1. Creating artificial dataset:

When creating an artificial dataset, I was using real US wage data ${ }^{1}$ as a benchmark for the plausible values, distributions and correlations of variables. My approach was to create larger dataset (consisting of 1000 observations) with matching distribution and correlation structure, then drop observation with values that were not plausible and at the end keep 200 observations serving as a basic dataset.

a. Generating RHS variables:

- Age (age): drawing from normal distribution (mean = 36, st.dev. = 12), only positive and integer values
- Education (edu): drawing from normal distribution (mean $=13$, st.dev. $=4$), integer values larger than 2 (I wanted to assure that a person can at least read and write, moreover, it was also minimal value in US dataset. ${ }^{2}$) , corr (age, edu) $=-.14$ (again to account for real data feature, older people did not have the same access to higher education)
- Error term (e): drawing from normal distribution (mean $=0$, st.dev. $=0.1$), correlation with other RHS variables set to 0 - orthogonality
- Experience (exp, exp2): I created exp = age - edu -6 , so I have to assure that (ageedu) $>=6$; $\exp 2=\exp ^{\wedge 2 ~}-$ this term should account for decreasing earnings profile in the higher age
b. Generating LHS variables:

For the creation of LHS variable, i.e. logy I have to set the parameter values in the basic model. I used following equation:

$$
\log Y=0.7+0.08^{*} \text { edu }+0.05^{\star} \exp +0.001^{\star} \exp 2+e .
$$

c. Summary statistics:

 sum age edu exp e logy| Variable | Obs | Mean | Std. Dev. | Min | Max |
| :---: | :---: | :---: | :---: | :---: | :---: |
| age | 200 | 37.755 | 11.13711 | 18 | 75 |
| edu | 200 | 12.775 | 3.92702 | 3 | 23 |
| exp | 200 | 18.98 | 12.18078 | 0 | 59 |
| logy | 200 | 2.161799 | . 3423162 | . 8901643 | 2.92425 |
| e | 200 | -. 0013313 | . 1023772 | -. 2484918 | . 2920441 |

First, I present the summary statistics for all the RHS and also LHS variable. We see that RHS variables have approximately the values we have prescribed them to have (the lower variance of age can be explained by dropping observations with age<16). I also present the graphical illustration of relationship among LHS variables.

I also checked for the correlation structure of LHS variables. Note that age and education have negative relationship (although lower than I first specified) and that error term is practically uncorrelated with LHS variables (needed for unbiasedness of OLS).

[^0]

	age	edu	exp	exp2	e
age	1.0000				
edu	-0.1019	1.0000			
exp	0.9472	-0.4156	1.0000		
exp2	0.9069	-0.3522	0.9428	1.0000	
e	-0.0464	0.0257	-0.0507	-0.0600	1.0000

2.

a. Estimating the underlying model by OLS

Underlying funct. form:
. reg logy edu exp exp2

Source	ss	df	MS		Number of obs	$=200$
					F(3, 196)	$=668.04$
Model	21.2415152	3	7.08050507		Prob > F	$=0.0000$
Residual	2.0773738	196	. 010598846		R -squared	$=0.9109$
					Adj R-squared	$=0.9096$
Total	23.318889	199	. 117180347		Root MSE	. 10295
logy	Coef.	Std.	Err.	$p>\|t\|$	[95\% Conf	Interval]
edu	. 0802864	. 0020	608 38.96	0.000	. 0762222	. 0843506
exp	. 0505131	. 0018	$645 \quad 27.09$	0.000	. 046836	. 0541902
exp2	-. 0010209	. 0000	$396-25.77$	0.000	-. 001099	-. 0009428
cons	6958802	. 0378	18.39	0.000	. 6212614	. 770499

All the estimated coefficients are statistically significant (check p-value) and are consistent with our underlying model (logy $=0.7+0.08^{*}$ edu $+0.05^{*} \exp -$ $\left.0.001^{*} \exp 2+e\right)$. The small differences in parameter estimates are caused by correlation of our randomly created error term and RHS variables (it is very small but still exists) resulting in a bias.

b. Omitted variables problem:

When excluding RHS variables, we basically create omitted variables problem. Thus, our estimates would be biased and the magnitude of this bias depends on the correlation with omitted variable.

