction can be used to obtain impli- 
cations for coefficients of a parametriza- 
tion of X as a function of explanatory vari- 
ables. Thus the variable "mean wage 
offer" or a suitable proxy is expected to 
have a positive effect on X, the condi- 
tional probability of becoming employed. 
These predictions can be checked as a 
sort of informal specification test. Sec- 
ond, the model is extremely simple to 
estimate, as will be seen. Third, the mul- 
tistate extension is straightforward. Ken- 
neth Burdett et al. (1984) estimate a 
three-state dynamic discrete choice 
model of labor turnover; the present sim- 
ple model is a special case. 

The implication of an exponential dis- 
tribution of unemployment durations, 
however, is not robust to economically 
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plausible changes in assumptions. 
Changes over time in the arrival rate of 
offers -q, the offer distribution p(w), or 
the utility associated with unemployment 
(for example, due to exhaustion of unem- 
ployment insurance benefits) will lead to 
a different duration distribution. 

A variation leading to nonexponential 
distributions can be mentioned briefly. 
The first is a model of turnover in the 
labor market similar in structure to that 
just described but focusing on spells of 
employment. Spells of employment are 
assumed to end at layoff or on receipt 
of a better offer. The probability that a 
worker is laid off is assumed to depend 
on seniority. In particular, workers face 
layoffs in inverse order of seniority. This 
model leads to a prediction of a declining 
hazard for employment duration. The 
prediction holds up in a Weibull model 
fit by Burdett et al. (1985) and in a variety 
of other studies. 

III. Estimation 

A. Nonparametric 

Graphical methods are useful for 
displaying data on durations and for pre- 
liminary analyses, perhaps to suggest 
functional forms, of homogeneous obser- 
vations, homogeneity being achieved 
roughly by grouping on explanatory vari- 
ables. They are also useful for specifica- 
tion analysis of more complicated mod- 
els. In specification analysis, graphs of 
generalized residuals, discussed below, 
are useful, much as residual plots are use- 
ful in linear regression model building. 

The sample survivor function for a 
sample of n observations with no censor- 
ing is 

S(t) = n-'(# of sample points - t) 

the empirical cumulative distribution 
function turned around. A modification 
is required to allow for censoring. Sup- 
pose the completed durations in our sam- 

ple of size n are ordered from smallest 
to largest, t1 < t2 < . . . < tK. The num- 
ber of completed durations K is less than 
n because some observations are cen- 
sored (i.e., their spells have not ended 
at the calendar time the study ends) and 
because of ties. Ties occur when two or 
more observations have the same dura- 
tion. 

As an example, consider the sample 
of strike lengths in days reported in Table 
1. The data pertain to U.S. manufactur- 
ing industries for the period 1968 
through 1976 and cover official strikes 
involving 1,000 workers or more with 
major issue classified as general wage 
changes by the Bureau of Labor Statis- 
tics. The data are given by John Kennan 
(1985, table 1).7 We restrict our attention 
to strikes beginning in June of each year. 
This restriction increases the homogene- 
ity of the sample and eliminates the need 
to consider the monthly dummy vari- 
ables used by Kennan. We also censor 
strike lengths longer than 80 days be- 
cause we are interested in illustrating 
methods for handling censored data. 
There were 62 strikes in this data set 
and there were 12 strikes that lasted 80 
days or more, so about one-fifth of the 
observations are censored. There were 
a number of ties in the data: There were 
4 strikes lasting 2 days, another 4 lasting 
3 days, 2 lasting 9 days, and so on. In 
all the number of distinct completed du- 
rations K is 37. 

Let hj be the number of completed 
spells of duration tj, for j = 1, . . .. 
K. In the absence of ties the hj are all 
equal to one. The hj for the strike data 
are given in Table 1. Let mj be the num- 
ber of observations censored between tj 
and tj+1; mK is the number of observa- 
tions with durations greater than tj, the 

7A related application of duration methods to strike 
lengths is by Tony Lancaster (1972), who studies 
strike lengths using United Kingdom data. 
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TABLE 1 

STRIKE DATA AND NONPARAMETRIC HAZARD AND SURVIVOR ESTIMATES 

Duration 
Ordered Duration in days 

Numberj ti ii nj Hazard X(tj) Survivor ?(tj) 

1 1 1 62 .016 .984 
2 2 4 61 .066 .919 
3 3 4 57 .070 .855 
4 4 1 53 .019 .839 
5 5 1 52 .019 .823 
6 7 1 51 .020 .806 
7 8 1 50 .020 .790 
8 9 2 49 .041 .758 
9 10 1 47 .021 .742 

10 11 1 46 .022 .726 
11 12 2 45 .044 .694 
12 13 1 43 .023 .677 
13 14 1 42 .024 .661 
14 15 1 41 .024 .645 
15 17 1 40 .025 .629 
16 19 1 39 .026 .613 
17 21 2 38 .053 .581 
18 22 1 36 .028 .565 
19 23 1 35 .029 .548 
20 25 1 34 .029 .532 
21 26 1 33 .030 .516 
22 27 2 32 .063 .484 
23 28 1 30 .033 .468 
24 29 1 29 .034 .452 
25 32 1 28 .036 .435 
26 33 1 27 .037 .419 
27 35 1 26 .038 .403 
28 37 1 25 .040 .387 
29 38 1 24 .042 .371 
30 41 1 23 .043 .355 
31 42 1 22 .045 .339 
32 43 2 21 .095 .306 
33 44 1 19 .053 .290 
34 49 2 18 .111 .258 
35 52 2 16 .125 .226 
36 61 1 14 .071 .210 
37 72 1 13 .077 .194 

Notes: hj and nj enter the calculation of X(tj) and S(tj) and are defined in the text. The data are from John- Kennan 
(1985, table 1). 
Twelve observations are censored at duration 80 days. 

longest complete duration. In a year-long 
panel, for example, spells of unemploy- 
ment with lengths in weeks might be ob- 
served. Spells beginning 6 weeks before 
the end of the survey and still in progress 
at its end are regarded as censored be- 

tween 6 and 7 weeks. The information 
content in this censored spell is that the 
actual duration is longer than 6 weeks. 
In the strike data the mj are all equal to 
zero, except the last, M37, which is equal 
to twelve. Let nj be the number of spells 
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neither completed or censored before 
duration tj 

K 

nj= > (mi + hi). 
i?j 

The nj are given in Table 1 for the strike 
data. Now, the estimated survivor func- 
tion will be a step function, as in the 
uncensored case. So will the correspond- 
ing estimated hazard function. The haz- 
ard X(tj) is the probability of completing 
a spell at duration tj, conditional upon 
the spell's reaching duration tj. A natural 
estimator for X(tj) is 

A 

A(tj) = hjlnj, 
the number of "failures" at duration tj 
divided by the number "at risk" at dura- 
tion tj. The corresponding estimator for 
the survivor function is 

j j 

S(t)= (ni- = Hh (1-nAi) 
i=l i=l 

which is the Kaplan-Meier or product- 
limit estimator. Essentially, this estima- 
tor is obtained by setting the estimated 
conditional probability of completing a 
spell at tj equal to the observed relative 
frequency of completion at tj. Both X(tj) 
and S(tj) are reported in Table 1 for the 
strike data. The development here is in- 
formal; however, it is possible to inter- 
pret this estimator as a maximum-likeli- 
hood estimator.8 

The Kaplan-Meier estimator of the sur- 
vivor function is related to the actuarial 
estimator of the life table familiar to de- 
mographers. For a life table, the time 

line is split up into fixed intervals, typi- 
cally one-year intervals. A survival rate 
is then calculated for each interval. Let 
Xi be the probability of completing a spell 
in the ith interval, conditional upon en- 
tering the ith interval. A natural estima- 
tor for Xi is the fraction of those entering 
the interval who complete their spells 
during the interval. The situation is com- 
plicated by censoring, however. The ac- 
tuarial estimator adjusts for censoring by 
subtracting one-half of the number of ob- 
servations censored during the ith inter- 
val from the number entering the inter- 
val in caleulating the fraction of 
completed spells. Label this estimator 
XIa. Then the life table is estimated by 

