1 Measurement error, e, in X

$$
\begin{gathered}
y=\beta X+u, X^{*}=X+e \\
\widehat{\beta}_{O L S}=\left(X^{* \prime} X^{*}\right)^{-1} X^{* \prime} y= \\
=\left(X^{* \prime} X^{*}\right)^{-1} X^{* \prime}(\beta X+u)= \\
=\left(X^{* \prime} X^{*}\right)^{-1}\left[\beta\left(X^{* \prime} X\right)+X^{* \prime} u\right]= \\
=\left(X^{* \prime} X^{*}\right)^{-1}\left[\beta\left(X^{* \prime} X^{*}+X^{* \prime} e\right)+X^{* \prime} u\right]= \\
=\beta+\beta\left(X^{* \prime} X^{*}\right)^{-1} X^{* \prime} e+\left(X^{* \prime} X^{*}\right)^{-1} X^{* \prime} u= \\
=\beta+\beta\left(X^{* \prime} X^{*}\right)^{-1}\left(X^{\prime} e+e^{\prime} e\right)+\left(X^{* \prime} X^{*}\right)^{-1}\left(X^{\prime} u+e^{\prime} u\right)= \\
p \lim \widehat{\beta}_{O L S}=\beta+\beta \frac{V A R(e)+C O V(X, e)}{V A R\left(X^{*}\right)}+\frac{\operatorname{COV}(X, u)+\operatorname{COV}(e, u)}{\operatorname{VAR}\left(X^{*}\right)}= \\
=\beta+\beta \frac{\operatorname{VAR}(e)+\operatorname{COV}(X, e)}{\operatorname{VAR(X)+VAR(e)+2COV(X,e)}+\frac{\operatorname{COV}(X, u)+\operatorname{COV}(e, u)}{\operatorname{VAR(X)+VAR(e)+2COV(X,e)}}} \begin{aligned}
& \\
& \\
& X^{* \prime} X=X^{* \prime}\left(X^{*}-e\right)=X^{* \prime} X^{*}-X^{* \prime} e \\
& X^{* \prime} e=(X+e)^{\prime} e=X^{\prime} e+e^{\prime} e \\
& X^{* \prime} u=(X+e)^{\prime} u=X^{\prime} u+e^{\prime} u \\
& X^{* \prime} X^{*}=(X+e)^{\prime}(X+e)=X^{\prime} X+e^{\prime} e+2 X^{\prime} e
\end{aligned}
\end{gathered}
$$

1.0.1 Pure endogeneity

$\operatorname{VAR}(e)=0 ; \quad \operatorname{COV}(X, u) \lessgtr 0$

$$
\begin{aligned}
p \lim \widehat{\beta}_{O L S} & =\beta-\beta \frac{0+0}{\operatorname{VAR}(X)+0+0}+\frac{\operatorname{COV}(X, u)+0}{\operatorname{VAR}(X)+0+0}= \\
& =\beta+\frac{\operatorname{COV}(X, u)}{\operatorname{VAR}(X)} \lessgtr \beta
\end{aligned}
$$

Example: $\operatorname{COV}(X, u)>0$ due to ability bias because $X=f($ ability $)$ and u also contains ability and therefore $\operatorname{COV}(X, u)>0$.

1.0.2 Pure measurement error

$\operatorname{COV}(X, u)=0 ; \quad \operatorname{COV}(e, u)=0 ; \quad \operatorname{COV}(X, e)=0$

$$
\begin{aligned}
p \lim \widehat{\beta}_{O L S} & =\beta+\beta \frac{V A R(e)+0}{V A R(X)+V A R(e)+2 * 0}+\frac{0+0}{V A R(X)+V A R(e)+2 * 0}= \\
& =\beta+\beta \frac{V A R(e)}{V A R(X)+V A R(e)}=\beta\left[1-\frac{V A R(e)}{V A R(X)+V A R(e)}\right]<\beta
\end{aligned}
$$

Noting that

$$
0<\frac{V A R(e)}{V A R(X)+V A R(e)}<1
$$

1.0.3 Systematic measurement error- type 1

$\operatorname{COV}(X, u)=0 ; \quad \operatorname{COV}(e, u)=0 ; \quad \operatorname{COV}(X, e) \lessgtr 0$
Measurement error is correlated with actual values of X (example: low educated people tend to overstate years of education).

$$
p \lim \widehat{\beta}_{O L S}=\beta+\beta \frac{V A R(e)+\operatorname{COV}(X, e)}{V A R(X)+V A R(e)+2 * \operatorname{COV}(X, e)}
$$

1.0.4 Systematic measurement error- type 2

$\operatorname{COV}(X, u)=0 ; \quad \operatorname{COV}(X, e)=0 \quad ; \operatorname{COV}(e, u) \lessgtr 0$
Measurement error e, correlated with unexplained component of LHS variable, u.(example: people who over/under-state education also over/understate earnings).

$$
\begin{aligned}
p \lim \widehat{\beta}_{O L S} & =\beta+\beta \frac{V A R(e)+0}{V A R(X)+V A R(e)+2 * 0}+\frac{0+\operatorname{COV}(e, u)}{V A R(X)+V A R(e)+2 * 0}= \\
& =\beta+\beta \frac{V A R(e)}{V A R(X)+V A R(e)}+\frac{C O V(e, u)}{V A R(X)+V A R(e)}
\end{aligned}
$$