. reg logy exp exp2 (excluding education)				
Source \|	SS	df	MS	Number of obs

Total	23.318889	199.117180347		Adj R-squared $=$ Root MSE		$\begin{aligned} & =0.2131 \\ & =\quad .30365 \end{aligned}$
logy	Coef.	Std. Err.	t	$P>\|t\|$	[95\% Con	Interval]
exp	. 0310744	. 0052988	5.86	0.000	. 0206248	. 0415241
exp2	-. 0008196	. 0001158	-7.08	0.000	-. 001048	-. 0005911
_cons	1.988245	. 0536747	37.04	0.000	1.882395	2.094096

If we omit edu, it is contained in the error term and so we basically create endogenity (due to high correlation between edu and exp) and our OLS estimates are biased and inconsistent.

.reg logy edu exp Source	xp2 (excluding experience)				Number of obs $=$	$=200$
					F(2, 197)	$=134.54$
Model	13.4623899	26.7	119496		Prob > F	$=0.0000$
Residual	9.85649909	197.0	003299		R -squared	$=0.5773$
					Adj R-squared	0.5730
Total	23.318889	199.11	180347		Root MSE	. 22368
logy	Coef.	Std. Err.	t	$P>\|t\|$	[95\% Conf.	Interval]
edu	. 0653458	. 0043142	15.15	0.000	. 0568378	. 0738537
exp2	-. 000017	. 0000304	-0.56	0.577	-. 0000769	000043
cons	1.335627	. 0642313	20.79	0.000	1.208958	1.462297
reg logy edu Source	$\begin{array}{ll} \exp & \text { (exclu } \\ & \end{array}$	ding exper df	$\begin{aligned} & \text { ence squ } \\ & \text { MS } \end{aligned}$		Number of obs	200
					F(2, 197)	$=153.42$
Model	14.2011379	27.1	056895		Prob > F	$=0.0000$
Residual	9.11775111	197.04	83001		R -squared	$=0.6090$
					Adj R-squared	0.6050
Total \|	23.318889	199.11	180347		Root MSE	. 21513
logy	Coef.	Std. Err.	t	$P>\|t\|$	[95\% Conf.	Interval]
edu	. 0733576	. 0042696	17.18	0.000	. 0649375	. 0817776
exp	. 0055572	. 0013765	4.04	0.000	. 0028426	. 0082717
_cons	1.119181	. 0712288	15.71	0.000	. 9787118	1.25965

In this setting, we do not account for concave earnings- experience profile.

c. Estimation of the model using levels:

In this task we are basically estimating level - level model, while up to now we were estimating logs - level model. The main difference lies in the interpretation of the coefficients: while in the original regression the coefficient*100 were indicating the percentage change, now we are speaking about absolute changes.

Example: from the results of the log-level regression, for each additional year of education we could expect $(0.08 * 100) \%=8 \%$ higher in wage, in the new specification one year of education brings additional 0.75 "units of currency" to the wage.

| Number of obs | $=200$ |
| :--- | ---: | ---: |
| $\mathrm{~F}(3, ~ 196)$ | $=443.32$ |
| Prob $>$ F | $=0.0000$ |
| R-squared | $=0.8716$ |
| Adj R-squared | $=0.8696$ |
| Root MSE | $=1.1277$ |

y	Coef.	Std. Err	t	$P>\|t\|$	[95\% Con	Interval]
edu	. 7478083	. 0225736	33.13	0.000	. 7032899	. 7923267
exp	. 4280906	. 0204236	20.96	0.000	. 3878124	. 4683689
exp2	-. 008208	. 0004339	-18.92	0.000	-. 0090637	-. 0073523
_cons	-4.313831	. 4144526	-10.41	0.000	-5.13119	-3.496471

d. Estimating experience of maximum earnings:

From the derivation of basic functional form $\log y=a+b 1^{*} \operatorname{edu}+c 1^{*} \exp -c 2^{*} \exp 2$ with respect to \exp we find that earnings are maximized at value $\exp ^{*}=-c 1 / 2^{*} c 2$. Given our underlying model , our $\exp ^{*}=-0.05 / 2^{*} 0.001=25$. First, I test the difference of estimated $\exp ^{*}$ ($=24.73978$ years) from point value of 35 years:
testnl - $\left(_b[\exp] /\left(_b[\exp 2]^{*} 2\right)\right)=35$
$(1)-\left(_b[\exp] /\left(_b[\exp 2] * 2\right)\right)=35$
F(1, 196) $=$

$$
F(1,196)=\quad 913.54 ; \quad \text { Prob }>F=\quad 0.0000
$$

I reject the $\mathrm{H}_{0}=>$ my estimated exp* is significantly different from 35.
Then I test the difference of estimated exp* from value given by our underlying model - 25 years.
testnl - (_b[exp]/(_b[exp2]*2))= 25
$(1)-\left(_b[\exp] /\left(_b[\exp 2] * 2\right)\right)=25 ;$
Prob > F =
0.4443

I cannot reject the $\mathrm{H}_{0}=>$ my estimated exp* is significantly different from 35 .

3.

a. Heteroskedasticity

I introduced heteroskedasticity into error term by putting ehet=edu/4*e. Note, that I did not change the mean, only the variance of error term by making it dependent on the value of education .

[^1]I reject the $\mathrm{H}_{0}=>$ our residuals are heteroskedastic, resulting into inconsistent estimation of std. errors. We have to use White robust std. errors estimator. Apparently, the estimates of standard errors have changed.

Regression with robust standard errors					Number of obs F (3, 196) Prob > F R-squared Root MSE	$\begin{aligned} & = \\ & = \\ & = \\ & = \\ & = \end{aligned}$	$\begin{array}{r} 200 \\ 73.57 \\ 0.0000 \\ 0.5076 \\ .32876 \end{array}$
		Robust					
logyhet	Coef.	Std. Err	t	$P>\|t\|$	[95\% Conf. Interval]		
edu	. 0797948	. 0064395	12.39	0.000	. 0670951		. 0924945
exp	. 0509701	. 0055026	9.26	0.000	. 0401181		. 061822
exp2	-. 0010598	. 0001062	-9.98	0.000	-. 0012692		. 0008504
_cons	. 7128863	. 1145936	6.22	0.000	. 4868916		. 9388811

To illustrate the heteroskedasticity, we plot the residuals from regression against edu. We see that the variance of residuals is increasing with increasing education.

b. Measurement error in RHS variable

I introduced measurement error in the edu variable by creating new variable EDUERR=edu+2.5*e1, where e1 is $\mathrm{N}(0,1)$. I reestimated the basic model and obtained following results.

exp2	-.0010121	.0000402	-25.19	0.000	-.0010909	-.0009332
_cons	1.144964	.0289347	39.57	0.000	1.088178	1.201751

See that coefficient by eduerr is smaller than the true one and on the other hand coefficient by constant is much higher. Much bigger problem, however, is the endogeneity of EDUERR (see construction of EDUERR, it is now correlated with error term = $\mathrm{e}+\mathrm{e} 1$). I tried to account for it by creating an instrumental variable INSTR, which is highly correlated with edu and has also similar correlation structure w.r.t. other RHS variables.

Instrumental Source	iables (2SL SS	regression			Number of obs	11
					F(3, 907)	$=319.12$
Model	53.9976389	317	999213		Prob > F	$=0.0000$
Residual	44.1632143	907.04	691526		R -squared	$=0.5501$
					Adj R-squared	$=0.5486$
Total	98.1608533	910.1	786907		Root MSE	. 22066
logy	Coef	Std. Err.	t	$P>\|t\|$	[95\% Conf.	Interval]
EDUERR	. 077281	. 0033759	22.89	0.000	. 0706554	. 0839065
exp	. 0518549	. 0022143	23.42	0.000	. 0475092	. 0562006
exp2	-. 001048	. 0000472	-22.19	0.000	-. 0011407	-. 0009553
_cons	. 7273676	. 0575153	12.65	0.000	. 6144891	. 8402461
nstrumented	EDUERR Inst	ents:	xp exp2	tr		