Sq = 1(l - Xja). The Kaplan-Meier esti- 
mator of the survivor function differs 
from the life table in that the intervals 
for which the hazards are calculated de- 
pend on the data.9 

Plots of the hazard, integrated hazard, 
and log-integrated hazard against dura- 
tion can be simpler to interpret than plots 
of the survivor function itself. For the 
exponential distribution, for example, 
the hazard is constant and the integrated 
hazard is linear in duration. The inte- 
grated hazard can be estimated by 

A(t) = E X(ti). 
icj 

Plots of the integrated hazard are typi- 
cally smoother and therefore easier to 
interpret than plots of the hazard 
directly. 10 

Figure 5 illustrates the estimated sur- 
vivor functions based on samples of size 
25 from the exponential, Weibull, and 
log-logistic distributions shown in Figure 
3. Note that, as a practical matter, the 

8 Greenwood's formula var[S(tj)] = [(S(tj)]2 Iijhi 
[ni(ni - hi)] can be used to approximate the variance 
of the estimated survivor function. This formula is 
unlikely to be very useful for values of the survivor 
function near zero or one. See Kalbfleisch and Pren- 
tice (1980, section 1.3, pp. 13-15). Bruce Turnbull 
(1976) gives a method for estimating the distribution 
function in the presence of more complicated censor- 
ing and grouping of observations. Soren Johansen 
(1978) gives a maximum-likelihood interpretation of 
the product-limit estimator. 

9 A recent discussion of life tables, with references 
to the extensive literature, is by Chin-Long Chiang 
(1984). 

'0 Alternatively, the integrated hazard could be es- 
timated as minus the logarithm of the Kaplan-Meier 
estimator. The two methods give similar results when 
the A are small. 
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Figure 5. Sample Survivor Functions 

accuracy of the estimator is better for 
shorter durations; inferences about very 
long durations are based on fewer obser- 
vations. A comparison of the estimated 
survivor functions with the actual survi- 
vor functions of the distributions generat- 
ing the data given in Figure 3 demon- 
strates this point. 

The estimated survivor function for our 

sample of strike lengths in days is 
graphed in Figure 6. Figure 7 shows the 
estimated hazard function for our data. 
The hazard appears to have a slight up- 
ward slope, though it should be kept in 
mind that values for long durations are 
less precisely estimated than values for 
short durations. This estimate of the haz- 
ard function also exhibits an implausible 
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Figure 6. Strike Data Survivor 

amount of variation over time (do we re- 
ally think that the conditional probability 
a strike will end varies that much from 
day to day?). This is a problem with inter- 
preting graphs of the empirical hazard 
function. A natural response by an econo- 
mist is to smooth the plot somehow. A 
frequent device is to turn to a plot of 
the integrated hazard, which does in- 
volve smoothing. Figure 8 shows the in- 
tegrated hazard for the strike data. To 
interpret Figure 8 keep in mind that the 
integrated hazard for the exponential dis- 
tribution is a straight line. A convex inte- 
grated hazard implies that the hazard 
itself is increasing-positive duration de- 
pendence-while a concave integrated 
hazard (note that it can never decrease) 
implies a decreasing hazard or negative 
duration dependence. Figure 8 suggests 
that the exponential model may be ade- 
quate, and is certainly a sensible starting 
point for a parametric analysis. 

B. Parametric Methods 

Suppose that the family of duration dis- 
tributions under consideration has been 
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Figure 7. Strike Data Hazard 

specified, so that the data distribution 
is known up to a vector of parameters 
0. The family may have been chosen on 
the basis of a particular economic theory, 
convenience, and perhaps some prelimi- 
nary plotting of data. Of course, specifica- 
tion analysis after the model has been 
fit may reveal that the family of distribu- 
tions specified cannot adequately de- 
scribe the data. For the present, we con- 
centrate on estimating the parameter 0, 
and not on the issue of specification. 

Write the density of a duration of 
length t as f(t, 0). If a sample of n com- 
pleted spells were available and each in- 
dividual's spell independent of the oth- 
ers, the likelihood function is 

n 

L*(0) = Hf(ti o) 
i=l 

as usual. In other words, the likelihood 
function is the joint probability distribu- 
tion of the sample as a function of param- 
eters 0. When a spell is censored, at du- 
ration tj for example, the only information 
available is that the duration was at least 
tj. Consequently the contribution to like- 
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Figure 8. Integrated Hazard for Strike Data 

lihood from that observation is the value 
of the survivor function, S(t;, 0), the prob- 
ability that the duration is longer than 
tk. Let dk = 1 if the kth spell is uncen- 
sored, dk = 0 if censored. Then the likeli- 
hood function L(O) = InL*(O) isl1 

n n 

L(O) = E dlnf(ti, 0) + (1 - d)lnS(tj,O) 
i=l i=l 

which has completed spells contributing 
a density term ftti, 0) and censored spells 
contributing a probability S(ti,0). Using 
the fact that the density is the product 
of the hazard and the survivor function, 
ftt,0) = X(t,0)S(t,O), and the fact that the 
log of the survivor function is minus the 
integrated hazard InS(t,0) = -A(t,0), the 
log-likelihood function can be written in 
terms of the hazard function 

n n 

L(O)= E diln(ti, 0) - A(ti,0). 
i=l i=l 

In practice it is usual to estimate the 
parameters by maximum likelihood.'2 
Under a variety of well-known sets of 
sufficient conditions the maximum-likeli- 
hood estimator 0 is consistent for 0 and 

/n(O - 0) is asymptotically normally dis- 
tributed with mean zero and a variance 
which can be consistently estimated by 

V[\/n(0 - 0)] =-[n- la2L(O)1a0a0']-1. 

The variance can also be estimated using 
expected second derivatives of the log- 
likelihood, but this is problematic when 
censoring is present.'3 Hypothesis test- 
ing and construction of confidence inter- 
vals can be done in the usual way, based 
on the asymptotic distribution of the 
maximum-likelihood estimator. 14 Con- 
sider as an example the exponential 
model with X(t,-y) = -y and A(t,^y) = -yt. 
The log-likelihood function is then 

n n 

L(wy)= dilny - y ti 
i=l i=l 

with first derivative 
n n 

aL(y)Iay = y-1 di - ti. 
i=1 i=1 

When this is set to zero we derive the 
maximum-likelihood estimator 

n n 

A= diIl ti 
i=1 i=1 

with approximate variance 

1" In writing this likelihood function we have used 
the assumption of independent censoring. In general, 
we would write down the joint distribution of the 
failure times and the censoring times and base the 
likelihood on that distribution. With independent 
censoring or fixed censoring times, the result is the 
likelihood function in the text. 

12 With the likelihood function in hand it is in prin- 
ciple possible to do a Bayesian analysis of the data, 
forming a posterior distribution for 6 by combining 
the likelihood and a prior distribution. 

13 Taking expectation requires exact specification 
of the censoring mechanism. 

14 Alternatively, the likelihood ratio can be calcu- 
lated; this has the advantage over the Wald procedure 
of being invariant to reparametrization. In some 
cases, particularly in calculating specification diag- 
nostics, the Lagrange multiplier or score statistic will 
be more convenient. 
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V(A) = - [a2L(y)/y2] -1 

n 
= y22/ di. 

i=l1 

Note the effect of censoring. If censored 
spells were treated as complete, the max- 
imum-likelihood estimator would be 
-y, = n/Iti >- Iditi = . Ignoring cen- 
soring leads to upward asymptotic bias 
in the estimated hazard, or overstate- 
ment of the conditional probability of 
ending a spell. 

The maximum-likelihood estimate of 
-y for the strike data is .0236 with asymp- 
totic standard error .0033. So, the daily 
chance of settlement, given that the 
strike is still in progress, is almost 2.5 
percent. The implied expected duration 
of a strike is 1/.0236 or about 42 days 
(with an approximate standard error of 
about 6 days). For comparison, the maxi- 
mum-likelihood estimate obtained by 
treating censored spells as complete 
spells is .0432. 

For the Weibull distribution with 
X(t,^y,at) = -yaota- and A(t,-y,ao) = -yta the 
log-likelihood function is 

n n 

L(y,a) = dilny + dilna 
i=l i=1 

n n 

+ (a - 1) > dilnti- -y > ti. 
i=l i=l 

Consideration of the derivatives of this 
function does not lead to closed-form ex- 
pressions for the estimators of -y and a; 
however, numerical maximization is not 
difficult. 15 

Fitting a Weibull model to the strike 
data gives estimates -y = .033 with stan- 
dard error .013 and a = .921 with stan- 
dard error .091. Noting that the exponen- 
tial distribution is Weibull with a = 1 

we conclude that the distribution of the 
strike data differs little from the exponen- 
tial. This confirms our initial impression 
based on Figure 8. 

IV. Explanatory Variables in the 
Proportional Hazards Model 

Explanatory variables can affect the 
distribution of durations in many ways. 
In ordinary regression models it is natu- 
ral to assume, at least as a starting point, 
that explanatory variables affect the dis- 
tribution of the dependent variable by 
moving its mean around. There is no 
analogous clear-cut starting point for in- 
cluding explanatory variables in duration 
models. The proportional hazard specifi- 
cation (to be discussed below) is popular 
and simple to interpret: The effect of re- 
gressors is to multiply the hazard func- 
tion itself by a scale factor. The acceler- 
ated failure time model (also discussed 
below) has seen less use in economics 
but is also easy to interpret: The effect 
of regressors is to rescale the time axis. 
More general models allow interaction 
between regressors and duration. 

The interpretation of the coefficients 
of the explanatory variables depends on 
the specification. In the general case, the 
coefficient does not have a clean interpre- 
tation as a partial derivative analogous 
to the interpretation of coefficients in the 
linear regression model. The sign of the 
coefficient indicates the direction of 
the effect of the explanatory variable on 
the conditional probability of completing 
a spell. The numerical value of this effect, 
which is the partial derivative, depends 
on duration and in general on other in- 
cluded variables. Of course, this is true 
in nonlinear models whether or not the 
hazard function approach is taken. 

In the important special cases of the 
proportional hazard model and the accel- 
erated lifetime model the coefficients can 
be given partial-derivative interpreta- 

"5There is no fixed dimension sufficient statistic 
for y and a. It is possible to concentrate the likelihood 
function using the fact that ta is exponential, but 
there is little to be gained in the way of convenience. 
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tions, analogous to that given to regres- 
sion coefficients in the linear model. 

These interpretations of coefficients 
are "purely statistical." Assigning eco- 
nomic meanings to coefficients is a matter 
of modeling and judicious use of prior 
information. In many cases it may be eas- 
ier and more natural to model duration 
data in terms of hazard functions than 
in terms of densities; hence it may be 
easier to give parameters economic inter- 
pretations in the hazard function ap- 
proach than in the more usual setting. 
Interpreting the coefficients of a model 
as behavioral parameters is a matter of 
judgment, however. 

A. The Proportional Hazard 
Specification 

A class of models that has been widely 
used in economics and other disciplines 
is the proportional hazard model. In this 
model the hazard function depending on 
a vector of explanatory variables x with 
unknown coefficients a and Xo is factored 
as 

X(t,x,A,XO) = 4(x,X)Xo(t) 

where Xo is a "baseline" hazard corre- 
sponding to 4( ) = 1. It is common, and 
sensible, practice to measure the regres- 
sors so that 4( ) = 1 at the mean value 
of the regressors. Then X has an interpre- 
tation as the hazard function for the mean 
individual in the sample. This baseline 
hazard is an unknown parameter which 
will (normally) require estimation. Note 
that the coefficients designated 0 previ- 
ously have been separated into P and Xo. 
In this specification the effect of explana- 
tory variables is to multiply the hazard 
Xo by a factor 4 which does not depend 
on duration t. A specification of 4+ in gen- 
eral use is 

+~(x, ) = exp(x'p). 
This specification is convenient because 
nonnegativity of 4 does not impose re- 

strictions on 3 and estimation and infer- 
ence are straightforward. As we will see, 
estimation of 3 in this model does not 
require specification of the baseline haz- 
ard Xo. 

With the proportional hazard specifica- 
tion we have 

alnX(t,x,P,XO)h3x = aln+(x,p)/ax 
so the proportional effect of x on the con- 
ditional probability of ending a spell does 
not depend on duration. In the important 
special case +~(x, ) = exp(x' ) 

alnX(t,x,P,Xo)/ax = a 

so the coefficient can be interpreted as 
the constant proportional effect of x on 
the conditional probability of completing 
a spell. This is the analog, in a hazard 
function setting, of the usual partial- 
derivative interpretation of a linear re- 
gression coefficient. 

The proportional hazard model with 
4+(x,P) = exp(x'p) admits a convenient 
interpretation as a linear model. With 

X(t,x, , XO) = exp(x' P)XO(t) 

the survivor function for t is given by 
(using formulas from Section Ila) 

S(t) = exp[-Ao(t)exp(x' 3)] 

where AO(t) = f Xo(u)du is the integrated 
baseline hazard. To obtain a linear model 
interpretation we consider the random 
variable E defined by E =-lnAO(t) - x' . 
The motivation for this bizarre trans- 
formation is that the distribution of the 
resulting E does not depend on A0 or 
on x' , yielding a linear model for the 
transformed dependent variable t* = 
-lnAO(t). To calculate the distribution of 
E, write 

Pr(E < E) = Pr[-lnAO(t) < E + x'f] 
= Pr[lnAO(t) > -E - x'3] 
= Pr[AO(t) > exp(-E -x')] 
= Pr{t> A-'[exp(-E -x')]. 
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This probability can be evaluated using 
the survivor function for t, giving 

Pr(E < E) 

= exp(-Ao{AJ '[exp(-E - x' p)]}exp(x'1 

= exp[-exp(-E)] 

which is the cumulative distribution 
function for the type 1 extreme value dis- 
tribution (see Norman Johnson and Sam- 
uel Kotz 1970, p. 272). Thus we can write 
the proportional hazard model in the 
form 

-lnAO(t) = t* = x'3 + E, 

a linear model for t* in which the error 
term has a fully specified (but not normal) 
distribution. 

This representation of the model sug- 
gests the possibility that least-squares re- 
gression methods can be used to estimate 
the coefficients of explanatory variables. 
If the data are not heavily censored, this 
is indeed possible although it requires 
knowledge of the baseline integrated 
hazard. (Sometimes A0 involves parame- 
ters that must be estimated.) Of course, 
test statistics must be viewed skeptically 
because of the nonnormality of the error 
term. Further, a correction to the inter- 
cept estimate must be made to account 
for the nonzero mean of the error term. 
For this reason an intercept must be in- 
cluded if least squares is applied even 
when the explanatory variables are mea- 
sured in deviations. The regression esti- 
mator is illustrated below. Censoring can 
be accommodated using Tobit-like meth- 
ods and adjustments, based on the ex- 
treme value distribution instead of the 
normal; however, this makes the estima- 
tion problem nonlinear and maximum 
likelihood is no more difficult and pre- 
ferred on efficiency grounds. 

To illustrate the linear model inter- 
pretation we consider the exponential 
model with parameter -y = exp(x'p) and 

X0(t) = 1. The latter specification is a 
normalization. As long as an intercept is 
included in x, the baseline hazard Xo is 
identified only up to a constant factor. 
Measuring explanatory variables in devi- 
ations from means, adding an intercept, 
and defining Xo = 1 means that exp(con- 
stant term) is an estimate of the baseline 
hazard, that is, the hazard function for 
the individual with mean values of the 
explanatory variables. Then we have the 
linear model 

-lnt = t*= x'3 + E. 

In the Weibull model with -y = exp(x'p) 
and X0(t) = t", 

-otlnt = t* = x'3 + E. 

This representation of the two models 
gives a hint about the bias to be expected 
in the absence of censoring when a Wei- 
bull model is misspecified as exponential. 
When ot is greater than one, so that Wei- 
bull time is faster than calendar time, 
coefficients are likely to be underesti- 
mated. When ot is less than one, coeffi- 
cients are likely to be overestimated. 