Using instrumental variable INSTR we have achieved parameter estimates which are very similar to true parameter values. Moreover, we have solved the problem of endogeneity.

c. Measurement error in LHS variable

When introducing stochastic measurement error (uncorrelated with RHS variables) in LHS variable we basically increase the variance of this variable - in our case logY. Therefore, the parameter estimates does not change that much, but the standard errors are higher and R -squared lower than in the basic regression (as less of the variance in the data is explained).

d. Including irrelevant variable:

We are considering the $3^{\text {rd }}$ order polynomial of exp instead of $2^{\text {nd }}$ order. The coefficient by exp3 turned out to be insignificant. In fact, we are including irrelevant variable, as we know that underlying model assumed only quadratic relation. By doing this, we are loosing efficiency.

e. Using $2^{\text {nd }}$ order polynomial of age instead of exp:

As the correlation between age and exp is very high (namely 0.9472), we can use it instead of experience and obtain similar results as in original regression with respect to coefficients by age (exp) and age2 (exp2). It is basically the same system as using age as instrumental variable for edu.

Source	SS	df MS			$\begin{aligned} \text { Number of obs } & =200 \\ F(3,196) & =409.81 \end{aligned}$	
Model	20.1124839	36.7	416131		Prob > F	$=0.0000$
Residual	3.20640509	196.0	35921		R -squared	0.8625
					Adj R-squared	$=0.8604$
Total	23.318889	199.11	180347		Root MSE	. 1279
logy	Coef.	Std. Err.	t	$P>\|t\|$	[95\% Conf.	Interval]
edu	. 066651	. 0023217	28.71	0.000	. 0620723	. 0712297
age	. 091958	. 0046183	19.91	0.000	. 08285	. 101066
age2	-. 0010674	. 0000562	-19.01	0.000	-. 0011782	-. 0009567
_cons	-. 5082627	. 0955759	-5.32	0.000	-. 6967519	-. 3197736

4. Method of splines:

I used linear spline with three knots at values 10,20 and 40 to approximate the earningexperience profile. It has brought approximately the same fit as the real = quadratic functional form (R-squared $=0.9076$).

Source	SS	df	MS	Number of obs $=$	200
				F (5, 194) =	381.04
Model	21.1638663	5	4.23277327	Prob > F	0.0000
Residual	2.15502266	194	. 011108364	R-squared	0.9076
				Adj R-squared $=$	0.9052
Total	23.318889	199	. 117180347	Root MSE	. 1054
logy	Coef.	Std.	rr	[95\% Conf.	erval]

edu	. 0807019	. 0021305	37.88	0.000	. 0765	. 0849038
exp_1	. 0394724	. 0036023	10.96	0.000	. 0323676	. 0465772
exp_2	. 0217317	. 0029518	7.36	0.000	. 0159099	. 0275534
exp_3	-. 0058315	. 0018432	-3.16	0.002	-. 0094669	-. 0021961
exp_4	-. 0592381	. 0046256	-12.81	0.000	-. 068361	-. 0501152
_cons	. 7102411	. 0428287	16.58	0.000	. 6257714	. 7947109

5. Mimicking the distribution of estimated coefficient b1:

We are repeating task \#1 200 times using different seed for each run, saving estimated coefficient b1 from each run. We got following results:

As we see, the mean of the newly created variable b1 is 0.080 what is exactly the value b1 from our parameterized underlying model. In this exercise we are trying to mimic the distribution of the estimator of $\mathbf{b 1}$ and we can say it is unbiased (as the mean = true value). We can also say that it is consistent and efficient, as this is the property of OLS estimators.

[^0]: ${ }^{1}$ Available on www.economicswebinstitute.org/data/wagesmicrodata.xls .
 ${ }^{2}$ However, as for example in Slovakia school attendance is compulsory up to 10 years of study, we would have to account for this in data creation.

[^1]: Let's test for heteroskedasticity:
 . hettest
 Breusch-Pagan / Cook-Weisberg test for heteroskedasticity
 Ho: Constant variance
 Variables: fitted values of logyhet
 chi2(1) $=14.16$
 Prob > chi2 = 0.0002