The fact that the distribution of E is 
known can be used as the basis of specifi- 
cation tests once the parameters are esti- 
mated by whatever means. For example, 
if regressors are omitted, the model is 

t* = x'f + E + V 

where v captures the omitted regressors. 
The error term E + v will have more 
variance than the specification predicts. 
Similarly, we see that if the wrong trans- 
formation of the dependent variable is 
used the explanatory variables may ap- 
pear to enter nonlinearly. 

If 4 does not take the simple form 
exp(x'p) an interpretation as a nonlinear 
regression model with additive errors 
with known distribution can be devel- 
oped. For the specification X(t,x,1) = 

(x, P)X0(t) we can repeat previous argu- 
ments to obtain 
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-lnA0(t) = t* = ln+(x,3) + E 

where E has an extreme value distribu- 
tion (again, not a normal distribution). 

B. Parametric Estimation 

Parametric estimation of proportional 
hazard models is a straightforward exten- 
sion of the techniques discussed in Sec- 
tion IIIB. The baseline hazard can be 
chosen from a parametric family and writ- 
ten Xo = Xo(t,ot). The hazard function is 
then 

X(t,x,a43) = K(x,43)Xo(t,a) 

and the log-likelihood function is 

L(ot,1) = Id-lnX(ti.xi, - 1 A(tj,xi,ot,1) 

where di = 1 if the ith spell is uncensored 
and A is the integrated hazard corre- 
sponding to X. As a concrete example of 
the estimation technique, consider the 
popular exponential regression specifica- 
tion 

X(t,x, ) = exp(x',3) 

in which we have incorporated the as- 
sumption that Xo(t) is constant and the 
normalization that it is equal to one. This 
specification is a natural starting point 
for analysis in the absence of specific in- 
formation on the shape of the baseline 
hazard. Residual analysis and diagnostics 
may then suggest respecification. The 
coefficients in the exponential regression 
specification can be given an interpreta- 
tion in terms of effects on expected dura- 
tion. The mean of the exponential 
f(t) = -yexp(--yt) is lI1y so expected dura- 
tion for this model is exp(-x'1). Hence, 

aln(expected duration)/ax = -P. 

The log-likelihood function is 

L(a) = Ydixi'p - Ytiexp(xi'p) 

with derivatives 

aLIap = Idix - Itjexp(xj'r)x 
a2Llapap' = -Itiexp(xf )xixX 

The log-likelihood function is concave 
and numerical maximization is straight- 
forward.'6 The negative inverse of the 
second derivative matrix can be used as 
an approximate covariance matrix for the 
estimator of P. 

Parametric estimation of other specifi- 
cations is similar. Of course, when the 
log-likelihood function is not concave, 
special care should be taken to insure 
that the global maximum is attained. In 
this case, the behavior of the log-likeli- 
hood may not be adequately described 
by local characteristics at the maximum. 
Unusual features of the log-likelihood 
function should be examined and inter- 
preted. 

In his study of strike duration Kennan 
(1985) controlled for the effects of varia- 
tions in general economic conditions by 
using an index of industrial production. 
The index chosen is the residual from a 
regression of the logarithm of industrial 
production in manufacturing on time, 
time squared, and monthly dummy vari- 
ables. The values of this index are given 
in Kennan (1985, appendix). A fixed 
value of the industrial production index 
is associated with each strike. Fitting 
the exponential model with X(x, 13) = 

exp(po + P3, x) where x is the industrial 
production index yields estimates P0 = 

-3.72 with standard error .143 and 
P1 = 10.21 with standard error 3.34. The 
estimate of Po implies that expected 
strike length when industrial production 
is on its trend line (that is, when x = 0) 
is about 41 days. High values of the pro- 
duction index are associated with high 
values of the conditional probability of 

16 Newton's method iterating according to Pn+1 = 

n- (a2L/Iapa,I)-l aLha with derivatives evaluated 
at pn , appears to work well. Sometimes it is useful 
to multiply the correction to In by a factor less than 
one. A practical suggestion for starting values is to 
measure the x variables as deviations from means, 
start their coefficients at zero, and include a constant 
term with starting value minus the log of mean dura- 
tion. 
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ending a strike. Our estimate of Pi im- 
plies that a 1 percent unexpected in- 
crease in industrial production decreases 
expected strike length by about 10 per- 
cent, or about 4 days. Fitting the Weibull 
model X(t,x,P,ot) = exp(Po + Pi x)ta' 
yields Po = -3.79 (standard error, .443), 
P1 = 9.38 (standard error, 3. 10), and 
Ot = 1. 003 (standard error, . 101). The Wei- 
bull alternative provides support for the 
exponential specification, because at is in- 
significantly different from one, and con- 
firms the significant countercyclical pat- 
tern of strike durations. This is an 
interesting finding (and it holds up in the 
full data set; see Kennan 1985); especially 
in view of the well-known finding that 
strike incidence is procyclical. Canadian 
data also provide evidence that strike du- 
rations are countercyclical; see Alan Har- 
rison and Mark Stewart (1987). 

By way of comparison we consider the 
ordinary least-squares regression of the 
logarithm of duration on the industrial 
production index. Regressions were run 
on two samples, one with the censored 
observations included at their censored 
values (namely 80 days) and the other 
omitting the censored observations. We 
are primarily concerned with the slope 
estimates giving the effect of the state 
of the economy on duration. Intercepts 
are included in both specifications. In- 
cluding the censored observations results 
in the estimated model 

ln(t) = 3.11 - 8.12x R2 = .041 
(3.39) n = 62. 

Omitting the censored observations leads 
to 

ln(t) = 2.78 - 4.83x R2 = .098 
(3.19) n = 50. 

Recall that, in the hazard rate formula- 
tions, P1 represents the effect of increases 
in x on the conditional probability of end- 
ing a strike whereas in the ordinary least- 
square regressions the coefficient on x 

measures the effect of increases in indus- 
trial production on the length of the 
strike. In other words, the slope coeffi- 
cient in these least-squares regressions 
should be opposite in sign to the coeffi- 
cient in the hazard rate formulation. The 
numbers in parentheses are standard er- 
rors-inappropriate, of course, because 
their computation has not taken account 
of censoring. 

The maximum-likelihood estimate of 
P1 in the exponential formulation of the 
hazard rate was 10.21, whereas the least- 
squares regression excluding the cen- 
sored observations results in an estimate 
(4.83) less than one-half in absolute value 
of the maximum-likelihood estimate. The 
regression including the censored obser- 
vations at their censored values gives an 
estimate of 8.12 with estimated standard 
error 3.39. Clearly the treatment of the 
censored values is critical to the result. 
In this example the regression including 
the censored observations results in esti- 
mates closer to the maximum-likelihood 
estimates. It is possible to construct ex- 
amples in which the regression excluding 
the censored observations work better in 
this sense. 

C. Partial Likelihood 

The partial-likelihood approach sug- 
gested by Cox (1972, 1975) can be used 
to estimate P in the proportional hazard 
model without specifying the form of the 
baseline hazard function Xo. Suppose the 
completed durations are ordered, t1 < 

t2 < . . . < tn. For the present, suppose 
there is no censoring and there are no 
ties in the durations. The conditional 
probability that observation 1 concludes 
a spell at duration t1, given that any of 
the n observations could have been con- 
cluded at duration t1, is 

X(t1,x1, ~) 
n 

E (ti, xi,) 
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With the proportional hazard assumption 
X(t,x,I) = 4(x,P)XO(t), this expression re- 
duces to 

n 

E P(Xi, O 
i=1 

and this quantity is the contribution of 
the shortest duration observed to the par- 
tial likelihood. Similarly, the contribu- 
tion of the jth shortest duration is %(xp P)/ 

= 4j(xi, I). In each case, the contribu- 
tion to likelihood is the ratio of the hazard 
for the individual whose spell was com- 
pleted at duration t divided by the sum 
of the hazards for individuals whose 
spells were still in progress just prior to 
time t (i. e., those whose spells could have 
ended at duration t). The likelihood is 
formed as the product of the individual 
contributions, and the resulting log-like- 
lihood function is 

n n 

L(i3) = > {ln4(xi,3) - ln[> 4)(xj,3)]}. 
i=1 j=i 

The intuition here is that, in the absence 
of all information about the baseline haz- 
ard, only the order of the durations pro- 
vides information about the unknown 
coefficients. 

Censoring is easily handled in the par- 
tial-likelihood framework. An individual 
whose spell is censored between dura- 
tion tjand tj+ 1appears in the summation 
in the denominator of the contribution 
to log-likelihood of (ordered, uncen- 
sored) observations 1 through j, but not 
in any others. Censored spells do not en- 
ter the numerator of a contribution to 
likelihood at all. Ties can be handled by 
the common device of including a contri- 
bution to likelihood for each of the tied 
observations, using the same denomina- 
tor for each. The negative inverse second 
derivative matrix of the log-likelihood 
function can be used to approximate the 

variance of the coefficient estimator.17 
Given estimates of I, we may ask 

whether it is possible to use these in con- 
structing a sensible nonparametric esti- 
mate of the baseline hazard XO(t). Define 
D(tk) to be the denominator of the likeli- 
hood contribution of the kth ordered, un- 
censored observation. When no observa- 
tions are censored D(t) = Z=k '(is); 
in general the sum will include additional 
terms for observations not censored by 
duration tk but censored later. A natural 
nonparametric estimator for the inte- 
grated hazard function, analogous to that 
described in Section III, is given by 

k 

AO(tk)= > d(tj)/D(tj) 
j=1 

where d(tj) is the number of spells ended 
at duration tj; d(tj) = 1 in the absence 
of ties. D(t) is evaluated at the estimated 
value of P. This is essentially the estima- 
tor suggested by Cox and Oakes (1985). 
If the baseline S0 survivor function itself 
is desired, it can be estimated by So(tk) 
= exp[-AO(tk)] 

The partial-likelihood method applied 
to the strike data gives an estimate of 
P, the coefficient on the industrial pro- 
duction index, equal to 9.08 (with stan- 
dard error 3.40). The constant term is 
not estimated in this procedure. The 
partial-likelihood result, which does 
not depend on assumptions about the 
shape of the baseline hazard function, is 
in agreement with the results from the 
exponential and Weibull specifications. 
Strike duration is significantly counter- 
cyclical. 

17 It can be shown that the partial likelihood can 
be treated as an ordinary likelihood or as a likelihood 
function concentrated with respect to Ao. See Per 
Kragh Andersen and Richard Gill (1982) and Johan- 
sen (1983). The efficiency loss from using partial 
rather than full likelihood is discussed by Brad EfroD 
(1977). 
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V. Explanatory Variables in Other 
Models 

A. Accelerated Lifetimes 

In the accelerated lifetime model the 
effect of explanatory variables is to re- 
scale time directly. If the baseline survi- 
vor function is So(t), then the survivor 
function for an individual with character- 
istics x is 

S(t,x,P3) = SO[t4(x4,)] 
in which essentially time is rescaled by 
multiplication by 4+. 

The hazard function associated with S 
is easily seen to be 

X(t,x, 3) = Xo[t4)(x43)]4(x43) 
where X0 = -dlnSoldt is the hazard func- 
tion for the distribution SO. The density 
is f(t,x, ) = f[t(x,)] 4(x, 1). 

In the important special case +(x, ) 
= exp(x'3) the accelerated lifetime 
model can be given a linear model inter- 
pretation. Changing variables to v = 
-lnt - x',, using an argument parallel 
to that in Section IVA, allows us to re- 
write the model as 

-lnt = x', + v 

where v has the density fo[exp 
(-v)]exp(-v), which does not depend on 
explanatory variables x. This representa- 
tion of the model can lead to specification 
checks and suggestions for informative 
plots, as in the discussion following the 
linear model representation of the pro- 
portional hazard model. It also gives a 
convenient interpretation of the coeffi- 
cients of explanatory variables: 

alnt/ax = - 3. 

It is instructive to compare the linear 
model representations of the propor- 
tional hazard and accelerated lifetime 
models. In the former the model is linear 
in x when the dependent variable is 

-InA0(t); because the class of possible 
specifications AO(t) is large, the model 
is quite general in this regard in compari- 
son with the accelerated lifetime model, 
which is linear in x for dependent vari- 
able -lnt. On the other hand, the distri- 
bution of E, the error term in the propor- 
tional hazard model, is in a specific form, 
the type 1 extreme value distribution. 
The form of the distribution of the error 
term v in the accelerated lifetime model 
is not restricted to a single distribution. 
Indeed, the error distribution can be nor- 
mal, although this specification has not 
seen much use in applications where the 
hazard functions-or conditional proba- 
bilities generally-are of particular inter- 
est because the hazard takes a compli- 
cated form involving the incomplete 
normal integral. Thus, the two specifica- 
tions are general in different ways. The 
proportional hazard model restricts the 
distribution of the additive error but al- 
lows fairly general transformations of the 
duration variable to achieve linearity in 
regressors. The accelerated lifetime 
model restricts the transformation of du- 
ration but allows fairly general error dis- 
tributions. 

The exponential specification with X0 
exponential and 4(x,4) = exp(x'3) is both 
a proportional hazard and an accelerated 
lifetime model, because AO(t) = t. As a 
general proposition, with 4+ exponential 
in x'3, the Weibull family is the only 
family in the proportional hazard class 
in which Int is linear in x. 

At this point it is useful to reconsider 
the regression results reported in Section 
II. If the exponential regression specifi- 
cation is correct, then in the absence of 
censoring, we would expect the ordinary 
least-squares slope estimate to be close 
to the maximum-likelihood estimate. 
They are both consistent in this circum- 
stance, though the least-squares estima- 
tor is inefficient. On the other hand, if 
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the exponential regression specification 
is incorrect, the least-squares estimator 
may still be consistent, if the true specifi- 
cation is an accelerated lifetime model. 
Again, we are abstracting from the diffi- 
cult problem of censoring. Thus, in the 
absence of censoring, a substantial differ- 
ence between the least-squares slope es- 
timate and the maximum-likelihood 
slope estimate is cause for concern about 
the assumed specification. The matter 
can be settled, perhaps, by an examina- 
tion of the regression residuals: Recall 
that under the exponential regression hy- 
pothesis the error term has an extreme 
value distribution. When censoring is 
present, the regression results are unreli- 
able whether the exponential specifica- 
tion is satisfactory or not; however, meth- 
ods for checking the specification using 
residuals based on maximum-likelihood 
estimates can be devised. One method 
is illustrated in Section VIE. 

Estimation of the accelerated lifetime 
model proceeds by choosing functional 
forms for Xo and 4+ and maximizing the 
resulting log-likelihood function. For ex- 
ample Xo could be Weibull or log-logistic 
and a natural choice for 4+ is exp(x'I). 
Specification analysis can proceed infor- 
mally by plots meant to detect departures 
from the linear model assumption. Non- 
linear functions 4(x,I) can also be speci- 
fied and estimated by maximum likeli- 
hood. The linear model interpretation of 
the accelerated lifetime model general- 
izes naturally to a nonlinear model with 
additive errors interpretation. 

B. Other Specifications 

Both the proportional hazard and the 
accelerated lifetime specifications sub- 
stantially restrict interdependence be- 
tween the explanatory variables and du- 
ration in determining the hazard. In 
many cases the data available and the 
problem at hand will not require more 
generality. In others, more flexible inter- 

action between x and t must be allowed. 
If the explanatory variable thought to in- 
teract with t is discrete or can be conve- 
niently allocated to separate groups, it 
may be possible to group the data and 
use a proportional hazard (or accelerated 
lifetime) model within groups. Compari- 
son of the estimated integrated hazard 
or survivor functions may then yield in- 
sight into the appropriate specification 
of the dependence of the hazard on x 
and t. Because the hazard function must 
be nonnegative, a convenient specifica- 
tion is 

X(t,x, ) = exp[g(t,x, )] 
where the function g is somewhat arbi- 
trary but can be specified to include 
polynomials and step functions in t and 
x as necessary. The likelihood function 
based on this hazard can be used to ob- 
tain parameter estimates. It should be 
stressed that headstrong specification 
and estimation of complicated models is 
typically to be avoided; without consider- 
able care the resulting estimates may be 
just as difficult to interpret as the raw 
data. A sensible research strategy is to 
start with simple models and use residual 
plots and other diagnostics to detect 
problems. A residual plot is considered 
below (Section VIE). 

C. Time Varying Explanatory Variables 

Regressors whose values change over 
the course of spells are conceptually 
straightforward to handle in the hazard 
function framework, though experience 
with these models is limited. Suppose 
the regressor x is a function of time, x(t), 
where t is measured from the beginning 
of the spell (a simple change of notation 
accommodates the case in which x de- 
pends on calendar time rather than dura- 
tion). Write the hazard function as 
X[t,x(t),0]. Using our integration formu- 
las we can write the integrated hazard, 
survivor, and density functions. These 
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will in general depend on the entire time 
path (up to t) of the regressor. For exam- 
ple, the integrated hazard is 

A(t) = f [u,x(u),]du 

The log-likelihood function for n inde- 
pendent observations is 

n 

L(O)= > djlnX[t2,x(tj),O] 
i=l 

n t 

- Jf~ [u,xi(u),O]du. 
i=l O 

Estimation of the parameter 0 typically 
requires numerical maximization of the 
log-likelihood function. In practice, the 
regressor may change only once or a few 
times over the course of a spell and the 
integral may therefore be simplified into 
a summation of a few terms. 

No apparent simple interpretation of 
this model in terms of linear models is 
available. Identification is tricky, in that 
the effect of trending regressors is diffi- 
cult to separate from possible duration 
dependence. Thus, for estimates to be 
precise, the time paths of regressors must 
vary substantially across individuals. The 
practical problems of specifying, estimat- 
ing, and interpreting models with time- 
varying explanatory variables are still im- 
portant areas of active current research. 
In a recent study Tony Atkinson and John 
Micklewright (1985) note that transfer 
payments received during spells of un- 
employment in the United Kingdom vary 
over the course of a spell. Allowing for 
this in estimating the disincentive effects 
of unemployment insurance turns out to 
be important. 

VI. Specification Checking 
A. Functional Form Misspecification 

and Heterogeneity 
Heterogeneity arises in a population 

when different individuals in the pop- 

ulation have potentially different dis- 
tributions of the dependent variable. 
Explanatory variables are included in 
econometric models to control for 
heterogeneity. If the control for the ef- 
fects of related explanatory variables is 
incomplete and so some heterogeneity 
remains, problems can arise in interpret- 
ing the data. Control can be incom- 
plete as a result of functional form mis- 
specification: For example, if the effect 
of an explanatory variable x enters as 
exp(fo + 1lx + P2x2), but instead the 
model exp(po + Plx) is specified, hetero- 
geneity is present as a result of the omit- 
ted term v = 2 x2. Heterogeneity can 
also arise when unobservable variables 
are important: For example, "spunk" in 
job-search efforts could affect an individ- 
ual's transition rate from unemployment 
to employment. 

We will use the term heterogeneity to 
refer to differences remaining in distribu- 
tions after controlling for the effect of ob- 
servable variables. Thus, heterogeneity 
occurs as a problem if individuals have 
differing duration distributions after con- 
trol for explanatory variables. Functional 
form misspecification leads to hetero- 
geneity, so our discussion of the effects 
of heterogeneity encompasses the effects 
of misspecification. As in the simple lin- 
ear regression model, omission of impor- 
tant variables or misspecification of in- 
cluded variables often leads to inaccurate 
inferences. Heterogeneity in duration 
models leads to misleading inferences 
about duration dependence and, poten- 
tially, to misleading inferences about the 
effects of included explanatory variables. 
We will discuss these in turn. 

B. Heterogeneity and Inference About 
Duration Dependence 

The effects of heterogeneity on appar- 
ent duration dependence can be illus- 
trated simply in a model with no explana- 
tory variables and a simple form of 
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heterogeneity. Suppose that the fraction 
p of the individuals in a population being 
studied have hazard function XA(t) = -yl 
and fraction (1 - p) have hazard function 
X2(t) = Y2, where both yl and Y2 are con- 
stants. For example, men and women 
might have different distributions for du- 
ration. The density functions for each of 
the two groups are fi(t) = yle-Ylt and 
fl(t) = y2eY.2t Suppose we assume in 
specifying a model that the population 
is made up of two subgroups. Then, we 
are sampling from the mixture distribu- 
tion f(t) = pf1(t) + (1 - p)f2(t). A ran- 
domly selected observation has probabil- 
ity p of being a draw from fi(t) and 
probability (1 - p) of being a draw from 
f2(t). Because we do not know which sub- 
group each observation is drawn from, 
or we do not choose to use this informa- 
tion if it is available, we are effectively 
sampling from the mixture f(t). 

Before studying duration dependence 
in the mixture distribution, it is useful 
to note that the misspecification we are 
considering can be regarded as a left-out 
regressor problem. Define x = 0 if the 
observation is from subgroup 1, x = 1 if 
the observation is from subgroup 2. Then 
the hazard function for the ith observa- 
tion can be written X(t,xi) = Yi + xi 
(Y2 - Y1)- Of course, we would be un- 
likely to specify a hazard function linear 
in a regressor, so we might instead write 
X(t,x) = exp(Po + Plx) where the new 
coefficients are Po = lnyl and 1 = lny2 
- lnyl. Treating the population as ho- 
mogenous is the same as leaving out the 
regressor x. 

The hazard function for each individual 
in the population is a constant. The haz- 
ard function for the mixture distribution 
is what we estimate. Using the formula 
X(t) = fit)IS(t) we find 

py1&Ylt + (1-p)Y2e-y2t 
A\ ( =-t + 

pe-'lt + (1p)e-'y2t 

which is not constant in duration (t). 
Some tedious calculating shows that 
dX(t)/dt is negative- it has the sign of 

-Y1 y2- 2 If we fit a model allowing 
duration dependence to these data we 
will find evidence of negative duration 
dependence. 

The result that heterogeneity leads to 
a downward biased estimate of duration 
dependence holds quite generally and is 
intuitively sensible. Consider a random 
sample of individuals from our mixture 
distribution. When the sample is taken, 
about fraction p of the individuals will 
be from subgroup 1 and 1 - p from sub- 
group 2. Suppose that the hazard 'is 
higher for members for group 1. As time 
elapses, individuals in group 1 will com- 
plete their durations at a higher rate than 
individuals in group 2. Thus, as time 
passes, the fraction of individuals from 
group 1 remaining in the sample falls. 
Because group 2 individuals have a lower 
hazard function, the decline in the frac- 
tion of individuals from group 1 shows 
up as a decline in the hazard function 
over time. 

C. Heterogeneity and Inference About 
Regressors 

Suppose that we fit an exponential 
regression model X(x, ) = exp(xjpl) 
when the true hazard function is exp 
(Xljl + x2'2). In this setup neither 
the true nor the specified model allows 
duration dependence, allowing a focus 
on the effect of heterogeneity on coeffi- 
cients of explanatory variables. Of 
course, if we did look for duration depen- 
dence within the framework of our model 
based on xl alone, then for reasons simi- 
lar to those outlined above we would find 
evidence of negative duration depen- 
dence. An approximation to the asymp- 
totic bias in the maximum likelihood esti- 
mate of r1 is 

This content downloaded from 195.113.13.185 on Wed, 18 Mar 2015 08:58:58 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


Kiefer: Economic Duration Data and Hazard Functions 673 

A / 2L X1 49L\ 
P3i - (iapi3> (ai3d2) 2 

In the absence of censoring, the expecta- 
tions of these second derivatives can be 
evaluated under the hypothesis that 
P2 = 0. The resulting formula for the ap- 
proximation bias in I, is 

n -1 n 
bias -xlixli XliX2i) P2 

exactly the same as the effect of an 
omitted regressor in the ordinary linear 
model. Here, however, the formula 
holds locally: It is a linear approximation 
to the bias. 18 

D. Heterogeneity and Simultaneous 
Inference on Duration Dependence 
and Regression Coefficients 

Misspecification of the hazard func- 
tion leads quite generally to downward 
bias in the effect of duration on the proba- 
bility of completing a spell even when 
regression coefficients are estimated si- 
multaneously. The effect of misspecifica- 
tion on the coefficients of explanatory 
variables when duration dependence is 
allowed is much more complicated. Tony 
Lancaster (1985) studies the effects of 
heterogeneity in the Weibull model 
A(t,x,3,ao) = t'- exp(x'3). He finds that 
the maximum likelihood estimator of ao 
is biased downward, as expected. Under 
the additional assumption that the heter- 
ogeneity term is independent of x, the 
maximum-likelihood estimator of L is bi- 
ased toward zero. Sunil Sharma (1987) 
finds, in the same setting, that hetero- 
geneity induces dependence between 
the effects of included regressors and du- 
ration, so that the proportional hazard 
hypothesis appears to be violated as a 

result of misspecification. These are 
asymptotic calculations. Note that hetero- 
geneity arising from functional misspecifi- 
cation is unlike to satisfy this indepen- 
dence condition. 

C. A. Struthers and John D. Kalb- 
fleisch (1986) study the effects of misspe- 
cification in the proportional hazard 
model estimated by the partial likelihood 
method. They find that fitting a propor- 
tional hazard model when the true pro- 
cess generating the data is an accelerated 
lifetime model leads to bias, but that the 
relative effects of the regressors are cor- 
rectly estimated to first order. If a pro- 
portional hazard model is fit, but relevant 
explanatory variables, independent of in- 
cluded variables, are left out the remain- 
ing coefficients are biased toward zero, 
with the size of the bias depending on 
the effect of the omitted regressor. These 
results are asymptotic. Of course, if the 
hazard function is calculated from the es- 
timated coefficients, the estimated haz- 
ard can be expected to be systematically 
biased. 19 

E. Informal Methods of Specification 
Checking 

Careful residual analysis, as in the lin- 
ear regression model, is the key to assess- 
ing a specification. Residual plots can re- 
veal surprising departures from a 
hypothesized model, and can sometimes 
suggest directions in which to improve 
the specification. Perhaps the easiest 
procedure is to examine estimated values 
of the integrated hazard A(tk,x,0). If the 
specification is correct, these values 
should look in the absence of censoring 
like a sample from the unit exponential 
distribution. Let 

Ek = A(tk,x,0). 

18 Details of this local approach to asymptotic speci- 
fication analysis are given by Nicholas M. Kiefer and 
Gary Skoog (1984). 

19 Geert Ridder and Wim Verbakel (forthcoming) 
obtain similar results on the proportional hazard 
model using different methods. 
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Figure 9. Integrated Hazard for Generalized 
Residuals from Exponential Regression 

(integrated hazard for standard 
exponential included) 

To find the distribution of E, 

Pr(E < E) = Pr(A(tk,x,0) < E) 

= Pr[tk < A-'(E,x,O)] 

= 1 - exp(-E) 

using the fact that F(t) = I - exp 
[-A(t,x,O)] and assuming that 0 = 0. The 
estimated integrated hazard function for 
E can be compared with the 45 degree 
line, the actual integrated hazard for the 
standard exponential distribution. The Ek 
are known as generalized residuals. They 
are analogous to the ordinary residuals 
e = y -x3 in the linear models.20 

Figure 9 shows the integrated hazard 
for the Ek from the strike data and the 
exponential specification X(t,x,0) = 
exp(f3o + ,lx). The solid line is the actual 
integrated hazard function for the stan- 

dard exponential. The agreement ap- 
pears good-especially when we recall 
that the values of the sample integrated 
hazard at longer durations have higher 
sampling variances. 

Another method of assessing specifica- 
tion is to split the sample, perhaps into 
groups based on values of the explanatory 
variables, and fit the model to the groups 
separately. If the specification is correct, 
the estimated parameters should agree 
(up to estimation error). If semipara- 
metric methods of estimating the hazards 
are used, these should provide similar 
estimates across groups. As in the linear 
regression model, different coefficients 
on explanatory variables across groups 
may indicate a need for respecification, 
perhaps involving nonlinearities (or addi- 
tional nonlinearities). 

F. Tests and Diagnostics 

Tests of hypotheses about the coeffi- 
cient vector can typically be constructed 
using the asymptotic distribution of maxi- 
mum-likelihood estimators and the 
Wald, score (Lagrange multiplier), or 
likelihood ratio method. Choice among 
the three asymptotically equivalent 
methods depends primarily on conve- 
nience. If construction of confidence in- 
tervals is particularly important the like- 
lihood ratio method is probably to be 
preferred, because it allows the data to 
determine the shape of multivariate con- 
fidence regions while direct use of the 
asymptotic distribution leads to elliptical 
regions. 

How can the fit be assessed? In nonlin- 
ear models with explanatory variables it 
is useful to report a chi-square test for 
the joint hypothesis that all coefficients 
apart from a constant are equal to zero. 
This statistic is analogous to the F-statis- 
tic in a linear regression. It provides the 
reader with an indication of how much 
the explanatory variables jointly contrib- 
ute to the fit of the model. Note, how- 

20 e are generalized residuals in the sense of 
Cox and Snell (1968). Residual analysis for economic 
duration data is discussed by Lancaster and Andrew 
Chesher (1985). See also J. Crowley and M. Hu 
(1977). 
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ever, that a high value of this statistic 
does not necessarily mean that the model 
is satisfactory. Residual plots and possi- 
bly calculation of diagnostics based on 
residuals are in order. 

A simple and frequently used diagnos- 
tic statistic is based on the fact that the 
generalized residuals A(t,x,0) are dis- 
tributed approximately as standard expo- 
nential under the null hypothesis that the 
specification is correct. The standard ex- 
ponential has rth moment equal to r!, 
so it is natural to base a test on these 
moment restrictions. It is easy to check 
that, if the specification of a parametric 
model includes a constant term, the gen- 
eralized residuals sum to one, so there 
is no point in testing the restriction on 
the first moment. The second moment 
is not given identically by the estimating 
equations, so one might look at the statis- 
tic 

n 

p = n >1E A(ti,xi, 0)2 - 2 
i=1 

which clearly goes to zero under the null 
hypothesis of current specification (the 
second moment of a standard exponential 
variable is equal to two). Upon dividing 
p by its asymptotic standard error we ob- 
tain an asymptotically normally dis- 
tributed test statistic. This statistic can 
be given a variety of interpretations.21 

Chi-square tests to fit can be obtained 
based on grouped data. Alternatively, 
tests can be obtained based on the esti- 
mated survivor function. These methods 
are treated by Lawless (1982, ch. 9). 

G. Estimation in the Presence of 
Heterogeneity 

A natural approach to accommodate 
heterogeneity is to base inference on the 
mixed distribution resulting from the 
presence of heterogeneity. Consider the 
example of Section VIB in which the pop- 
ulation is made up of two subgroups, with 
duration distributions fi(t) and f2(t). The 
distribution for the observations is f(t) = 

pf1(t) + (1 - p)f2(t). The distribution flt) 
can be used to form a likelihood function 
and the parameters can be estimated on 
the basis of that likelihood function. 
More generally, the individual densities 
can be written conditionally on a hetero- 
geneity term v, as f(tlv) and inference 
can be based on the distribution of ob- 
served durations 

fit) = f(tlv)p(v)dv. 

The distribution p(v) is typically un- 
known, and economic theory gives little 
or no guidance on its form. Conse- 
quently, p may be specified only to be 
a member of a parametric family and 
these parameters may be estimated along 
with others. The term v can be modeled 
as having a discrete distribution and the 
integral replaced by a summation as in 
our example. In fact, this is a case of 
practical importance. Suppose the distri- 
bution is given by Pr(V = vi) = pi, i = 
1, . ., I, and let the parameter vector 
8 = (vl, * * *, VI, Pi, . . . , P1). These 
parameters and I, the number of points 
in the discrete distribution, can be esti- 
mated by maximum likelihood.22 

The question of identification arises 
immediately. A simple example illus- 
trates the difficulty. Consider the survi- 

21 It is the numerator of a score test for heterogene- 
ity when the variance of the heterogeneity term is 
small. It is also the numerator of an information ma- 
trix test, as shown by Chesher (1984). Tests of higher- 
order moment restriction can be interpreted as tests 
of the significance of higher-order terms in a La- 
guerre expansion of the actual distribution of A about 
the exponential as in Kiefer (1985). Sunil Sharma 
(1987) gives a generalization. Monte Carlo evidence 
on the performance of these tests is mixed. Peter 
Jensen (1986) and John Kennan and George R. Neu- 
mann (1987) provide some evidence. 

22 This estimator is the nonparametric maximum- 
likelihood estimator suggested by Heckman and Bur- 
ton Singer (1984). Calculation of the asymptotic dis- 
tribution of this estimator is problematic. Examples 
suggest that a small number of points, three to five, 
is typically adequate as a practical matter. 
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vor function pexp(-y1t) + (1 - p)exp 
(-y2t). This function, perhaps estimated 
from data on individuals, could represent 
the survivor function for each individual 
if there is no heterogeneity, or it could 
represent a population in which the frac- 
tion p of individuals has survivor function 
exp(--yt) and 1 - p has survivor function 
exp(--y2t). Sorting out these possibilities 
in the absence of explanatory variables 
is analogous to the standard problem of 
sorting out demand and supply parame- 
ters in a simultaneous equations model. 
The problem arises in practice. Kennan, 
for example, found that heterogeneity 
appeared to be important for some speci- 
fications of the hazard and not for others. 
Elbers and Ridder (1982) studied identi- 
fication in the proportional hazard setting 
and found essentially that the presence 
of explanatory variables in the individual 
distributions is sufficient to assure iden- 
tification. 23 

The sensitivity of estimates of 0 to 
specification error in p(v) is an important 
consideration in modeling. This question 
has been considered recently by a num- 
ber of authors. James Heckman and Bur- 
ton Singer (1984) report the results of 
fitting a Weibull model with several dif- 
ferent assumed distributions for the het- 
erogeneity term to a subset of the data 
from the Kiefer and Neumann (1981) 
study. They found that the coefficients 
of explanatory variables were sensitive 
to the assumption on the functional form 
of p(v). Other work, however, suggests 
that the specification of the mixing distri- 
bution is not so important as long as the 
individual distribution is correctly speci- 
fied (or not too badly misspecified). Thus, 
the Heckman and Singer (1984) finding 

of sensitivity to specification of p(v) may 
be due to the inappropriateness of the 
Weibull assumption. It appears, based 
on examples and experiments appearing 
in the literature, that estimates are typi- 
cally more sensitive to specification of the 
survivor function for each individual or 
group than to that of the mixing distribu- 
tion (see Kenneth G. Manton, Eric Stal- 
lard, and James W. Vaupel 1986, Charles 
E. McCulloch and John L. Newman 
1983, Newman and McCulloch 1984, 
Ridder 1986, and James Trussell and 
Toni Richards 1985). A general theorem 
to this effect has not yet appeared. 

VII. Other Topics 

Competing risks occur when a spell can 
end in several different ways. For exam- 
ple, a spell of unemployment could end 
at employment or at withdrawal from the 
labor force. In this event, transition rates 
from unemployment to employment and 
from unemployment to outside the labor 
force are defined; the hazard rate from 
unemployment is the sum of the two. 
The destination-specific transition rates, 
for example from unemployment to em- 
ployment, are often of interest and are 
typically identified. A model of this type 
is estimated by Burdett et al. (1984). 
Lawrence Katz (1986) argues that work- 
ers on temporary layoff face competing 
risks: finding new jobs or being recalled. 

Multivariate duration data occur when 
several spells are observed for each indi- 
vidual in the sample. In this case it is 
possible to look into possible dependence 
across spells for the same individual. The 
topic is discussed by Kalbfleisch and 
Prentice (1980, section 7.3). It is some- 
times possible to handle heterogeneity 
as fixed effects; see Chamberlain (1985). 
A variety of notions of dependence, on 
duration and across spells, can be consid- 
ered (see James Heckman and George 
Borjas 1980 for a survey). 

23 Tony Lancaster and Stephen Nickell discuss 
identification and given examples. The Elbers and 
Ridder result can probably be generalized to say that 
a regressor affecting either the conditional distribu- 
tion or the mixing distribution but not both is suffi- 
cient. 
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Bayesian methods can be used to ana- 
lyze duration data. In the proportional 
hazard framework the baseline hazard 
function Xo can be regarded as a nuisance 
parameter. Prior information about the 
shape of Xo can be incorporated formally, 
as well as information about the effects 
of explanatory variables. A family of prior 
distributions for Xo is suggested by 
Kalbfleisch (1978). An alternative Baye- 
sian approach is suggested by Wen-Chen 
Chen et al. (1985). 

Grouped-data methods are currently 
being developed and applied to eco- 
nomic data. These methods account for 
the facts that economic data are typically 
grouped into intervals, for example un- 
employment into weeks, and typically 
there are many observations at each 
value of duration. Note that grouped data 
and discrete data are not the same. With 
many observations at 5 weeks, say, it is 
possible to estimate the conditional prob- 
ability of concluding a spell at 5 weeks 
by dividing the number of observations 
finishing at 5 weeks by the number lasing 
more than 4 weeks. This procedure esti- 
mates each conditional probability sepa- 
rately and therefore does not require an 
assumption on the functional form of the 
hazard. This is essentially the approach 
in the economic literature on semipara- 
metric hazard estimation.24 Little experi- 
ence with these methods has been accu- 
mulated, but the approach seems 
appropriate and promising. The ap- 
proach was adopted by Robert Prentice 
and L. Gloeckler (1978) and by Moffitt 
(1985). Aaron Han and Jerry Hausman 
(1986) and Bruce Meyer (1986) propose 
improved semiparametric methods 

adapted to be suitable for economic data. 
An alternative semiparametric approach 
is suggested by Joel Horowitz and 
George Neumann (1987). 

Asymptotic distribution theory for a 
variety of parametric and nonparametric 
estimators and test statistics can be de- 
rived elegantly using results from the 
theory of counting processes. See Odd 
Aalen (1978), Andersen and Gill (1982), 
and Martin Jacobsen (1982). The count- 
ing process approach may be useful in 
developing techniques particularly useful 
for economic data. 

VIII. Conclusion 

Econometric methods based on hazard 
functions provide a natural approach to 
analysis of economic data that can be 
modeled as generated by series of se- 
quential decisions. The methods do not 
provide a "correct" approach to data anal- 
ysis to be contrasted with an "incorrect" 
approach based on specification of a den- 
sity function: Specification of a hazard 
function is an alternative to specification 
of a density function, providing a simple 
way to choose a specification that allows 
plausible behavior to be modeled. 

Many of the economic applications of 
hazard function methods have to date 
been in labor economics. Here, empiri- 
cal questions about employment and un- 
employment spells are often framed in 
the language of hazard functions. It ap- 
pears, as a rough generalization, that em- 
ployment spells exhibit negative duration 
dependence, at least after the first few 
months. That is, the longer a job is held, 
the less likely it is to be lost. There is 
some evidence that the hazard for unem- 
ployment spells may be slightly down- 
ward sloping, though this is still a very 
active research area. Kennan (1985) 
found some evidence of a U-shaped haz- 
ard in the full data set on strike durations. 
This literature is evidence on the useful- 

4 A better term would be superparametric in view 
of the typically large number of parameters intro- 
duced. Since Cox (1972), the term semiparametric 
is used when there are finitely many parameters of 
interest and infinitely many nuisance parameters. 
Thus, the partial-likelihood estimator is semipara- 
metric. Methods for grouped data may or may not 
be semiparametric. 
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ness of the hazard function approach. 
Nevertheless, a confident assessment of 
the importance of hazard function meth- 
ods in applied economics will have to 
await further applications. There are pos- 
sibilities in many applied fields. 
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